
Problem Set 2

PPPA 8022
Due in class, on paper, February 13

� Please use a do-file (or its SAS or SPSS equivalent) for this work. Do not program
interactively. It may seem faster at first, but it is inevitably slower.

� Turn in a typed up set of answers that answers the questions below. Also turn in a
Stata .do file and its associated .log file.

� Make formal tables to present your results. Do not present statistical software output.

� I have provided Stata datasets, but you should feel free to do the analysis in whatever
software you prefer. If you need to transfer to another format, use StatTransfer.

� This problem set uses some large data. For the Census data, I have posted full dataset
as well a smaller version; use whichever you prefer. For the CPS, we are using a random
sample.

� If the question is insufficiently clear, explain the assumptions you made to reach your
final estimates.

1. Fixed Effects

For this problem, well use Decennial Census/American Community Survey data from IPUMS-
USA for 1950 and 2010 (for 2010, the 1-year ACS). Data are linked on the handouts page.
The large versions, which are one file per year, have the years in the title (1950 and 2010);
the small version is ipumscen.dta.zip.

For purposes of this problem set only we will not use any survey-defined weights. This is
totally wrong and you should never do it when you really analyze a dataset. We are doing
it here so that 1(b) does not become extremely difficult.

The IPUMS website is https://usa.ipums.org/usa/, and it provides detailed information
on the datasets and variables.

Let’s examine the effect of education on wages.

(a) Start by finding the average wage (incwage) of prime age men (25 to 64) in 1950 and
2010. Test whether these average wages are significantly different in 1950 and 2010, and
present these results in a well-labeled table. Beware of missing values and use a regression
for the test. Write a few sentences to interpret your table.
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See Tables ?? and ??. The first table presents the result of a regression of incwage on
1{year = 2010}. We find that in both the large and small samples that wages are higher in
2010: $40,790 higher in the small sample and $41,061 higher in the large sample. Not a shock!

Table ?? reports the equivalent difference in means. Note that the difference in means is
equivalent to the difference you find in the regression. If it’s not, you’ve done something
wrong.

(b) Re-create the means in (a) by creating grouped data, and then properly weighting those
grouped data to return to the mean in part (a) via regression (I am asking you to do some-
thing like MHE Table 3.1.3, but present in a table, rather than stata output). The grouping
variable is your choice. I used education (so, average wages by years of education), but you
could use age or any other variable for which you can create discrete categories. Present in
a table, and write a few sentences explaining the logic of your answer.

First, a little explanation on the general issue of weighted averages. Suppose we have
a dataset with N people, each denoted i. We observe wages, wi. People further belong to
group j, there are J groups in total, and each group has Nj people.

We can write the average wage as
∑

N
i=1wi

N

We can write the average for any group j as

∑
Nj

k=1wk

Nj

Any group j is a share of the total population, and we can write that share as Nj/N .
Given this information, we can write a weighted total of the group averages as

(

N1

N

∑
N1

k=1wk

N1

) + (

N2

N

∑
N2

k=1wk

N2

) + . . . + (
NJ

N

∑
NJ

k=1wk

NJ

)

Note that this equation simplifies to the first equation for average wage.

There is nothing to show if you’ve done this correctly – the answer is the same as in (a).

(c) Make the wages in both surveys into constant 2013 dollars. Use the all urban consumers
series from the Bureau of Labor Statistics (http://www.bls.gov/cpi/data.htm, and use
the “all urban consumers” row, and use the “all items” series; using the December inflation
number for each year is sufficient). There is no output to report for this step, but you may
wish to do some checks for yourself to make sure your results are reasonable.

Nothing to report here, but your Stata code should reflect this work.
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(d) Suppose we would like to know whether the average husband earns higher real wages
than the average wife. Use a regression to estimate wages as a function of age, year, and
being the husband (think about what sample you should use to do this, and explain what
sample you chose. Make sure you only keep working age people.). Then re-estimate with a
variety of sensible covariates. Then re-estimate with the covariates and family fixed effects
(in Stata, I highly recommend areg). Then re-estimate to allow the effect of being a husband
to vary between 1950 and 2010. Present all results in one table and interpret the coefficients
in each regression, explaining why they change.

See Table ?? (small sample) and Table ?? (big sample).

I keep only observations where the person is married and the spouse is present. I limit
the sample to ages 25 to 65, to be sure that people could be in the labor force.

