

Lecture 4: Consumer Choice

September 19, 2017

Course Administration

Ripped from the Headlines

Consumer Preferences and Utility

Indifference Curves

Income and the Budget Constraint

Making a Choice with Utility and the Budget Constraint

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

- 1. Return PS 2, PS 4 posted
- 2. Please use scheduler to book office hours
- 3. Please come see me, and realize that office hours at the deadline book up

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

4. Any questions or outstanding issues?

Examples of Floor and Ceilings from PS 2

- cap on therapy in Medicare: restricts supply, and patient faces market prices after cap
- Argentina limited the price of basic food items to control inflation → increase in demand for bread → bread shortage
- US limited prices on gasoline in the 1970s \rightarrow shortages
- Many examples of taxes (x% more for some goods), which are related, but not quite the same. Wait till Lecture 6.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

nin

RFH

Ind. Curves

Budget Co

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optimizing

How What You're Learning is Policy-Relevant

Ripped from Headlines presentation(s)

As a reminder, next week

Afternoon

Finder	Presenter
lan Tang	Stephen Haas
Chris Rogers	Ilhman Dehry
Emily Labandera	Danielle Schultz

Evening

Finder	Presenter
Elisa Walker	Erika Ross
Vanessa Lopez	Justin Pollard
Hannah Seligman	Ben Darland

Admin	RFH L	Utility	Ind. Curves	Budget Cons.	Optimizing

Why Do We Study the Consumer's Problem?

- · Build up to the demand curve from first principles
- Understand consumer choices
- Clearly illuminate areas where policy can act
- Illustrate welfare consequences of policy choices
- Understand intuition of constrained maximization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Admin	RFH	Utility	Ind. Curves	Budget Cons.	Optimizing

Utility

(ロ)、(型)、(E)、(E)、 E) の(の)

Admin	RFH	Utility	Ind. Curves	Budget Cons.	Optimizing

Assumptions about Consumer Preferences

1. Completeness and Rankability

- You can compare all your consumption choices
- For two bundles A and B, you always either
 - prefer A to B
 - prefer B to A
 - are indifferent between A and B
- 2. More is better at least no worse than less
- 3. Transitivity
 - If A is preferred to B, and B to C, then A > C
- 4. The more you have of a particular good, the less of something else you are willing to give up to get more of that good

Overall satisfaction or happiness

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overall satisfaction or happiness

- Measured in utils!
- This framework allows us to describe what consumption or habits make you happier than other consumptions or habits

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• It's not a tool for comparing across people

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Most general U = U(X, Y)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Most general U = U(X, Y)They can take many forms, such as

•
$$U = U(X, Y) = XY$$

•
$$U = U(X, Y) = X + Y$$

•
$$U = U(X, Y) = X^{0.7} Y^{0.3}$$

Marginal utility \equiv "additional utility consumer receives from an additional unit of a good or service"

$$MU_X = \frac{\Delta U(X, Y)}{\Delta X} \left(= \frac{\partial U}{\partial X} \right)$$
$$MU_Y = \frac{\Delta U(X, Y)}{\Delta Y} \left(= \frac{\partial U}{\partial Y} \right)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Marginal utility \equiv "additional utility consumer receives from an additional unit of a good or service"

$$MU_X = \frac{\Delta U(X, Y)}{\Delta X} \left(= \frac{\partial U}{\partial X} \right)$$
$$MU_Y = \frac{\Delta U(X, Y)}{\Delta Y} \left(= \frac{\partial U}{\partial Y} \right)$$

What is generally true about marginal utility of X as consumption of X increases?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Ordinal: we can rank bundles from best to worst
- Not cardinal: we cannot say how much one bundle is preferred to another in fixed units

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• We cannot make interpersonal comparisons

No other assumptions on utility apart from the four preference assumptions.

Admin RFH Utility **Ind. Curves** Budget Cons. Optimizin

Indifference Curves

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- A consumer is indifferent between two bundles (X_1, Y_1) and (X_2, Y_2) when $U(X_1, Y_1) = U(X_2, Y_2)$
- An indifference curve is a line where utility is constant: a combination of all consumption bundles that give the same utility

Working Up to an Indifference Curve

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Give me two items

- Give me two items
- Each axis is a quantity of those items
- Give me some points where you are equally happy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Working Up to an Indifference Curve

- Give me two items
- Each axis is a **quantity** of those items
- Give me some points where you are equally happy

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Give me a point where you are less happy

Working Up to an Indifference Curve

- Give me two items
- Each axis is a **quantity** of those items
- Give me some points where you are equally happy
- Give me a point where you are less happy
- Give me some points where you are equally less happy

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Why Can We Draw Indifference Curves?

