Lecture 2: Fixed Effects

September 6, 2023 - now September 13, 2023

- 1. Any problems with summary assignments?
 - I aspire to grade these weekly
- 2. Any problems accessing recorded lecture?
- Proposal should be in feedback by next week

- 1. Any problems with summary assignments?
 - I aspire to grade these weekly
- 2. Any problems accessing recorded lecture?
- Proposal should be in feedback by next week
- 4. Lab session at 8:10 tonight
- 5. Lab session at 9 pm on zoom see email

- 1. Any problems with summary assignments?
 - I aspire to grade these weekly
- 2. Any problems accessing recorded lecture?
- Proposal should be in feedback by next week
- 4. Lab session at 8:10 tonight
- 5. Lab session at 9 pm on zoom see email

- 6. Problem set 1 due next week
 - create your Box folder
 - invite me and Genevieve
- 7. Fixed date error with class Thanksgiving week

- 1. Any problems with summary assignments?
 - I aspire to grade these weekly
- 2. Any problems accessing recorded lecture?
- Proposal should be in feedback by next week
- 4. Lab session at 8:10 tonight
- Lab session at 9 pm on zoom see email

- 6. Problem set 1 due next week
 - create your Box folder
 - invite me and Genevieve
- 7. Fixed date error with class Thanksgiving week
- 8. What to do about missed class?
 - Use make-up day but day before paper deadline
 - Schedule make-up class for presentations
 - Drop class on presenting causal results

Today

- 1. General problem of selection
- 2. Omitted variable bias in terms of regression coefficients
- 3. Indicator variables
- 4. Discussion of Black et al

1. General Problem of Selection Bias

If we assume a homogeneous treatment effect, κ , then

$$Avg_n[Y_{1i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0] =$$

If we assume a homogeneous treatment effect, κ , then

$$Avg_n[Y_{1i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0] = Avg_n[\kappa + Y_{0i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0] =$$

If we assume a homogeneous treatment effect, κ , then

$$Avg_{n}[Y_{1i}|D_{i} = 1] - Avg_{n}[Y_{0i}|D_{i} = 0] = Avg_{n}[\kappa + Y_{0i}|D_{i} = 1] - Avg_{n}[Y_{0i}|D_{i} = 0] = \kappa + Avg_{n}[Y_{0i}|D_{i} = 1] - Avg_{n}[Y_{0i}|D_{i} = 0]$$

If we assume a homogeneous treatment effect, κ , then

$$Avg_n[Y_{1i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0] =
Avg_n[\kappa + Y_{0i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0] =
\kappa + Avg_n[Y_{0i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0]$$

Red term is difference in outcome Y for treated relative to untreated in the absence of treatment: **selection bias**.

Let's Think of Some Examples of Selection Bias

$$Avg_n[Y_{0i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0]$$

Let's Think of Some Examples of Selection Bias

$$Avg_n[Y_{0i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0]$$

A fix: control for covariates X_i to make selection bias disappear.

Let's Think of Some Examples of Selection Bias

$$Avg_n[Y_{0i}|D_i = 1] - Avg_n[Y_{0i}|D_i = 0]$$

A fix: control for covariates X_i to make selection bias disappear.

Strong evidence that "controlling for observables" rarely gets rid of selection.

2. Omitted Variable Bias Formula

Long (True) vs. Short (False) Regression

Suppose that the "true" (long) regression is

$$Y = \alpha + \beta^I X_1 + \gamma X_2 + \epsilon^I$$

Long (True) vs. Short (False) Regression

Suppose that the "true" (long) regression is

$$Y = \alpha + \beta^I X_1 + \gamma X_2 + \epsilon^I$$

Unfortunately, you don't observe X_2 – examples?

Long (True) vs. Short (False) Regression

Suppose that the "true" (long) regression is

$$Y = \alpha + \beta^I X_1 + \gamma X_2 + \epsilon^I$$

Unfortunately, you don't observe X_2 – examples?

So instead you estimate the "false" (short) regression

$$Y = \alpha + \beta^{s} X_{1} + \epsilon^{s}$$

Should you trust β^s ?