In the first column, husbands earn substantially more than wives, and people earn more
in 2010. Earnings seem to decline with age (but that is because we didn’t also include age
squared). Adding a variety of sensible covariates in the second column barely budges the
husband result, though it affects the age and year coefficients.

Adding family fixed effects, as in the third column, soaks up a fair amount of the varia-
tion (look at the R-squared). It shrinks the husband coefficient, but it remains quite sizeable
just a little less than the average wage.

The fourth column tells us that the effect has declined substantially over time – the inter-
action of being the husband and being 2010 is negative, and about half the average husband
premium.

(e) The previous estimation included age linearly. Use two methods to relax this assumption
and report the results in a table. Write a few sentences that interpret the results. Explain
which method you prefer and why.

I relaxed the (crazy) linear assumption for age by including age, age2, age3, and age4

in the fifth column, and then including age dummies in the sixth column. The difference
between these two is enough to make a small difference in the coefficients of interest. The
coefficient for age4 was too small to be reported. This is not good practice! It is better to
re-scale age4 (to something like age4 ∗ 1000) rather than not report the coefficient.

See Table ?? for the small sample and Table ?? for the large sample.

2. Difference-in-difference

Now let’s use the IPUMS CPS. The small sample (a random sample of the full dataset) is
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called ipumscps.dta.zip and is linked on the handouts page. Documentation for this dataset
is available at https://cps.ipums.org/cps/. For the purposes of this problem set, treat
each observation with equal weight. This is entirely wrong, and you should absolutely never
do such a thing if you are doing a real project. Finally, beware of top-coded data!

(a) Pretend that MI, CA, AZ, NM, MN, OH, VA, KY, WV, MO, MS, GA, IA, NH, MA and
ME all adopt a policy aimed at increasing wages that takes effect in 2000. For simplicity,
we focus only on employed people. We hypothesize that treatment is random conditional on
age and race. Use a figure to examine the parallel pre-trend assumption (the unconditional
outcome, not conditional on covariates), and show this figure (note that making a legible
picture may require some summary of the data; think about the best way to summarize the
data). Use the variable incwage for annual wages. Write a few sentences that interpret the
figure.

See Figure ?? at the end. I don’t see any compelling difference between the two groups
pre-treatment (in the pre-2000 era). I’ve added gray bands that show the 95% confidence
intervals for the means. This is Stata command rarea, and it can be a very helpful way to
show a lot of information.

(b) Use a regression to test whether the treated and untreated states have similar trends
before the treatment is adopted, conditional on covariates. Report the results in a table,
and write a few sentences that interpret the results of your test.

To do this, you should use only the pre-treatment data. I tested the equality of trends
in two different ways:

incwagei,t = β0 + β1trendt + β2trendt ∗ treatmenti,t + ε (1)

incwagei,t = β0 + β1timet + β2timet ∗ treatmenti,t + ε (2)

The variable treatment is 1 if the state is ever treated, trend is a linear trend variable
(1960=1. 1961=2, etc; though the exact number for each year is not consequential for the
slope, only the intercept), and time is a full set of year dummy variables (that is, fixed
effects).

We test H0 ∶ β2 = 0. For Equation ??, all we need is a t-test for whether β2 = 0. I find
a t-value = 9.9/7.4 = 1.3, so we cannot reject β2 = 0. For Equation ??, we want to know
whether all the β2 are jointly 0. We do the second with an F test (H0 ∶ β2,1963 = β2,1964 = . . . =
β2,1999 = 0). We cannot reject the hypothesis that the year*treatment coefficients are jointly
zero.

. local testvals IyeaXtre 1963;

. forvalues y=1964/1999

> ;

2. local testvals ‘testvals’ = IyeaXtre ‘y’;
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3. ;

. test ‘testvals’ = 0;

