Microeconomics for Public Policy
Fall 2023

Problem Set 5

On what and how to submit

- For this and all future problem sets, questions are from the "Problems" section of the questions at the end of the chapter.
- Due before Lecture 6 to your Box folder
- Name the file "ps05_[lastname].[extension]". For example, my file would be "ps05_brooks.pdf".
- You do not need to type your submission. Any legible submission is ok. For example, you can write the problem set with hand-drawn graphs, take a picture, and submit the picture.

1. GLS Chapter 5, Question 8
(a) Draw budget constraint

Let Q_{c} be the quantity of chips, P_{c} be the price of chips, Q_{o} be the quantity of Oreos, and P_{o} be the price of Oreos.
See figure below. Note that you can write the budget constraint as

$$
\begin{aligned}
I & =P_{c} Q_{c}+P_{o} Q_{o} \\
48 & =3 Q_{c}+2 Q_{o}
\end{aligned}
$$

(b) $Q_{c}=6$: What is Q_{o} and where is the equilibrium A on the graph?

See figure in (d) for point A. To find Q_{o} :

$$
\begin{aligned}
I & =Q_{c} P_{c}+Q_{o} P_{o} \\
48 & =3(6)+2 Q_{o} \\
2 Q_{o} & =48-18 \\
2 Q_{o} & =30 \\
Q_{o} & =15
\end{aligned}
$$

(c) $Q_{c}=8$ and $P_{c}=2$: What is Q_{o} and where is the equilibrium B on the graph?

See figure in (d) for point B. To find Q_{o} :

$$
\begin{aligned}
I & =Q_{c} P_{c}+Q_{o} P_{o} \\
48 & =2(8)+2 Q_{o} \\
2 Q_{o} & =48-16 \\
2 Q_{o} & =32 \\
Q_{o} & =16
\end{aligned}
$$

(d) $Q_{c}=5$ and $P_{c}=4$: What is Q_{o} and where is the equilibrium C on the graph?

See figure below for point C. To find Q_{o} :

$$
\begin{aligned}
I & =Q_{c} P_{c}+Q_{o} P_{o} \\
48 & =4(5)+2 Q_{o} \\
2 Q_{o} & =48-20 \\
2 Q_{o} & =28 \\
Q_{o} & =14
\end{aligned}
$$

(e) Demand for chips

See figure below. To create this figure, note that we know three points along Juliette's demand curve for chips: | Q_{c} | P_{c} |
| :---: | :---: |
| | 5 |
| 6 | 3 |
| 8 | 2 |

2. GLS Chapter 5, Question 22
(a) Market demand curve for doughnuts

Draw the individual demand curves:

Find intercepts for each equation

	When $P=0, Q$ is	When $Q=0, P$ is
$A: Q_{A}=5-P$	5	5
$C A: Q_{C A}=6-2 P$	6	3
$C O: Q_{C O}=4-\frac{1}{2} P$	4	8

Prices 5 to 8
Note that for prices 5 to 8 , the only participant in the market is $C O$, so the market demand, $Q_{M 1}$ is $Q_{M 1}=Q_{C O}=4-\frac{1}{2} P$.
Prices 3 to 5
For prices 3 to 5 , there are two participants in the market: $C O$ and A. To find market demand, add $C O$'s quantity demanded and A 's quantity demanded:

$$
\begin{aligned}
Q_{M 2} & =Q_{C O}+Q_{A} \\
& =4-\frac{1}{2} P+5-P \\
& =9-\frac{3}{2} P
\end{aligned}
$$

What is the Q intercept for where $C O$'s demand curve gets added to A 's? The kink is where $P=5$, either on the new market demand curve, or $C O$'s demand curve. We'll
solve in $C O$'s curve since it's easier:

$$
\begin{aligned}
Q_{C O} & =4-\frac{1}{2} P \\
& =4-\frac{1}{2} 5 \\
& =1.5
\end{aligned}
$$

Prices 0 to 3

And then for prices 3 and below, all three people are in the market. The market demand curve is therefore

$$
\begin{aligned}
Q_{M 3} & =Q_{C O}+Q_{A}+Q_{C A} \\
& =4-\frac{1}{2} P+5-P+6-2 P \\
& =15-3.5 P
\end{aligned}
$$

At what quantity does $C A$'s demand curve get added to the market? At a price of 3 , what associated quantity in the market demand?

$$
\begin{aligned}
Q_{M 3} & =15-3.5 P \\
& =15-3.5(3) \\
& =15-10.5 \\
& =4.5
\end{aligned}
$$

Finally when the price is zero, what is total market demand? We can set $Q_{M 3}=0$, or we can add up the total willingness of pay at a price of zero from our first table: $5+6+4=15$. (You'll find the same answer by setting $P=0$ in the $Q_{M 3}$ equation above.)
Now, how to write this in one equation?

$$
Q_{M}= \begin{cases}4-\frac{1}{2} P, & P \geq 5 \\ 9-\frac{3}{2} P, & 3 \leq P<5 \\ 15-3.5 P, & 0 \leq P<3\end{cases}
$$

(b) Graph market demand

See figure.

