

Lecture 6: Instrumental Variables, 2 of 2

October 11, 2023

Course Administration

- $1. \ \mbox{Graded}$ summaries through last week
- 2. Lab after class today
- 3. If you still need approval for your replication paper, I am nervous

Course Administration

- 1. Graded summaries through last week
- 2. Lab after class today
- 3. If you still need approval for your replication paper, I am nervous

- 4. Quantitative summary
 - Discuss handout
 - Due November 1
- 5. Please come see me about your replication paper
- 6. Any other issues?

IV:

IC: RG

IC: Data

IC: Specification

IC: Res

Today

IV Background

- 1. IV how-to
- 2. Bound, Baker and Jaeger critique of Angrist & Krueger
- 3. IV as a local average treatment effect

Evaluating Papers

- 1. Research question and endogeneity concerns
- 2. Data
- 3. Specification and instrument
- 4. Instrument validity
- 5. Results and interpret coefficients, LATE

Admin

IV: How-to

IC: RQ?

IC: Data

IC: Specification

IC: Validity

IC: Res.

IV: Basic Rules of Engagement

IV Regression Steps

We want to estimate $Y = \beta X + \sigma C + \epsilon$, but X is endogenous.

IV: How-to

Steps

1. Estimate first stage

$$X = \gamma Z + \alpha C + \alpha$$

Z are instruments and C are covariates

C are

IC: Validity

IV Regression Steps

We want to estimate $Y = \beta X + \sigma C + \epsilon$, but X is endogenous.

IV: How-to

Steps

1. Estimate first stage

$$X = \gamma Z + \alpha C + \delta$$

Z are instruments and

covariates

2. Generate predicted values $\hat{X} = \hat{\gamma}Z + \hat{\alpha}C$

IV Regression Steps

We want to estimate $Y = \beta X + \sigma C + \epsilon$, but X is endogenous.

IV: How-to

Steps

1. Estimate first stage

$$X = \gamma Z + \alpha C + \delta$$

Z are instruments and C are covariates

- 2. Generate predicted values $\hat{X} = \hat{\gamma}Z + \hat{\alpha}C$
- 3. Do second stage $X = \beta \hat{X} + z \hat{C} + z \hat{C}$

$$\mathbf{Y} = \beta \hat{\mathbf{X}} + \sigma \mathbf{C} + \nu$$

IV Regression Steps

We want to estimate $Y = \beta X + \sigma C + \epsilon$, but X is endogenous.

IV. How-to

Steps

- 1. Estimate first stage
 - $X = \gamma Z + \alpha C + \delta$

 \boldsymbol{Z} are instruments and \boldsymbol{C} are covariates

- 2. Generate predicted values $\hat{X} = \hat{\gamma}Z + \hat{\alpha}C$
- 3. Do second stage $Y = \beta \hat{X} + \sigma C + \nu$

Rules

- 1. Covariates from second stage must be in first stage
- 2. Stata and other software automatically pass \hat{X} to the second stage
- 3. *F* value for assessing instrument strength is from *Z* in first stage
- 4. Incremental R^2 that tells about instrument strength comes from comparing R^2 in $X = \gamma Z + \alpha C + \delta$

versus

 $X = \alpha C + \delta$

Admin

IV: BBJ

IC: RG

IC: Data

IC: Specification

IC: Validity

IC: Res.

BBJ on A&K

Admin

C: Data

IC: Validity

IC: Res.

Recall the Two Key IV Assumptions

Instrument is

Recall the Two Key IV Assumptions

Instrument is

- 1. correlated with endogenous variable $cov(X, Z) \neq 0$
- 2. correlated with dependent variable only through relationship with endogenous variable

 $cov(Z,\epsilon) = 0$

IC: Res.

The Bound/Baker/Jaeger Critique

Journal of the American Statistical Association, 1995

Relative consistency of IV

$$\frac{\mathsf{plim}~\hat{\beta}_{IV} - \beta}{\mathsf{plim}~\hat{\beta}_{OLS} - \beta} = \frac{\rho_{Z,\epsilon}/\rho_{x,\epsilon}}{\rho_{x,Z}}$$

- $ho_{Z,\epsilon} \sim {
 m corr} \, {
 m btwn} \, Z$ and ϵ
- $ho_{X,\epsilon} \sim ext{corr btwn } X$ and ϵ
- $\rho_{X,Z} \sim \text{corr btwn } X$ and Z

- As the correlation between the instrument Z and the endogenous variable X decreases $\rho_{X,Z}$ gets small
- $\hat{\beta}_{IV}$ becomes more inconsistent relative to OLS
- A small correlation leads to big biases

How Do You Check for This Problem?