( 1) IyeaXtre 1963 - IyeaXtre 1964 = 0

( 2) IyeaXtre 1963 - IyeaXtre 1965 = 0

( 3) IyeaXtre 1963 - IyeaXtre 1966 = 0

( 4) IyeaXtre 1963 - IyeaXtre 1967 = 0

( 5) IyeaXtre 1963 - IyeaXtre 1968 = 0

( 6) IyeaXtre 1963 - IyeaXtre 1969 = 0

( 7) IyeaXtre 1963 - IyeaXtre 1970 = 0

( 8) IyeaXtre 1963 - IyeaXtre 1971 = 0

( 9) IyeaXtre 1963 - IyeaXtre 1972 = 0

(10) IyeaXtre 1963 - IyeaXtre 1973 = 0

(11) IyeaXtre 1963 - IyeaXtre 1974 = 0

(12) IyeaXtre 1963 - IyeaXtre 1975 = 0

(13) IyeaXtre 1963 - IyeaXtre 1976 = 0

(14) IyeaXtre 1963 - IyeaXtre 1977 = 0

(15) IyeaXtre 1963 - IyeaXtre 1978 = 0

(16) IyeaXtre 1963 - IyeaXtre 1979 = 0

(17) IyeaXtre 1963 - IyeaXtre 1980 = 0

(18) IyeaXtre 1963 - IyeaXtre 1981 = 0

(19) IyeaXtre 1963 - IyeaXtre 1982 = 0

(20) IyeaXtre 1963 - IyeaXtre 1983 = 0

(21) IyeaXtre 1963 - IyeaXtre 1984 = 0

(22) IyeaXtre 1963 - IyeaXtre 1985 = 0

(23) IyeaXtre 1963 - IyeaXtre 1986 = 0

(24) IyeaXtre 1963 - IyeaXtre 1987 = 0

(25) IyeaXtre 1963 - IyeaXtre 1988 = 0

(26) IyeaXtre 1963 - IyeaXtre 1989 = 0

(27) IyeaXtre 1963 - IyeaXtre 1990 = 0

(28) IyeaXtre 1963 - IyeaXtre 1991 = 0

(29) IyeaXtre 1963 - IyeaXtre 1992 = 0

(30) IyeaXtre 1963 - IyeaXtre 1993 = 0

(31) IyeaXtre 1963 - IyeaXtre 1994 = 0

(32) IyeaXtre 1963 - IyeaXtre 1995 = 0

(33) IyeaXtre 1963 - IyeaXtre 1996 = 0

(34) IyeaXtre 1963 - IyeaXtre 1997 = 0

(35) IyeaXtre 1963 - IyeaXtre 1998 = 0

(36) IyeaXtre 1963 - IyeaXtre 1999 = 0

(37) IyeaXtre 1963 = 0
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F( 37,230832) = 0.71

Prob > F = 0.9093

These regressions each use 231,066 observations – less than the full dataset, since they
omit data before 2000.

(c) Do a difference-in-difference regression to examine the effects of this policy on wages.
Write the estimating equation you use. Start with a simple summary statistics table (with
standard errors) that shows both differences and then the difference in difference (as in the
Milligan paper). Now run a regression that is parallel to this estimate. Present both results
in one or two tables and interpret the magnitudes in a few sentences.

See summary statistics in Table ?? below. We find significant single differences between
the treated and untreated, before and after. The double difference is also significant (t=4.77).
Wages declined by about $750 in the treated states, relative to the untreated ones, after the
treatment.

To do the regression, I estimate the following equation:

incwageist = β0 + β1timet + β2states + β3treatment*afterist + β4aget + β5(race)i + εist

In general, a difference-in-difference estimating equation should include both parts of the
interaction that yields the effect of interest (the rule is actually broader: you should always
include both parts of an interaction separately.) Note that “after” can be created by adding
time fixed effects, and that these time fixed effects are less restrictive than the specification
with simply an “after” indicator. Similarly, we don’t need to include a separate “treatment”
indicator, since a linear combination of state fixed effects yields the treatment indicator.
Results are in column 1 of Table ?? below.

The regression, controlling for age, race, state and year, finds an insignificant $61 dollar
decrease in earnings due to this fake policy.

(d) Explain and implement one method to correct the results from part (c) for serial cor-
relation. For simplicity, do not use covariates. Describe your method, present your results
in a table (or add to the previous table) and write a few sentences that explain what you find.

The simplest method for assessing the importance of serial correlation in (c) is to average
the values of the pre- and post-treatment years and re-do the regressions (aka, shrink T to
2). Because we don’t observe each person for all years, we also need to collapse to the state
level, so well have 2*51 observations. (You might think about doing something at a lower
geographic level, say the county, but given the sample size I went ahead and averaged to the
state level.)
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In the early years of the CPS in the 1970s, it seems that they have strange state categories
- state combinations, instead of states by themselves. So I use data after 1976 only, and have
102 observations (states plus DC); see Column 3 of Table ??. This method finds no significant
difference in the treated states after the treatment.
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Figure 1: Parallel Pre-Trend Assumption
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Table 1: Answer for 1(b)

