## Problem Set 7

On what and how to submit

- For this and all future problem sets, questions are from the "Problems" section of the questions at the end of the chapter.
- Due before Lecture 8 to your Box folder
- Name the file "ps07_[lastname].[extension]". For example, my file would be "ps07_brooks.pdf".
- You do not need to type your submission. Any legible submission is ok. For example, you can write the problem set with hand-drawn graphs, take a picture, and submit the picture.

1. GLS Chapter 6, Question 4

## Answer:

(a) Short run production function

In the short run, capital is fixed, or $K=9$. Therefore, the short-run production function is

$$
Q=100 \sqrt{K L}=100 \sqrt{9 L}=300 \sqrt{L}
$$

(b) Number of cars Bob can repair each year for $L \in\{1,2,3,4,5\}$

| $K$ | $L$ | $Q$, or number of cars repaired per year | $M P_{L}$ | $A P_{L}$ |
| :---: | :---: | :---: | :---: | :---: |
| 9 | 1 | $300 \sqrt{L}=300 \sqrt{1}=300$ | . | $\frac{300}{1}=300$ |
| 9 | 2 | $300 \sqrt{L}=300 \sqrt{2} \approx 424$ | 124 | $\frac{424}{2}=212$ |
| 9 | 3 | $300 \sqrt{L}=300 \sqrt{3} \approx 520$ | 96 | $\frac{520}{3}=173$ |
| 9 | 4 | $300 \sqrt{L}=300 \sqrt{4}=600$ | 80 | $\frac{600}{0}=150$ |
| 9 | 5 | $300 \sqrt{L}=300 \sqrt{5} \approx 671$ | 71 | $\frac{671}{5}=134$ |

(c) Marginal product of labor

See table above. We calculate marginal product of labor as additional output $(Q)$ from one additional worker, so, for example $Q_{L=3}-Q_{L=2}=520-424=124$. Yes - the marginal product of labor is declining as $L$ increases and $K$ is fixed.
(d) Average product of labor

See table above. Average product of labor is $\frac{Q}{L}$. For levels we examine, $A P_{L}>M P_{L}$. Because $M P_{L}$ is decreasing in $L$, it brings the average down as $L$ increases.

## 2. GLS Chapter 6, Question 7

## Answer:

(a) As $L$ increases, since $M P_{L}=\frac{2 K^{1 / 3}}{3 L^{1 / 3}}, M P_{L}$ declines. We can see this because $L$ is in the denominator. Thus, as $L$ increases $M P_{L}$ decreases. Intuitively, when capital is fixed, adding additional units of labor becomes not particularly useful at some point.
(b) As $K$ increases, since $M P_{L}=\frac{2 K^{1 / 3}}{3 L^{1 / 3}}, M P_{L}$ increases.
(c) The marginal product of labor increases as $K$ increases because workers have more stuff with which to successfully do their jobs. For example, imagine five workers in a coffee shop who get an additional coffee machine. This additional machine may allow them to be produce more output.
(d) As $K$ increases, the marginal product of capital declines. As $L$ increases, the marginal product of capital increases. Both of these use the same logic and in (b) and (c).
3. GLS Chapter 6, Question 23

## Answer:

From the question, we know that the isocost curve is

$$
\begin{aligned}
C & =R K+W L \\
& =10 K+10 L
\end{aligned}
$$

(a) See figure below

(b) See figure below

(c) To find the total cost of production, use the cost curve we wrote above and the amounts of $K$ and $L$ for each level of production.

| $Q$ | $K$ | $L$ | Total Cost |
| :---: | :---: | :---: | :---: |
| 50 | 15 | 15 | $15 * 10+15 * 10=300$ |
| 80 | 25 | 25 | $25 * 10+25 * 10=500$ |
| 100 | 40 | 40 | $40 * 10+40 * 10=800$ |

(d) Total cost figure: graph $Q$ on the x axis, and total cost on the y axis.