- Measure $\rho_{X,Z}$ as the additional R^2 you get when adding instruments to the equation
- "If the relationship between the instruments and the endogenous variable is weak enough, even enormous samples do not eliminate the possibility of quantitatively important finite-sample biases."
- This means look carefully at first stage F stats, and partial R^2
- In addition, finite sample bias of $\hat{\beta}_{IV}$ increases in number of instruments, all else equal

Applying This to A&K

- A and K don't have first stage tables in their paper; they argue for instrument relevance, but not for strength
- In most complete specification. they have QOB*year of birth + QOB*state = 3 * 10 + 3 * 50 = 180 instruments
- Also, QOB may affect wages through pathways other than years of schooling (from BBJ)
 - school performance
 - likelihood of behavioral difficulties
 - likelihood of referral to mental health services
 - etc, etc ...
- Now people just use the laws themselves, not quarter of birth

Suppose Quarter of Birth is Garbage – Then What?

- Original paper, T4, cols 4 and 5 (parallel to 1)
 - $\hat{\beta}_{OLS} = 0.0701$
 - $\hat{\beta}_{IV} = 0.0669$
- make a random quarter of birth for each person
- regress this fake quarter of birth on education
- make predicted values
- do second stage
- repeat 1000 times
- find mean of $\hat{\beta_{IV}}$

Suppose Quarter of Birth is Garbage – Then What?

- Original paper, T4, cols 4 and 5 (parallel to 1)
 - $\hat{\beta}_{OLS} = 0.0701$
 - $\hat{\beta}_{IV} = 0.0669$
- make a random quarter of birth for each person
- regress this fake quarter of birth on education
- make predicted values
- do second stage
- repeat 1000 times
- find mean of $\hat{\beta_{IV}}$

Table	З.	Estimated	Effect of	Completed	Years of	of Educati	on on	Men's			
	L	og Weekly	Earnings	, Using Simi	ulated (Quarter of	Birth				
(500 replications)											

Table (column)	1 (4)	1 (6)	2 (2)	2 (4)
Estin	nated Coeffic	cient		
Mean	.062	.061	.060	.060
Standard deviation of mean	.038	.039	.015	.015
5th percentile Median 95th percentile	001 .061 .119	002 .061 .127	.034 .060 .083	.035 .060 .082
Estimat	ed Standard	d Error		
Mean	.037	.039	.015	.015

NOTE: Calculated from the 5% Public-Use Sample of the 1980 U.S. Census for men born 1930– 1939. Sample size is 329,509.

Bottom Line: What Do You Do?

- It is now standard to report F statistics for instruments
- If they are not approximately 10 or greater, become worried
- Use the incremental R^2 to explore instrument strength
- All else equal, use fewer instruments

Admin

o **I**V

IV: BBJ

IC: RQ?

IC: Data

IC: Specification

IC: Validity

IC: Res

Lecture 6: Papers to Discuss

13 / 37

Outline for Paper Discussion

- $1. \ \mbox{Research}$ question and endogeneity concerns
- 2. Data
- 3. Specification and instrument
- 4. Instrument validity
- 5. Results and interpret coefficients, LATE

Admin IV: How-to IV: BBJ IC: RQ? IC: Data IC: Specification IC: Validity

1. What are the research questions and endogeneity concerns?

IC: Validity

IC: Res.

What are the Research Questions?

IC: Validity

IC: Res.

What are the Research Questions?

Collins and Margo

• Do the 1960s riots impact property value?

IC: Validity

IC: Res.

What are the Research Questions?

Nguyen

Collins and Margo

• Do the 1960s riots impact property value?

: Validity

What are the Research Questions?

Collins and Margo

• Do the 1960s riots impact property value?

Nguyen

- Does a bank branch closure in a heavily banked market cause declines in lending?
- More generally, does distance matter for economic activity?

IC: Validity

Endogeneity Concerns

- perhaps limited economic activity causes riots – and also decreases home prices
- perhaps better political climate yields no riots, or weaker riots and this leads to economic growth – which increases home prices

Endogeneity Concerns

Collins and Margo

Nguyen

- perhaps limited economic activity causes riots – and also decreases home prices
- perhaps better political climate yields no riots, or weaker riots and this leads to economic growth – which increases home prices

IC · Res

Endogeneity Concerns

Collins and Margo

- perhaps limited economic activity causes riots – and also decreases home prices
- perhaps better political climate yields no riots, or weaker riots and this leads to economic growth – which increases home prices

Nguyen

- "The empirical challenge in estimating the local effects of branch closings is that the closing decision is endogenous to local economic conditions that are correlated with credit demand." (p. 3)
- closings should occur in markets where lending is declining – declining lending causes less credit

IV: BBJ IC: RQ?