Recall

$$Y = \alpha + \beta^I X_1 + \gamma X_2 + \epsilon^I \tag{1}$$

$$Y = \alpha + \beta^{s} X_{1} + \epsilon^{s} \tag{2}$$

Recall

$$Y = \alpha + \beta' X_1 + \gamma X_2 + \epsilon' \tag{1}$$

$$Y = \alpha + \beta^{s} X_{1} + \epsilon^{s} \tag{2}$$

Estimate the relationship between the treatment X_1 and the omitted variable X_2 :

$$X_1 = \pi_0 + \pi_1 X_2 + \epsilon^c$$

Recall

$$Y = \alpha + \beta^I X_1 + \gamma X_2 + \epsilon^I \tag{1}$$

$$Y = \alpha + \beta^{s} X_{1} + \epsilon^{s} \tag{2}$$

Estimate the relationship between the treatment X_1 and the omitted variable X_2 :

$$X_1 = \pi_0 + \pi_1 X_2 + \epsilon^c$$

Then (proof in book)

$$OVB =$$

Recall

$$Y = \alpha + \beta^I X_1 + \gamma X_2 + \epsilon^I \tag{1}$$

$$Y = \alpha + \beta^{s} X_{1} + \epsilon^{s} \tag{2}$$

Estimate the relationship between the treatment X_1 and the omitted variable X_2 :

$$X_1 = \pi_0 + \pi_1 X_2 + \epsilon^c$$

Then (proof in book)

$$\mathsf{OVB} = \beta^{s} - \beta^{l}$$

Recall

$$Y = \alpha + \beta^I X_1 + \gamma X_2 + \epsilon^I \tag{1}$$

$$Y = \alpha + \beta^{s} X_{1} + \epsilon^{s} \tag{2}$$

Estimate the relationship between the treatment X_1 and the omitted variable X_2 :

$$X_1 = \pi_0 + \pi_1 X_2 + \epsilon^c$$

Then (proof in book)

$$\mathsf{OVB} = \beta^{s} - \beta^{l} = \pi_{1} \gamma$$

Recall

$$Y = \alpha + \beta^{I} X_{1} + \gamma X_{2} + \epsilon^{I} \tag{1}$$

$$Y = \alpha + \beta^{s} X_{1} + \epsilon^{s} \tag{2}$$

Estimate the relationship between the treatment X_1 and the omitted variable X_2 :

$$X_1 = \pi_0 + \pi_1 X_2 + \epsilon^c$$

Then (proof in book)

$$\mathsf{OVB} = \beta^{s} - \beta^{l} = \pi_{1} \gamma$$

OVB is one type of selection bias.

 $\pi_1 \equiv$ relationship between X_1 and X_2 $\gamma \equiv$ relationship between X_2 and Y in long regression

$$\mathsf{OVB} = \beta^s - \beta' = \pi_1 \gamma$$

What if the treatment and the omitted variable are not correlated?

 $\pi_1 \equiv$ relationship between X_1 and X_2 $\gamma \equiv$ relationship between X_2 and Y in long regression

$$\mathsf{OVB} = \beta^{s} - \beta^{l} = \pi_1 \gamma$$

- What if the treatment and the omitted variable are not correlated?
- What if the omitted variable is not correlated with the outcome Y?

 $\pi_1 \equiv$ relationship between X_1 and X_2 $\gamma \equiv$ relationship between X_2 and Y in long regression

$$\mathsf{OVB} = \beta^s - \beta^I = \pi_1 \gamma$$

- What if the treatment and the omitted variable are not correlated?
- What if the omitted variable is not correlated with the outcome Y?
- Any story about omitted variable bias needs to include both parts

 $\pi_1 \equiv$ relationship between X_1 and X_2 $\gamma \equiv$ relationship between X_2 and Y in long regression

$$\mathsf{OVB} = \beta^s - \beta^I = \pi_1 \gamma$$

- What if the treatment and the omitted variable are not correlated?
- What if the omitted variable is not correlated with the outcome Y?
- Any story about omitted variable bias needs to include both parts
- Resolving the problem of omitted variable bias in order to generate causal estimates is the key concern of this course

3. Indicator Variables

What is an indicator variable?

