Lecture 11: Synthetic Control, or, Matching 2 of 2

April 2, 2025

Course Administration

- 1. Quantitative summary feedback posted
- 2. Workshop is next week
 - post material by Sunday midnight
 - post feedback for classmates before class
 - can agree on later within-group deadline as you like
- 3. Instructions for presentations posted

Goal

timation 0000000000 Convex Hull

Inference 0000000 Example 0000000000000

Course Administration

- 1. Quantitative summary feedback posted
- 2. Workshop is next week

Admin

- post material by Sunday midnight
- post feedback for classmates before class
- can agree on later within-group deadline as you like
- 3. Instructions for presentations posted

- 4. Instructions for final paper posted Lec. 9
- 5. Please come see me about your replication paper
- 6. Presentations April 16 and 23
- 7. Paper due April 28, 5 pm
- 8. Any other issues?

How to Present Things You Want to Compare

Original Table

	Treated	Untreated	
Hats	6	5	
Coats	8	6	

Replication Table

	Treated	Untreated
Hats	6.2	5.1
Coats	8.1	6.1

How to Present Things You Want to Compare

Original Table with Your Work

	Ori	Original Replic		Replication		
	Treated			Untreated		
Hats	6	5	6.2	5.1		
Coats	8	6	8.1	6.1		

	Original		Replication		Percent Diff.	
	Treated	Untreated	Treated	Untreated	Treated	Untreated
Hats	6	5	6.2	5.1	0.03	0.02
Coats	8	6	8.1	6.1	0.10	0.02

Synthetic control how-to

- 1. Overview
- 2. Set-up
- 3. Goal
- 4. Convex hull
- 5. Inference
- 6. Estimation
- 7. Example

Synthetic control how-to

- 1. Overview
- 2. Set-up
- Goal
- 4. Convex hull
- 5. Inference
- 6. Estimation
- 7. Example

Synthetic control example

- 1. Research question
- 2. Outcomes
- 3. Estimation strategy
- 4. Results
- 5. What did you think?

Admin

W

-**up** 000 Estimati 00000 Convex Hull

nference

Example 00000000000000

Overview of Synthetic Control

When to Use Synthetic Control?

• When we want to know the effect of a policy that happens in one or a few treated places/instances

Convex Hull

Inference 0000000 Example 00000000000000

When to Use Synthetic Control?

- When we want to know the effect of a policy that happens in one or a few treated places/instances
- Why not diff-in-diff?

.

When to Use Synthetic Control?

- When we want to know the effect of a policy that happens in one or a few treated places/instances
- Why not diff-in-diff?
 - small sample size \rightarrow big standard errors
 - diff-in-diff requires that differences between treated and control are either •
 - ۲ time-invariant, unit-specific measures or
 - time-varying in the same way for all units

erence 000000 Example 00000000000000

When to Use Synthetic Control?

- When we want to know the effect of a policy that happens in one or a few treated places/instances
- Why not diff-in-diff?

Overview

- small sample size \rightarrow big standard errors
- diff-in-diff requires that differences between treated and control are either
 - time-invariant, unit-specific measures or
 - time-varying in the same way for all units
- We can weaken these assumptions by making a synthetic control
 - compare treated state to
 - comparison state that is a little of Michigan, a little of Illinois, no Wisconsin and a little Florida

When to Use Synthetic Control?

- When we want to know the effect of a policy that happens in one or a few treated places/instances
- Why not diff-in-diff?

Overview

- small sample size \rightarrow big standard errors
- diff-in-diff requires that differences between treated and control are either
 - time-invariant, unit-specific measures or
 - time-varying in the same way for all units
- We can weaken these assumptions by making a synthetic control
 - compare treated state to
 - comparison state that is a little of Michigan, a little of Illinois, no Wisconsin and a little Florida
- This doesn't fix the small sample problem, but we use different inference methods

Abadie, Diamond and Hainmueller, "Comparative Politics and the Synthetic Control Method," 2015. [link]

Admin	Overview	Set-up	Goal	Estimation	Convex Hull	Inference	Example
000000	00	●0000	00	0000000000	0000	0000000	00000000000000

Set-up

Admino Overview Set-up Goal Estimation Convex Hull Inference Example Condition Convex Hull Inference Example Condition Convex Hull Inference Example Condition Convex Hull Inference Infer