IC: Data

IC: Specification

IC: Validity

IC: Res.

2. Data

- panel of 104 cities with population > 100,000 in 1960, observed in 1950, 1960, 1970 and 1980
- also use tract-level data that we'll ignore

- panel of 104 cities with population > 100,000 in 1960, observed in 1950, 1960, 1970 and 1980
- also use tract-level data that we'll ignore
- unit of observation?

IC: Res.

What Data do the Authors Use?

- panel of 104 cities with population > 100,000 in 1960, observed in 1950, 1960, 1970 and 1980
- also use tract-level data that we'll ignore
- unit of observation? city in a year

Nguyen

- panel of 104 cities with population > 100,000 in 1960, observed in 1950, 1960, 1970 and 1980
- also use tract-level data that we'll ignore
- unit of observation? city in a year

Collins and Margo

- panel of 104 cities with population > 100,000 in 1960, observed in 1950, 1960, 1970 and 1980
- also use tract-level data that we'll ignore
- unit of observation? city in a year

Nguyen

- panel of tracts 1999-2012, which are neighborhoods of roughly 4,000 people
- includes info on
 - branches by bank per year
 - number and volume of small business and mortgage loans
 - establishment data from NETS
 - demographics from Census 2000
- unit of observation?
What Data do the Authors Use?

Collins and Margo

- panel of 104 cities with population > 100,000 in 1960, observed in 1950, 1960, 1970 and 1980
- also use tract-level data that we'll ignore
- unit of observation? city in a year

Nguyen

- panel of tracts 1999-2012, which are neighborhoods of roughly 4,000 people
- includes info on
 - branches by bank per year
 - number and volume of small business and mortgage loans
 - establishment data from NETS
 - demographics from Census 2000
- unit of observation? tract in a year

Admin IV:

IV: BBJ

IC: RQ?

IC: Data

IC: Specification

IC: Validity

IC: Res.

3. Specification and Instrument

20 / 37

C: Data

IC: Res.

C&M: Specification and Instrument

C&M: Specification and Instrument

Second stage

 $\Delta V_i = \alpha + \beta_1 X_i + \beta_2 \operatorname{region}_i + \beta_3 \operatorname{riot} \operatorname{severity}_i + \epsilon_i$

C&M: Specification and Instrument

 ${\sf Second} \ {\sf stage}$

 $\Delta V_i = \alpha + \beta_1 X_i + \beta_2 \operatorname{region}_i + \beta_3 \operatorname{riot} \operatorname{severity}_i + \epsilon_i$

C&M: Specification and Instrument

Second stage

 $\Delta V_i = \alpha + \beta_1 X_i + \beta_2 \text{region}_i + \beta_3 \text{riot severity}_i + \epsilon_i$

First stage

riot severity_i = $\gamma_1 + \gamma_2 X_i + \gamma_3 \text{region}_i + \gamma_4 \text{rain April } 1968_i + \gamma_5 \text{city manager}_i + \nu_i$

- Instruments
 - rainfall in April 1968
 - being a council manager-type city

C&M First Stage Results

RIOT SEVERITY AND INSTRUMENTAL VARIABLES							
Dependent Variable	Severity Group (1)	Severity Group (2)	Severity Group (3)	Severity Group (4)	Severity Index (5)		
Rainfall, April 1968	-0.109	-0.126	-0.106	-0.0934	-0.0140		
	(0.0335)	(0.0404)	(0.0354)	(0.0327)	(0.00539)		
Rainfall, annual avg.	_	-0.00588		_	_		
		(0.00834)					
Rainfall, April avg.		0.145					
		(0.0938)					
Rainfall, April 1967		-0.0375					
		(0.0323)					
City manager	-0.229	-0.193	-0.229		-0.0250		
	(0.140)	(0.146)	(0.141)		(0.0143)		
Percentage black	2.68	2.51	2.69	2.95	0.311		
-	(0.513)	(0.585)	(0.509)	(0.506)	(0.105)		
Total population	2.51 e-07	2.54 e-07	2.52 e-07	2.71 e-07	3.57 e-08		
	(8.01 e-08)	(8.39 e-08)	(8.01 e-08)	(8.92 e-08)	(2.13 e-08)		

TABLE 5 RIOT SEVERITY AND INSTRUMENTAL VARIABLES

No first stage F test in table; text says 5.5

C: Data

IC: Res.