All these things are the same

- dummy variable
- indicator variable
- fixed effect
- 1{condition}

What is an indicator variable?

All these things are the same

- dummy variable
- indicator variable
- fixed effect
- 1{condition}

All are coded 1 if true and 0 otherwise

Interpreting Indicator Variables

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

- $\bullet \ \ \mathsf{female} \in \{0,1\}$
- how do we interpret β_1 ?

Interpreting Indicator Variables

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

- $\bullet \ \ \mathsf{female} \in \{0,1\}$
- how do we interpret β_1 ?
- let's draw in a figure

Interpreting Coefficients

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

Draw the relationship

- x axis is education
- y axis is wage
- where is β_0 ?

Interpreting Coefficients

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

Draw the relationship

- x axis is education
- y axis is wage
- where is β_0 ?

Interpreting Coefficients

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

Draw the relationship

- x axis is education
- y axis is wage
- where is β_0 ?

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

- x axis is education
- y axis is wage
- where is β_0 ?
- where is β_2 ?

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

- x axis is education
- y axis is wage
- where is β_0 ?
- where is β_2 ?

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

- x axis is education
- y axis is wage
- where is β_0 ?
- where is β_2 ?

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

- x axis is education
- y axis is wage
- where is β_0 ?
- where is β_2 ?
- how do we draw wages for women as a function of education?

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

- x axis is education
- y axis is wage
- where is β_0 ?
- where is β_2 ?
- how do we draw wages for women as a function of education? $\beta_2 * \text{education} + \beta_1$

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

- x axis is education
- y axis is wage
- where is β_0 ?
- where is β_2 ?
- how do we draw wages for women as a function of education? $\beta_2 * \text{education} + \beta_1$

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

- Data are coded 1 for men, 2 for women
- Why don't we just use this coding? Why do we make a dummy variable?

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

- Data are coded 1 for men, 2 for women
- Why don't we just use this coding? Why do we make a dummy variable?
- Why do we not make one dummy variable for each gender?

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

- Data are coded 1 for men, 2 for women
- Why don't we just use this coding? Why do we make a dummy variable?
- Why do we not make one dummy variable for each gender?
- How can you modify the specification to allow education to have differential impacts by gender?

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + ϵ

- Data are coded 1 for men, 2 for women
- Why don't we just use this coding? Why do we make a dummy variable?
- Why do we not make one dummy variable for each gender?
- How can you modify the specification to allow education to have differential impacts by gender?

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + β_3 female * education + ϵ

Interpreting Indicator Variables in Interaction

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + β_3 female * education + ϵ

- female $\in \{0,1\}$
- what is this specification doing differently?

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + β_3 female * education + ϵ

what are men's wages with no education?

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + β_3 female * education + ϵ

• what are men's wages with no education? β_0

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + β_3 female * education + ϵ

- what are men's wages with no education? β_0
- how do men's wages change with education?

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + β_3 female * education + ϵ

- what are men's wages with no education? β_0
- how do men's wages change with education? β_2 * education

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + β_3 female * education + ϵ

- what are men's wages with no education? β_0
- how do men's wages change with education? β_2 * education
- how do women's wages change with education?

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + β_3 female * education + ϵ

- what are men's wages with no education? β_0
- how do men's wages change with education? β_2 * education
- how do women's wages change with education? start at $\beta_0 \beta_1$ change by $\beta_2 * \text{education} + \beta_3 * \text{education}$

Formal Testing

$$\mathsf{wage} = \beta_0 + \beta_1 \mathsf{female} + \beta_2 \mathsf{education} + \beta_3 \mathsf{female} * \mathsf{education} + \epsilon$$

How to test whether education has a differential effect on women's wages relative to men's?

Formal Testing

wage =
$$\beta_0 + \beta_1$$
 female + β_2 education + β_3 female * education + ϵ

- How to test whether education has a differential effect on women's wages relative to men's?
- Test $\beta_3 = 0$

4. Black et al on family size

What is this paper about?