T,

- t is time, $t \in \{1, ..., T_0, ..., T\}$.
- Treatment occurs after T_0 .

timet

- We look for effects starting in $T_0 + 1$
 - there are T_0 pre-intervention periods, $\{1, ..., T_0\}$
 - there are T_1 post-intervention periods, $\{T_0 + 1..., T\}$
 - total $T = T_0 + T_1$

Set-up

Estimatio 0000000 Convex Hull

Inference 0000000 Example 00000000000000

Units in Synthetic Control

- Each unit is denoted *i*
- There are J+1 total units, $i \in \{1..., J+1\}$
- Unit 1 is treated,
- Units $\{2, 3, ..., J + 1\}$ are not treated
- \rightarrow J untreated observations
- Call untreated observations the "donor pool"

n 200

Overv 00 Set-up

Es

ation

Convex Hull

nference

Example 00000000000000

- Untreated during observation period
 - no policy in the donor pool observations

nference

Example 00000000000000

- Untreated during observation period
 - no policy in the donor pool observations
- Unaffected by treatment
 - no spillover from treated observations

- Untreated during observation period
 - no policy in the donor pool observations
- Unaffected by treatment
 - no spillover from treated observations
- Should have no large, "idiosyncratic shocks," to the outcome variable
 - no hurricanes
 - no volcanos

timation 0000000000 Convex Hull

nference

Example 00000000000000

- Untreated during observation period
 - no policy in the donor pool observations
- Unaffected by treatment
 - no spillover from treated observations
- Should have no large, "idiosyncratic shocks," to the outcome variable
 - no hurricanes
 - no volcanos
- "Similar" to treated units to avoid interpolation bias
 - this is a little vague
 - hopefully the method does this for you

Estimation

Convex Hull

Inference 0000000 Example 00000000000000

Conditions for Donor Pool Observations

- Untreated during observation period
 - no policy in the donor pool observations
- Unaffected by treatment
 - no spillover from treated observations
- Should have no large, "idiosyncratic shocks," to the outcome variable
 - no hurricanes
 - no volcanos
- "Similar" to treated units to avoid interpolation bias
 - this is a little vague
 - hopefully the method does this for you

Many of these are not unique to synthetic control

Outcomes and Set-up for Synthetic Control

Notation

- Outcome for treated unit if treated: Y'_{it}
- Outcome for treated unit if untreated: Y_{it}^N

Outcomes and Set-up for Synthetic Control

Notation

- Outcome for treated unit if treated: Y'_{it}
- Outcome for treated unit if untreated: Y_{it}^N
- We assume

$$Y_{it}^{I} = Y_{it}^{N}$$
 for any $t \leq T_{0}$

Outcomes and Set-up for Synthetic Control

Notation

- Outcome for treated unit if treated: Y_{it}^{I}
- Outcome for treated unit if untreated: Y_{it}^N
- We assume

$$Y_{it}^{\prime}=Y_{it}^{N}$$
 for any $t\leq T_{0}$

- $D_i = 1$ if *i* is ever treated, 0 otherwise
- Z_{it} are covariates

stimation 0000000000 Convex Hull

Inference 000000 Example 00000000000000

Outcomes and Set-up for Synthetic Control

Notation

- Outcome for treated unit if treated: Y_{it}^{I}
- Outcome for treated unit if untreated: Y_{it}^N
- We assume

$$Y_{it}^I = Y_{it}^N$$
 for any $t \leq T_0$

- $D_i = 1$ if *i* is ever treated, 0 otherwise
- Z_{it} are covariates

Setting up the problem

• We want to know

on C

onvex Hull 000 ooooo

Example 00000000000000

Outcomes and Set-up for Synthetic Control

Notation

• Outcome for treated unit if treated: Y_{it}^{I}

Set-up

- Outcome for treated unit if untreated: Y_{it}^N
- We assume

$$Y_{it}^{I} = Y_{it}^{N}$$
 for any $t \leq T_{0}$

- $D_i = 1$ if *i* is ever treated, 0 otherwise
- Z_{it} are covariates

Setting up the problem

• We want to know difference between outcome in treated and untreated state:

$$\alpha_{it} = Y_{it}^{I} - Y_{it}^{N}$$

000 Com

nvex Hull

nce E 000 0

Example 0000000000000

Outcomes and Set-up for Synthetic Control

Notation

• Outcome for treated unit if treated: Y_{it}^{I}

Set-up

- Outcome for treated unit if untreated: Y_{it}^N
- We assume

$$Y_{it}^I = Y_{it}^N$$
 for any $t \leq T_0$

- $D_i = 1$ if *i* is ever treated, 0 otherwise
- *Z_{it}* are covariates

Setting up the problem

• We want to know difference between outcome in treated and untreated state:

$$\alpha_{it} = Y_{it}^{I} - Y_{it}^{N}$$

• Note that the effect varies with time: α has a t subscript

Com

nvex Hull

e Exa

Example 00000000000000

Outcomes and Set-up for Synthetic Control

Notation

• Outcome for treated unit if treated: Y_{it}^{I}

Set-up

- Outcome for treated unit if untreated: Y_{it}^N
- We assume

$$Y_{it}^{\prime}=Y_{it}^{N}$$
 for any $t\leq T_{0}$

- $D_i = 1$ if *i* is ever treated, 0 otherwise
- Z_{it} are covariates

Setting up the problem

• We want to know difference between outcome in treated and untreated state:

$$\alpha_{it} = Y_{it}^{I} - Y_{it}^{N}$$

- Note that the effect varies with time: α has a *t* subscript
- Does this differ from a diff-in-diff?

Example 000000000

Outcomes and Set-up for Synthetic Control

Notation

• Outcome for treated unit if treated: Y_{it}^{I}

Set-up

- Outcome for treated unit if untreated: Y_{it}^N
- We assume

 $Y_{it}^{I} = Y_{it}^{N}$ for any $t \leq T_{0}$

- $D_i = 1$ if *i* is ever treated, 0 otherwise
- Z_{it} are covariates

Setting up the problem

• We want to know difference between outcome in treated and untreated state:

$$\alpha_{it} = Y_{it}^{I} - Y_{it}^{N}$$

- Note that the effect varies with time: α has a t subscript
- Does this differ from a diff-in-diff?
- But! Problem: We only observe Y_{it}^{I}

Overview 00

Set-up 00000 Goal ●0

Estimation

Convex Hull

ference

Example 00000000000000

Goal of Estimation

dmin 00000 Set

Set-up 00000 Goal

Estimatio 000000 Convex Hull

Inference 0000000 Example 00000000000000

Goal in Estimation

• Goal: find

 $\alpha_{it} = Y_{it}^{I} - Y_{it}^{N}$

Goal

0.

Goal in Estimation

• Goal: find

$$\alpha_{it} = Y_{it}^{I} - Y_{it}^{N}$$

• We observe the treated unit in the treated state, so $Y_{it}^{I} = Y_{it}$

• Therefore,

$$\alpha_{it} = Y_{it} - Y_{it}^N$$

• What here is unknown?

et-up

E

Goal

C 000

Convex Hull

nference

Example 00000000000000

Goal in Estimation

• Goal: find

$$\alpha_{it} = Y_{it}^{I} - Y_{it}^{N}$$

• We observe the treated unit in the treated state, so $Y_{it}^{I} = Y_{it}$

• Therefore,

$$\alpha_{it} = Y_{it} - Y_{it}^N$$

• What here is unknown? Y_{it}^N

Set-up 00000 Goal

nation 00000000 Convex Hull

Inference 0000000 Example 000000000000000

Goal in Estimation

• Goal: find

$$\alpha_{it} = Y_{it}^{I} - Y_{it}^{N}$$

- We observe the treated unit in the treated state, so $Y_{it}^{I} = Y_{it}$
- Therefore,

$$\alpha_{it} = Y_{it} - Y_{it}^{\Lambda}$$

- What here is unknown? Y_{it}^N
- Fundamental question: how to estimate Y_{it}^N