Ngyuen: Specification and Instrument

Ngyuen: Specification and Instrument

$$y_{i,t} = \alpha_i + \gamma_t + \lambda X_{i,t} + \beta_c \mathsf{Close}_{i,t} + \epsilon_{i,t}$$

C: Data

IC: Res.

Ngyuen: Specification and Instrument

$$y_{i,t} = \alpha_i + \gamma_t + \lambda X_{i,t} + \beta_c \mathsf{Close}_{i,t} + \epsilon_{i,t}$$

First stage

IC: Data

Ngyuen: Specification and Instrument

Second stage

$$y_{i,t} = \alpha_i + \gamma_t + \lambda X_{i,t} + \beta_c \mathsf{Close}_{i,t} + \epsilon_{i,t}$$

$$Close_{i,t} = \kappa_i + \phi_t + \rho X_{i,t} + \beta_c Expose_{i,t} + \omega_{i,t}$$

C: Data

Ngyuen: Specification and Instrument

Second stage

$$y_{i,t} = \alpha_i + \gamma_t + \lambda X_{i,t} + \beta_c \mathsf{Close}_{i,t} + \epsilon_{i,t}$$

$$\mathsf{Close}_{i,t} = \kappa_i + \phi_t + \rho X_{i,t} + \beta_c \mathsf{Expose}_{i,t} + \omega_{i,t}$$

- "exposure" is 1 "if two banks with branches in tract i undergo a merger in year t" (p. 10)
- but maybe banks merge to do exactly this! her way of dealing with this

IC: Data

Ngyuen: Specification and Instrument

Second stage

$$y_{i,t} = \alpha_i + \gamma_t + \lambda X_{i,t} + \beta_c \mathsf{Close}_{i,t} + \epsilon_{i,t}$$

$$\mathsf{Close}_{i,t} = \kappa_i + \phi_t + \rho X_{i,t} + \beta_c \mathsf{Expose}_{i,t} + \omega_{i,t}$$

- "exposure" is 1 "if two banks with branches in tract *i* undergo a merger in year *t*" (p. 10)
- but maybe banks merge to do exactly this! her way of dealing with this
 - choose only very large mergers, so that retail banking overlap unlikely to be the driving force (1.4% of deposits held in exposed tracts for big mergers)
 - have branches from Buyer and Target banks in the year prior to the merge
 - further limits sample of controls to any tracts that do not have both Buyer or Target banks, but do have at least two large banks that don't merge

Admin

C: Data

IC: Validity

IC: Res.

What's Going on with the Sample?

Panel A

Panel B

First Stage Coefficient of Interest, Sort of: Figure 2

Impact of Merger Exposure on Branch Closure

Number of branch closings

Admin IV:

IV: BBJ

IC: RQ?

IC: Data

IC: Specification

IC: Validity

IC: Res.

4. Instrument Validity

26 / 37

C&M: Instrument Validity

What evidence do they marshal to try to convince you that the exclusion restriction $(cov(Z, \epsilon) = 0)$ holds?

C&M: Instrument Validity

What evidence do they marshal to try to convince you that the exclusion restriction $(cov(Z, \epsilon) = 0)$ holds?

- rainfall in April 1967, average annual rainfall, and average April rainfall not related to riot severity
- here, it is hard to think of a reason April 1968 rainfall matters for property values except through connection to riots (but maybe you had some ideas)
- not much to say on council-manager instrument

Nguyen: Instrument Validity

What evidence does she provide to try to convince you that the exclusion restriction $(cov(Z, \epsilon) = 0)$ holds?

Nguyen: Instrument Validity

What evidence does she provide to try to convince you that the exclusion restriction $(cov(Z, \epsilon) = 0)$ holds?

- exposure impacts tract-level outcomes only through impact on closure
- or "the decision to merge is plausibly exogenous with respect to the exposed tracts" (p. 11)
- see Figures 2 and 3

C: Data

IC: Validity

IC: Res.

First Stage Coefficient of Interest: Figure 3

Why include this figure?

IC: Data

IC: Validity

IC: Res.

First Stage Coefficient of Interest: Figure 3

Why include this figure?

- test for pre-trends
- look for net effect on branches

Admin

IV: B

IC: RC

IC: Data

IC: Specification

IC: Validity

IC: Res.