• what is the theory that they rebut in this paper?

What is this paper about?

- what is the theory that they rebut in this paper? Becker's theory about quality vs. quantity in kids
- to whom is it due?

What is this paper about?

- what is the theory that they rebut in this paper? Becker's theory about quality vs. quantity in kids
- to whom is it due? Nobel laureate Becker and some buddies

What are the data?

What is this paper about?

- what is the theory that they rebut in this paper? Becker's theory about quality vs. quantity in kids
- to whom is it due? Nobel laureate Becker and some buddies

What is this paper about?

- what is the theory that they rebut in this paper? Becker's theory about quality vs. quantity in kids
- to whom is it due? Nobel laureate Becker and some buddies

What are the data?

- people aged 16-74 from 1986-2000 (would you be in this sample?)
- parents and kids must both appear in the dataset
- can match parents to kids
- about each person they know year of birth, completed education, earnings
- about each family, they know family size

What is this paper about?

- what is the theory that they rebut in this paper? Becker's theory about quality vs. quantity in kids
- to whom is it due? Nobel laureate Becker and some buddies

What are the data?

- people aged 16-74 from 1986-2000 (would you be in this sample?)
- parents and kids must both appear in the dataset
- can match parents to kids
- about each person they know year of birth, completed education, earnings
- about each family, they know family size
- what is the unit of observation?

What Can We Learn from Summary Statistics?

TABLE III

AVERAGE EDUCATION BY NUMBER OF CHILDREN IN FAMILY AND RIPTH OFFICE

	Average education	Average mother's education	Average father's education	Fraction with <12 years	Fraction with 12 years	Fraction with >12 years
			Family siz	ie.		
1	12.0	9.2	10.1	.44	.25	.31
2	12.4	9.9	10.8	.34	.31	.35
3	12.3	9.7	10.6	.37	.30	.33
4	12.0	9.3	10.1	.43	.29	.28
5	11.7	8.8	9.5	.49	.27	.24
6	11.4	8.5	9.1	.54	.25	.20
7	11.2	8.3	8.9	.57	.24	.19
8	11.1	8.2	8.8	.58	.24	.18
9	11.0	8.0	8.6	.59	.25	.16
10+	11.0	7.9	8.8	.59	.26	.15
			Birth orde	er .		
1	12.2	9.7	10.6	.38	.28	.34
2	12.2	9.6	10.5	.38	.30	.31
3	12.0	9.3	10.2	.40	.31	.29
4	11.9	9.0	9.7	.43	.32	.25
5	11.7	8.6	9.2	.46	.31	.22
6	11.6	8.3	8.9	.49	.31	.20
7	11.5	8.1	8.7	.51	.30	.19
8	11.6	8.0	8.6	.49	.31	.20
9	11.3	7.9	8.4	.53	.32	.15
10+	11.3	7.8	8.7	.52	.32	.15
			All			
	12.2	9.5	10.4	.39	.29	.32

- We ignore instrumental variables and twins
- Focus only on the regular estimations
- But start with summary stats
- What does Table 3 tell us about education as family size increases?

What Can We Learn from Summary Statistics?

TABLE III

AVERAGE EDUCATION BY NUMBER OF CHILDREN IN FAMILY AND RIPTH ORDER

	Average education	Average mother's education	Average father's education	Fraction with <12 years	Fraction with 12 years	Fraction with >12 years
			Family siz	ie.		
1	12.0	9.2	10.1	.44	.25	.31
2	12.4	9.9	10.8	.34	.31	.35
3	12.3	9.7	10.6	.37	.30	.33
4	12.0	9.3	10.1	.43	.29	.28
5	11.7	8.8	9.5	.49	.27	.24
6	11.4	8.5	9.1	.54	.25	.20
7	11.2	8.3	8.9	.57	.24	.19
8	11.1	8.2	8.8	.58	.24	.18
9	11.0	8.0	8.6	.59	.25	.16
10+	11.0	7.9	8.8	.59	.26	.15
			Birth orde	er .		
1	12.2	9.7	10.6	.38	.28	.34
2	12.2	9.6	10.5	.38	.30	.31
3	12.0	9.3	10.2	.40	.31	.29
4	11.9	9.0	9.7	.43	.32	.25
5	11.7	8.6	9.2	.46	.31	.22
6	11.6	8.3	8.9	.49	.31	.20
7	11.5	8.1	8.7	.51	.30	.19
8	11.6	8.0	8.6	.49	.31	.20
9	11.3	7.9	8.4	.53	.32	.15
10+	11.3	7.8	8.7	.52	.32	.15
			All			
	12.2	9.5	10.4	.39	.29	.32