Overview

Set-up 00000 Es

Goal

Cor 00 x Hull

erence 00000 Example 00000000000000

Goal in Estimation

• Goal: find

$$\alpha_{it} = Y_{it}^{I} - Y_{it}^{N}$$

- We observe the treated unit in the treated state, so $Y'_{it} = Y_{it}$
- Therefore,

$$\alpha_{it} = Y_{it} - Y_{it}^N$$

- What here is unknown? Y_{it}^N
- Fundamental question: how to estimate Y_{it}^N
- Intuition: approximate with a weighted average of untreated units
- In math

$$\hat{Y}_{it}^N = \sum_{j=2}^{J+1} w_j^* Y_{jt}$$

Set-up 00000 Goal

stimation 0000000000 Convex Hull

Inference 0000000 Example 00000000000000

Goal in Estimation

• Goal: find

$$\alpha_{it} = Y_{it}^{I} - Y_{it}^{N}$$

- We observe the treated unit in the treated state, so $Y_{it}^{I} = Y_{it}$
- Therefore,

$$\alpha_{it} = Y_{it} - Y_{it}^N$$

- What here is unknown? Y_{it}^N
- Fundamental question: how to estimate Y_{it}^N
- Intuition: approximate with a weighted average of untreated units
- In math

$$\hat{Y}_{it}^{N} = \sum_{j=2}^{J+1} w_j^* Y_{jt}$$

Trick is to find w_j

Estimation

• In OLS, we minimize what to find the best fit line?

• In OLS, we minimize what to find the best fit line?

• $\sum_{i=1}^{J} \epsilon_i^2$

• In matrix language that $\epsilon' \epsilon$

18 / 51

What's the Goal?

- In OLS, we minimize what to find the best fit line?
 - $\sum_{j=1}^{J} \epsilon_i^2$
 - In matrix language that $\epsilon'\epsilon$
- In SC, we choose weights to minimize the difference between
 - the treated covariates and pre-treatment outcomes and
 - the donor pool's covariates and pre-treatment outcomes
- But remember that our optimal weights have no time dimension

Define What We Want To Match

We want X_0 to be like X_1

- *X*₁ is
 - pre-treatment covariates Z₁ and
 - pre-treatment outcomes $Y_{1,t<\mathcal{T}_0}$ for the treated unit

 $X_1 \equiv \{Z_1, Y_{1,t < T_0}\}$

Define What We Want To Match

We want X_0 to be like X_1

- *X*₁ is
 - pre-treatment covariates Z₁ and
 - pre-treatment outcomes $Y_{1,t<\mathcal{T}_0}$ for the treated unit

$$X_1 \equiv \{Z_1, Y_{1,t < T_0}\}$$

• *X*₀ is

- pre-treatment covariates Z₀ and
- pre-treatment outcomes $Y_{0,t < T_0}$ for the untreated unit

$$X_0 \equiv \{Z_0, Y_{0,t < T_0}\}$$

• Choose weights $\{w_2, w_2, \dots, w_{J+1}\} \in W$ to minimize

 $||X_1 - X_0W||$

• Choose weights $\{w_2, w_2, \dots, w_{J+1}\} \in W$ to minimize

 $||X_1 - X_0W||$

• We have one weight for each of the J donor pool observations

Set-up

Estimation

Convex Hull

Inference 0000000 Example 0000000000000

What we are minimizing

Remember, Z are covariates, Y are pre-treatment outcomes

$$X_1 = egin{pmatrix} Z_{11} \ Z_{12} \ dots \ Z_{1r} \ Y_{11} \ Y_{12} \ dots \ Y_{17_0} \end{pmatrix},$$

Set-up

Estimation

Convex Hull

Inference 0000000 Example 0000000000000

What we are minimizing

Remember, Z are covariates, Y are pre-treatment outcomes

$$X_{1} = \begin{pmatrix} Z_{11} \\ Z_{12} \\ \vdots \\ Z_{1r} \\ Y_{11} \\ Y_{12} \\ \vdots \\ Y_{1}T_{0} \end{pmatrix}, X_{0} = \begin{pmatrix} Z_{21} & \dots & Z_{J+1,1} \\ Z_{22} & \dots & Z_{J+1,2} \\ \vdots & \ddots & \vdots \\ Z_{2r} & \dots & Z_{J+1,r} \\ Y_{21} & \dots & Y_{J+1,1} \\ Y_{22} & \dots & Y_{J+1,2} \\ \vdots & \ddots & \vdots \\ Y_{2T_{0}} & \dots & Y_{J+1,T_{0}} \end{pmatrix},$$