5. Results and LATE Interpretation

30 / 37

C&M: Results

TABLE 6 RIOTS AND BLACK-OWNED PROPERTY VALUES, OLS AND 2SLS ESTIMATES

	1960–1970			1960–1980			
	OLS (1)	2SLS (2)	2SLS (3)	OLS (4)	2SLS (5)	2SLS (6)	
Severity group	-0.0716	-0.191	-0.165	-0.101	-0.237	-0.220	
(0-2)	(0.0185)	(0.0913)	(0.0856)	(0.0281)	(0.133)	(0.129)	
Percentage black	0.273	0.593	0.505	-0.186	0.181	0.123	
-	(0.133)	(0.282)	(0.265)	(0.254)	(0.435)	(0.431)	
Total population	1.19 e-09	3.40 e-08	2.60 e-08	-1.06 e-08	2.71 e-08	2.18 e-08	
	(7.37 e-09)	(2.64 e-08)	(2.45 e-08)	(1.83 e-08)	(3.55 e-08)	(3.46 e-08)	
Value trend	_	_	0.282	_	_	0.172	
1950-60			(0.106)			(0.20)	
Northeast	0.0607	0.141	0.141	-0.189	-0.0967	-0.0979	
	(0.0482)	(0.0768)	(0.0708)	(0.0711)	(0.114)	(0.111)	
Midwest	-0.0687	-0.0014	-0.0164	-0.226	-0.149	-0.159	
	(0.0339)	(0.0637)	(0.0594)	(0.0643)	(0.100)	(0.0980)	
West	0.0401	0.106	0.0902	0.247	0.322	0.312	
	(0.0459)	(0.0736)	(0.0676)	(0.0726)	(0.112)	(0.107)	
Constant	0.341	0.312	0.223	1.386	1.352	1.298	
	(0.0425)	(0.0506)	(0.0593)	(0.0779)	(0.0857)	(0.103)	
N	104	104	104	104	104	104	
17 · D 1 · ·	1 1		a a a			*.	

31 / 37

Whose behavior is modified by the instrument?

 hard to think about here, because we don't have a good sense of who those would be that are motivated by instrument, given that the instrument should work everywhere and be applied randomly

- hard to think about here, because we don't have a good sense of who those would be that are motivated by instrument, given that the instrument should work everywhere and be applied randomly
- 2SLS effects are larger what does this mean?

- hard to think about here, because we don't have a good sense of who those would be that are motivated by instrument, given that the instrument should work everywhere and be applied randomly
- 2SLS effects are larger what does this mean?
- perhaps implies that cities that are deterred from disturbance by rain are more equal/less angry cities, so those with smaller impacts

- hard to think about here, because we don't have a good sense of who those would be that are motivated by instrument, given that the instrument should work everywhere and be applied randomly
- 2SLS effects are larger what does this mean?
- perhaps implies that cities that are deterred from disturbance by rain are more equal/less angry cities, so those with smaller impacts
- maybe it's more about effects not in California, where it wouldn't rain much anyhow

dmin

IC: Data

Validity

IC: Res.

Nguyen: Results

First stage = red triangles; reduced form = blue dots; Wald estimate = blue/red

Nguyen: Table 7

	Small business loans		
-	Number of loans (1)	Dollar volume (000s) (2)	
Panel A. OLS			
δ_{OLS}	-2.143	-100.9	
	(0.745)	(48.64)	
Panel B. RF			
δ_{RE}	-2.513	-206.7	
	(0.909)	(77.91)	
Panel C. IV			
δ_{IV}	-10.41	-871.4	
	(3.738)	(327.9)	
Six-year cumulative effect	-62.47	-5.228	
one year camaran contest	(22.43)	(1.967)	
	()	(1,707)	
Baseline mean	103.4	4,706	
Observations	45,160	43,033	

Nguyen: Thinking LATE

Nguyen: Thinking LATE

- be cognizant that this is a non-random sample of all tracts
- wealthier, whiter, more loans: see Table 3

Nguyen: Thinking LATE

- be cognizant that this is a non-random sample of all tracts
- wealthier, whiter, more loans: see Table 3
- is this likely an under- or over-estimate of the effect of a closure in a 1-branch tract?

Nguyen: Thinking LATE

- be cognizant that this is a non-random sample of all tracts
- wealthier, whiter, more loans: see Table 3
- is this likely an under- or over-estimate of the effect of a closure in a 1-branch tract? an underestimate

Admin	IV: How-to	IV: BBJ	IC: RQ?	IC: Data	IC: Specification	IC: Validity	IC: Res.		
Anything else?									

- Read
 - Causal Mixtape Chapter 6.1, 6.2, but only through 6.2.3
 - Anderson on public transit and traffic
- Summary due next week if you're on the list