- We ignore instrumental variables and twins
- Focus only on the regular estimations
- But start with summary stats
- What does Table 3 tell us about education as family size increases? increases (for 1 to 2), then declines
- What does Table 3 tell us about education as birth order increases?

What Can We Learn from Summary Statistics?

TABLE III

AVERAGE EDUCATION BY NUMBER OF CHILDREN IN FAMILY AND RIPTH ORDER

	Average education	Average mother's education	Average father's education	Fraction with <12 years	Fraction with 12 years	Fraction with >12 years
			Family siz	te		
1	12.0	9.2	10.1	.44	.25	.31
2	12.4	9.9	10.8	.34	.31	.35
3	12.3	9.7	10.6	.37	.30	.33
4	12.0	9.3	10.1	.43	.29	.28
5	11.7	8.8	9.5	.49	.27	.24
6	11.4	8.5	9.1	.54	.25	.20
7	11.2	8.3	8.9	.57	.24	.19
8	11.1	8.2	8.8	.58	.24	.18
9	11.0	8.0	8.6	.59	.25	.16
10+	11.0	7.9	8.8	.59	.26	.15
			Birth orde	er		
1	12.2	9.7	10.6	.38	.28	.34
2	12.2	9.6	10.5	.38	.30	.31
3	12.0	9.3	10.2	.40	.31	.29
4	11.9	9.0	9.7	.43	.32	.25
5	11.7	8.6	9.2	.46	.31	.22
6	11.6	8.3	8.9	.49	.31	.20
7	11.5	8.1	8.7	.51	.30	.19
8	11.6	8.0	8.6	.49	.31	.20
9	11.3	7.9	8.4	.53	.32	.15
10+	11.3	7.8	8.7	.52	.32	.15
			All			
	12.2	9.5	10.4	.39	.29	.32

- We ignore instrumental variables and twins
- Focus only on the regular estimations
- But start with summary stats
- What does Table 3 tell us about education as family size increases? increases (for 1 to 2), then declines
- What does Table 3 tell us about education as birth order increases? declines
- Give an example of a potential omitted variable for this research question

- Get four families as an example to match paper
- What info do we need?

- Get four families as an example to match paper
- What info do we need?
 - year of birth of each sibling
 - education of each family member

- Get four families as an example to match paper
- What info do we need?
 - year of birth of each sibling
 - education of each family member
- Make this into a dataset you could do the sort of regressions that Black et al did.
- Make a copy of the google sheet I sent and enter data there
- Some hints
 - What's the unit of observation?

- Get four families as an example to match paper
- What info do we need?
 - year of birth of each sibling
 - education of each family member
- Make this into a dataset you could do the sort of regressions that Black et al did.
- Make a copy of the google sheet I sent and enter data there
- Some hints
 - What's the unit of observation? person
 - What variables do you need?

- Get four families as an example to match paper
- What info do we need?
 - year of birth of each sibling
 - education of each family member
- Make this into a dataset you could do the sort of regressions that Black et al did.
- Make a copy of the google sheet I sent and enter data there
- Some hints
 - What's the unit of observation? person
 - What variables do you need?
 - you need to be able to know who is in the same family
 - you need a variable for birth order
 - you need a variable for family size

Understanding Main Estimates: Table 4

What's the estimating equation for Table 4 column 1? (read p. 678, pp under 3.A.)