• Because of the assumptions we made at the beginning about preferences: completeness and rankability

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

All bundles have a utility level and we can rank them

Indifference Curves Level and Slope

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What does "more is better" tell us?

Indifference Curves Level and Slope

What does "more is better" tell us?

- That higher indifference curves give more utility
- Curve must have a negative slope
 - Suppose that you increase your consumption of X
 - "More is better" \rightarrow you are happier
 - To be equally happy as before, you should give up some Y

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

min

r

Ind. Curves

Budget Con

Optimizing

Indifference Curve Shape

- Curves never cross
 - it would violate transitivity
- Curves are U-like (convex) with respect to the origin
 - Comes from assumption about diminishing marginal utility
 - Your willingness to trade off differs along the curve

イロト 不得 トイヨト イヨト

Apartment size (square feet)

э

Steepness of the Indifference Curve

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- We know that you are equally happy anywhere along the indifference curve
- So what changes as you move along the curve?

Steepness of the Indifference Curve

- We know that you are equally happy anywhere along the indifference curve
- So what changes as you move along the curve?
 - you are trading off X and Y
 - the rate at which you trade them off tells us how much you value them

イロト 不得 トイヨト イヨト

э

 $\mathcal{O} \land \mathcal{O}$

Quantifying the Trade-off in the Indifference Curve

- How much of X are you willing to give up for Y?
- Marginal Rate of Substitution is the trade-off

Define

$$MRS_{XY} = \frac{MU_X}{MU_Y}$$

 $MRS_{XY} = (-1) * \text{slope of indifference curve}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Admin RFH Utility Ind. Curves Budget Cons.	Optimizing
--	------------

Quantifying the Trade-off in the Indifference Curve

- How much of X are you willing to give up for Y?
- Marginal Rate of Substitution is the trade-off

Define

$$MRS_{XY} = \frac{MU_X}{MU_Y}$$

 $MRS_{XY} = (-1) *$ slope of indifference curve

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A rate of change along the indifference curve
- Is it the same everywhere on the curve?
Admin RFH Utility Ind. Curves Budget Cons. Optimizing

Quantifying the Trade-off in the Indifference Curve

- How much of X are you willing to give up for Y?
- Marginal Rate of Substitution is the trade-off

Define

$$MRS_{XY} = \frac{MU_X}{MU_Y}$$
$$MRS_{XY} = (-1) * \text{slope of indifference curve}$$

- A rate of change along the indifference curve
- Is it the same everywhere on the curve? Not necessarily.
- If you want a derivation, see the textbook!

- Suppose we have two goods that are perfect complements
- X and Y being perfect complements means each is useless without the other
- What do the indifference curves look like?
- We write this utility as $U = \min\{aX, bY\}$

Curves for Perfect Complements

Work with your neighbor!

- Suppose we have two goods that are perfect complements
- X and Y being perfect complements means each is useless without the other
- What do the indifference curves look like?
- We write this utility as $U = \min\{aX, bY\}$

Work with your neighbor!

Q_v

Qx

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Suppose we have two goods that are perfect substitutes
- What do the indifference curves look like?

n RF

Ind. Curves

Budget Con

Optimizing

Curves for Substitutes

Work with your neighbor!

- Suppose we have two goods that are perfect substitutes
- What do the indifference curves look like?
- Write as U = aX + bY

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Admin RFH Utility Ind. Curves **Budget Cons.** Opt

Budget Constraint

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 1. Each good has a fixed price and infinite supply
- 2. Each consumer has a fixed amount of income to spend

3. The consumer cannot save or borrow

Budget constraint:

$$I = P_X Q_X + P_Y Q_Y$$

- **feasible bundle** ≡ combinations of X and Y that the consumer can purchase with his income
- infeasible bundle \equiv all the combinations the consumer is just too poor to get

Admin

Ind. Curves

Budget Cons.

Optimizing

Drawing the Budget Constraint

What if you spend all your money on X or Y?