Estimation

Convex Hull

Inference 0000000 Example 00000000000000

What we are minimizing

Remember, Z are covariates, Y are pre-treatment outcomes

Set-up

$$X_{1} = \begin{pmatrix} Z_{11} \\ Z_{12} \\ \vdots \\ Z_{1r} \\ Y_{11} \\ Y_{12} \\ \vdots \\ Y_{1\tau_{0}} \end{pmatrix}, X_{0} = \begin{pmatrix} Z_{21} & \dots & Z_{J+1,1} \\ Z_{22} & \dots & Z_{J+1,2} \\ \vdots & \ddots & \vdots \\ Z_{2r} & \dots & Z_{J+1,r} \\ Y_{21} & \dots & Y_{J+1,1} \\ Y_{22} & \dots & Y_{J+1,2} \\ \vdots & \ddots & \vdots \\ Y_{2\tau_{0}} & \dots & Y_{J+1,\tau_{0}} \end{pmatrix}, W = \begin{pmatrix} w_{2} \\ w_{3} \\ \vdots \\ w_{J+1} \end{pmatrix}$$

Choosing Weights for Covariates

• We choose w_i so as to minimize $||X_1 - X_0W||$

Choosing Weights for Covariates

• We choose w_j so as to minimize $||X_1 - X_0W||$

But

- $||X_1 X_0W||$ is not one number
- it is a vector
- of as many numbers as you have Z and pre-treatment outcomes $Y_{t < T_0}$

Choosing Weights for Covariates

• We choose w_j so as to minimize $||X_1 - X_0W||$

But

- $||X_1 X_0W||$ is not one number
- it is a vector
- of as many numbers as you have Z and pre-treatment outcomes $Y_{t < T_0}$
- $\bullet \to$ final choice: how to weight to give to each difference in pre-treatment covariate or outcome so you can minimize

Choosing the Weights for Covariates

- We find donor pool weights *w_j* **conditional** on a decision about how much importance to give to each element of *X*
- Specifically, each element of X gets a weight v_k
- A final frontier of this estimation

$$Z_1 = 5, Z_0 = \begin{pmatrix} 0 & 5 \end{pmatrix}, Y_{1,t < T_0} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, Y_{0,t < T_0} = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}$$

$$Z_{1} = 5, Z_{0} = \begin{pmatrix} 0 & 5 \end{pmatrix}, Y_{1,t<\tau_{0}} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, Y_{0,t<\tau_{0}} = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}$$
$$X_{1} = \begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix}, X_{0} = \begin{pmatrix} 0 & 5 \\ 2 & 5 \\ 3 & 8 \end{pmatrix},$$

$$Z_{1} = 5, Z_{0} = \begin{pmatrix} 0 & 5 \end{pmatrix}, Y_{1,t < T_{0}} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, Y_{0,t < T_{0}} = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}$$
$$X_{1} = \begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix}, X_{0} = \begin{pmatrix} 0 & 5 \\ 2 & 5 \\ 3 & 8 \end{pmatrix}, W = \begin{pmatrix} w_{1} \\ w_{2} \end{pmatrix}$$

$$Z_{1} = 5, Z_{0} = \begin{pmatrix} 0 & 5 \end{pmatrix}, Y_{1,t} < \tau_{0} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, Y_{0,t} < \tau_{0} = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}$$
$$X_{1} = \begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix}, X_{0} = \begin{pmatrix} 0 & 5 \\ 2 & 5 \\ 3 & 8 \end{pmatrix}, W = \begin{pmatrix} w_{1} \\ w_{2} \end{pmatrix}$$
$$||X_{1} - X_{0}W|| = \begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 0 & 5 \\ 2 & 5 \\ 3 & 8 \end{pmatrix} \begin{pmatrix} w_{1} \\ w_{2} \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 0w_{1} + 5w_{2} \\ 2w_{1} + 5w_{2} \\ 3w_{1} + 8w_{2} \end{pmatrix} = \begin{pmatrix} 5 - (0w_{1} + 5w_{2}) \\ 2 - (2w_{1} + 5w_{2}) \\ 3 - (3w_{1} + 8w_{2}) \end{pmatrix}$$

- $||X_1 X_0W||$ is a vector, which means a list of numbers
- How do you minimize a vector?