Understanding Main Estimates: Table 4

What's the estimating equation for Table 4 column 1? (read p. 678, pp under 3.A.) $\operatorname{educ}_{i,f} = \beta_0 + \beta_1 \operatorname{no.} \text{ kids in } \operatorname{fam}_f + \beta_2 \operatorname{year} \text{ of birth } \operatorname{FE}_i + \epsilon_{i,f}$

Estimating Column 1

• To estimate column 1, what additional variable does your dataset need?

Estimating Column 1

- To estimate column 1, what additional variable does your dataset need?
 birth year FE
- Why do we include year of birth fe?
- How do we interpret the coeff -0.182?

Estimating Column 1

- To estimate column 1, what additional variable does your dataset need?
 birth year FE
- Why do we include year of birth fe?
- How do we interpret the coeff -0.182?
 increasing a family by one more child decreases the average child's education by .18 of a year (20% of a year)

Estimating Column 2 - New regression equation?

Estimating Column 1

- To estimate column 1, what additional variable does your dataset need?
 birth year FE
- Why do we include year of birth fe?
- How do we interpret the coeff -0.182?
 increasing a family by one more child decreases the average child's education by .18 of a year (20% of a year)

Estimating Column 2 - New regression equation?

$$educ_{i,f} = \beta_0 + \beta_1$$
kids in fam $FE_f + \beta_2$ year of birth $FE_i + \epsilon_{i,f}$

Estimating Column 1

- To estimate column 1, what additional variable does your dataset need?
 birth year FE
- Why do we include year of birth fe?
- How do we interpret the coeff -0.182?
 increasing a family by one more child decreases the average child's education by .18 of a year (20% of a year)

Estimating Column 2 - New regression equation?

$$\mathsf{educ}_{i,f} = \beta_0 + \beta_1 \mathsf{kids}$$
 in fam $\mathsf{FE}_f + \beta_2 \mathsf{year}$ of birth $\mathsf{FE}_i + \epsilon_{i,f}$

what does our dataset need to estimate it?

Estimating Column 1

- To estimate column 1, what additional variable does your dataset need?
 birth year FE
- Why do we include year of birth fe?
- How do we interpret the coeff -0.182?
 increasing a family by one more child decreases the average child's education by .18 of a year (20% of a year)

Estimating Column 2 – New regression equation?

$$\mathsf{educ}_{i,f} = \beta_0 + \beta_1 \mathsf{kids}$$
 in fam $\mathsf{FE}_f + \beta_2 \mathsf{year}$ of birth $\mathsf{FE}_i + \epsilon_{i,f}$

- what does our dataset need to estimate it?
- how do we interpret 0.272?

Eq for Table 4, Column 3:

$$educ_{i,f} = \beta_0 + \beta_1$$
no. kids in $fam_f + \beta_2$ year of birth $FE_i + \beta_3 X_{i,f} + \epsilon_{i,f}$

• Add controls. Any questions about how they do that?

Eq for Table 4, Column 3:

$$educ_{i,f} = \beta_0 + \beta_1$$
no. kids in $fam_f + \beta_2$ year of birth $FE_i + \beta_3 X_{i,f} + \epsilon_{i,f}$

- Add controls. Any questions about how they do that?
- What do we learn by comparing columns 3 and 4 to 1 and 2?

Eq for Table 4, Column 3:

$$educ_{i,f} = \beta_0 + \beta_1$$
no. kids in $fam_f + \beta_2$ year of birth $FE_i + \beta_3 X_{i,f} + \epsilon_{i,f}$

- Add controls. Any questions about how they do that?
- What do we learn by comparing columns 3 and 4 to 1 and 2?
- Controls are important, but they don't account for the entire effect

- Column 5
 - what is the regression equation?

- Column 5
 - what is the regression equation?

$$\mathsf{educ}_{i,f} = \beta_0 + \beta_1 \mathsf{no}$$
. kids in $\mathsf{fam}_f + \beta_2 \mathsf{year}$ of birth $\mathsf{FE}_i + \beta_3 X_{i,f} + \beta_4 \mathsf{birth}$ order $\mathsf{FE}_i + \epsilon_{i,f}$

- fix your dataset to have enough variables to estimate this
- how do we interpret these coefficients?