Wage Type Statistic 1950 2010
t-test for

difference of
means

A. Small Sample

Nominal mean 2181 42,970 186.0
std error 18.7 201

Real $2013 mean 20,477 45,849 65.2
std error 175.3 214.1

Observations 11,145 78,629

B. Full Sample

Nominal mean 2,182 43,243 587.5
std error 5.8 64.1

Real $2013 mean 20,490 46,141 208.3
std error 54.8 68.3

Observations 111,680 787,469
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Table 2: Regression to Test Difference in Wages

Small Sample Big Sample

Male 40,790 41,061
(533.0) (170.2)

Observations 89,774 899,149
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Table 3: Answer for 1 (d) and (e), Small Sample

Only age,
year,

husband

With sensible
covariates

With family
fixed effects

With family
FE, allowing
main effect to

vary

Parametric
non-linear

age

Non-
parametric
non-linear

age

Age -135.7*** -73.0*** -88.8*** -89.3*** -5871.3
(13.5) (12.7) (13.8) (13.8) (4075.2)

Male 26520.0*** 26485.8*** 26772.5*** 17527.5*** 17508.3*** 17486.5***
(293.8) (273.3) (292.7) (761) (754.5) (754.6)

1{year is 2010} 29338.3*** 13711.5***
(399) (479.4)

Male*1{year is 2010} 10842.5*** 10761.3*** 10785.7***
(824) (817) (817.1)

Age2 215.6
(141.9)

Age3 -2.6
(2.1)

Age4 0
(0)

Education FE x x x x x
Race FE x x x x x
Metro type FE x x x x x
Age FE x
R-squared 0.105 0.227 0.342 0.344 0.355 0.355
Observations 115489 115489 115489 115489 115489 115489

11



Table 4: Answer for 1 (d) and (e), Large Sample

Only age,
year,

husband

With sensible
covariates

With family
fixed effects

With family
FE, allowing
main effect to

vary

Parametric
non-linear

age

Non-
parametric
non-linear

age

Age -131.1*** -75.9*** -80.7*** -80.7*** -4186.1***
(4.3) (4) (4.1) (4.1) (1198.5)

Male 26745.3*** 26563.2*** 26609.7*** 17657.0*** 17744.2*** 17740.3***
(93.3) (86.8) (86.7) (215.7) (213.7) (213.7)

1{year is 2010} 29658.1*** 13996.0***
(126.6) (152.3)

Male*1{year is 2010} 10669.2*** 10519.7*** 10524.7***
(235.4) (233.2) (233.2)

Age2 144.2***
(41.8)

Age3 -1.3*
(0.6)

Age4 0
(0)

Education FE x x x x x
Race FE x x x x x
Metro type FE x x x x x
Age FE x
R-squared 0.106 0.228 0.244 0.245 0.259 0.259
Observations 1152661 1152661 1152661 1152661 1152661 1152661
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Table 5: Answer for 2(c)

Untreated Treated Difference
Difference-in-

difference

Before mean 13617.1 14968 1350.9
se 44.5 69.1 52.9
obs 156871 74195

After mean 37620.8 38226.6 605.8 -745.1
se 161.8 231.2 165.2 156.5
obs 88091 45422
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Table 6: Regressions, Problem 2

Full Sample
State-year obs,
2 time periods

DD DDD DD
(1) (2) (3)

1{treatment}*1{after} -61.3 3735.8*** 436.2
(233.5) (323.1) (1098.7)

1{treatment}*1{after}*1{male} -6684.4***
(422.1)

1{male}*1{after} 16604.9***
(207.2)

1{male}*1{treatment} 7313.7***
(228.2)

1{after} 19780.2***
(615.4)

Age fixed effects x x
Race fixed effects x x
State fixed effects x x x
Year fixed effects x x
R-squared 0.19 0.213 0.973
Observations 364579 364579 102
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Table 7: Answer for 2(d)

Differences

Before After Single Double Triple

Treated

Men mean 17824.8 46577.6 28752.8
sd 102.7 382.8 368.8
obs 42434 23813
variance 10538.85 146538.8

Women 11151.2 29023.9 17872.7 10880.1
80.4 225.3 210.5 302.8

31761 21609
6463.2 50754.2

Untreated

Men 16175.5 45655.1 29479.7
66.9 266.8 258.2

90262 45948
4481.2 71163.4

Women 10150.3 28861 18710.8 10768.9 111.2
49.5 162 154.2 207.1 220.9

66609 42143
2446.2 26232.1
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