Drawing the Budget Constraint

Drawing the Budget Constraint

Drawing the Budget Constraint

・ロト ・ 一下・ ・ モト ・ モト・

€ 990

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Algebra of the slope

$$I = P_X Q_X + P_Y Q_Y$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Slope of the Budget Constraint

Algebra of the slope

$$I = P_X Q_X + P_Y Q_Y$$
$$P_Y Q_Y = I - P_X Q_X$$
$$Q_Y = \frac{I}{P_Y} - \frac{P_X Q_X}{P_Y}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Slope of the Budget Constraint

Algebra of the slope

$$I = P_X Q_X + P_Y Q_Y$$
$$P_Y Q_Y = I - P_X Q_X$$
$$Q_Y = \frac{I}{P_Y} - \frac{P_X Q_X}{P_Y}$$
$$Q_Y = -\frac{P_X}{P_Y} Q_X + \frac{I}{P_Y}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So an additional unit of Q_X requires you to give up $\frac{P_X}{P_Y}$ of Q_Y

Admin F	RFH	Utility	Ind. (Curves	Budget Cons.	Optimizin
---------	-----	---------	--------	--------	--------------	-----------

What Affects the Position of the Budget Constraint?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Admin	RFH	Utility	Ind. Curves	Budget Cons.	Optimizing

What Affects the Position of the Budget Constraint?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Prices
- Income

What Happens if the Price of *Y* Decreases?

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Admin RFH Utility Ind. Curves Budget Cons. Optimizing

What Happens if the Price of *Y* Decreases?

æ

- Things that change the slope
 - Change in prices, P_X or P_Y
- Things that don't change the slope, but move the line in and out

• Change in income

Admin RFH Utility Ind. Curves Budget Cons. **Optimizing**

Optimizing

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Maximize your utility given your budget constraint
- How do you do it?

- Maximize your utility given your budget constraint
- How do you do it?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Utility is maximized, given the budget constraint, when the slope of the indifference curve is tangent to the budget constraint
- tangency \rightarrow equality

$$-MRS_{XY} = -\frac{P_X}{P_Y}$$

- Utility is maximized, given the budget constraint, when the slope of the indifference curve is tangent to the budget constraint
- tangency \rightarrow equality

$$-MRS_{XY} = -\frac{P_X}{P_Y}$$
$$-\frac{MU_X}{MU_Y} = -\frac{P_X}{P_Y}$$

- Utility is maximized, given the budget constraint, when the slope of the indifference curve is tangent to the budget constraint
- tangency \rightarrow equality

$$-MRS_{XY} = -\frac{P_X}{P_Y}$$
$$-\frac{MU_X}{MU_Y} = -\frac{P_X}{P_Y}$$
$$\frac{MU_X}{P_X} = \frac{MU_Y}{P_Y}$$

By definition

- if $MRS_{XY} = P_X/P_Y$ you are optimizing
- if $MRS_{XY} \neq P_X/P_Y$ you are **not** optimizing*

 $\ensuremath{^*}$ unless you are at a corner solution, which we'll get to in a few slides

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Sarah gets utility from soda (S) and hotdogs (H). Her utility function is $U = S^{0.5}H^{0.5}$, $MU_S = 0.5\frac{H^{0.5}}{S^{0.5}}$, and $MU_H = 0.5\frac{S^{0.5}}{H^{0.5}}$. Sarah's income is \$12, and the prices of soda and hotdogs are \$2 and \$3, respectively.

- 1. Draw Sarah's budget constraint
- 2. What amount of sodas and hotdogs makes Sarah happiest, given her budget constraint? (Recall that you have two equations and two unknowns.)

A Usual Maximization of Utility s.t. Budget Constraint

- 4 同 ト 4 国 ト 4 国 ト

æ

Must the indifference curve always be tangent?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Three key things to note

- Consumer is still maximizing utility
- He is not consuming both goods
- Is the indifference curve is tangent to budget constraint?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Three key things to note

- Consumer is still maximizing utility
- He is not consuming both goods
- Is the indifference curve is tangent to budget constraint? No

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

What We Did This Class

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Preferences and utility
- 2. Indifference curves
- 3. Budget constraint
- 4. Optimization

- Turn in Problem Set 4
- Read Chapter 5
 - Omit income Engel curves from 5.1
 - Omit inferior goods and Giffen goods at the end of 5.3

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

• Two more classes before midterm