- Column 5
 - what is the regression equation?

$$\mathsf{educ}_{i,f} = \beta_0 + \beta_1 \mathsf{no}$$
. kids in $\mathsf{fam}_f + \beta_2 \mathsf{year}$ of birth $\mathsf{FE}_i + \beta_3 X_{i,f} + \beta_4 \mathsf{birth}$ order $\mathsf{FE}_i + \epsilon_{i,f}$

- fix your dataset to have enough variables to estimate this
- how do we interpret these coefficients?
- then column 6
 - what is the regression equation?

- Column 5
 - what is the regression equation?

$$educ_{i,f} = \beta_0 + \beta_1$$
no. kids in $fam_f + \beta_2$ year of birth $FE_i + \beta_3 X_{i,f} + \beta_4$ birth order $FE_i + \epsilon_{i,f}$

- fix your dataset to have enough variables to estimate this
- how do we interpret these coefficients?
- then column 6
 - what is the regression equation?

$$\mathsf{educ}_{i,f} = \beta_0 + \beta_1 \mathsf{kids}$$
 in fam $\mathsf{FE}_f + \beta_2 \mathsf{year}$ of birth $\mathsf{FE}_i + \beta_3 X_{i,f} + \beta_4 \mathsf{birth}$ order $\mathsf{FE}_i + \epsilon_{i,f}$

• fix your dataset so that you have enough variables to estimate this

Visual Representation of Findings

- How does this translate to figure 1 (p. 689)?
- Or, what are they plotting there and what does it mean?
 - warning: the note is not correct it says predicted values, but these are coefficients

Visual Representation of Findings

- How does this translate to figure 1 (p. 689)?
- Or, what are they plotting there and what does it mean?
 - warning: the note is not correct it says predicted values, but these are coefficients

• no info for family size = 1

- no info for family size = 1
- for family size of 2, first born is

- no info for family size = 1
- for family size of 2, first born is 0.257, second born is

- no info for family size = 1
- for family size of 2, first born is 0.257, second born is 0.257-0.342

- no info for family size = 1
- for family size of 2, first born is 0.257, second born is 0.257-0.342
- for family size of 3, first born is

- no info for family size = 1
- for family size of 2, first born is 0.257, second born is 0.257-0.342
- for family size of 3, first born is 0.270, second born is

- no info for family size = 1
- for family size of 2, first born is 0.257, second born is 0.257-0.342
- for family size of 3, first born is 0.270, second born is 0.270-0.342, third born is

- no info for family size = 1
- for family size of 2, first born is 0.257, second born is 0.257-0.342
- for family size of 3, first born is 0.270, second born is 0.270-0.342, third born is 0.270-0.538

- no info for family size = 1
- for family size of 2, first born is 0.257, second born is 0.257-0.342
- for family size of 3, first born is 0.270, second born is 0.270-0.342, third born is 0.270-0.538
- why are the lines in the figure parallel?

$$\mathsf{educ}_{i,f} = \beta_0 + \beta_1 \mathsf{year}$$
 of birth $\mathsf{dum}_i + \beta_2 X_i + \beta_3 \{1 \text{ if child } 2\}_i + \epsilon_{i,f}$

$$educ_{i,f} = \beta_0 + \beta_1$$
year of birth $dum_i + \beta_2 X_i + \beta_3 \{1 \text{ if child } 2\}_i + \epsilon_{i,f}$

- do you have the data for these?
- why are these different than the last column of Table 3?

$$\mathsf{educ}_{i,f} = \beta_0 + \beta_1 \mathsf{year}$$
 of birth $\mathsf{dum}_i + \beta_2 X_i + \beta_3 \{1 \text{ if child } 2\}_i + \epsilon_{i,f}$

- do you have the data for these?
- why are these different than the last column of Table 3?
- Because they allow the effect of birth order to vary by family size

Next Lecture

- Read Causal Mixtape, Chapter 9.1 and 9.2
- Read linked Milligan article, section 5 optional
- Due next week
 - One page proposal
- Next week handout Problem Set 2, with two week work period