- $||X_1 X_0W||$ is a vector, which means a list of numbers
- How do you minimize a vector? You don't
- We do know how to choose donor weights to minimize one number

And the Last Bit

- $||X_1 X_0W||$ is a vector, which means a list of numbers
- How do you minimize a vector? You don't
- We do know how to choose donor weights to minimize one number
- ullet ightarrow make the vector one number by adding up its parts

And the Last Bit

- $||X_1 X_0W||$ is a vector, which means a list of numbers
- How do you minimize a vector? You don't
- We do know how to choose donor weights to minimize one number
- ullet ightarrow make the vector one number by adding up its parts
- Have to decide how much we care about different parts of the diversion from the treated outcome to add them up
- The sum of all the parts of the vector is the mean squared error of the estimate
 - MSE = $||X_1 X_0W||v$, where v is yet another weighting matrix

How do you choose v?

A variety of options

- Give equal weight to all elements of X
- So that the pre-intervention difference in Y is minimized
- To minimize error in the final estimation (Abadie et al do this in another paper)
- Cross-validation in Germany paper:
 - find W for the first half of the pre-treatment era
 - choose v such that $||X_1 X_0W||v$ is minimized in the second half of the pre-treatment period
 - if there are multiple possible *W*, you can see which one gives the lowest MSPE in the second pre-treatment period

How do you choose v?

A variety of options

- Give equal weight to all elements of X
- So that the pre-intervention difference in Y is minimized
- To minimize error in the final estimation (Abadie et al do this in another paper)
- Cross-validation in Germany paper:
 - find W for the first half of the pre-treatment era
 - choose v such that $||X_1 X_0W||v$ is minimized in the second half of the pre-treatment period
 - if there are multiple possible *W*, you can see which one gives the lowest MSPE in the second pre-treatment period

Note that $||X_1 - X_0W||v$ is the Mean Squared Prediction Error: MSPE

Re-capping Assumptions

- No effect of treatment on the untreated
- The treated unit would have had the untreated outcome in the absence of treatment
- Treated observation is in the convex hull of the donor pool

The Necessity of a Convex Hull

- X_1 is in the convex hull of X_0
- In words: the treated outcome's matching variables are in the convex hull of all donor pool Y and pre-treatment Z

- X_1 is in the convex hull of X_0
- In words: the treated outcome's matching variables are in the convex hull of all donor pool Y and pre-treatment Z
- What is that?
 - In general, the convex hull of A is the "smallest convex set that contains A"

- X_1 is in the convex hull of X_0
- In words: the treated outcome's matching variables are in the convex hull of all donor pool Y and pre-treatment Z
- What is that?
 - In general, the convex hull of A is the "smallest convex set that contains A"
 - Think of a set of three points (*x*, *y*)
 - What is the shape of the convex hull of three points?

- X_1 is in the convex hull of X_0
- In words: the treated outcome's matching variables are in the convex hull of all donor pool Y and pre-treatment Z
- What is that?
 - In general, the convex hull of A is the "smallest convex set that contains A"
 - Think of a set of three points (*x*, *y*)
 - What is the shape of the convex hull of three points? triangle

- X_1 is in the convex hull of X_0
- In words: the treated outcome's matching variables are in the convex hull of all donor pool Y and pre-treatment Z
- What is that?
 - In general, the convex hull of A is the "smallest convex set that contains A"
 - Think of a set of three points (x, y)
 - What is the shape of the convex hull of three points? triangle
 - If you are inside the triangle, you are in the convex hull
 - If you are outside the triangle, you are outside the convex hull

Convex Hull Example

- Red dots are the set of points $x \in X$
- The red line is the outline of the convex hull
- Is (2,1) inside the convex hull?

- Red dots are the set of points $x \in X$
- The red line is the outline of the convex hull
- Is (2,1) inside the convex hull? yes

- Red dots are the set of points $x \in X$
- The red line is the outline of the convex hull
- Is (2,1) inside the convex hull? yes
- If (2, 1) is the treated point you can use a synthetic control

- Red dots are the set of points $x \in X$
- The red line is the outline of the convex hull
- Is (2,1) inside the convex hull? yes
- If (2, 1) is the treated point you can use a synthetic control
- Is (3,3) inside the convex hull?

- Red dots are the set of points $x \in X$
- The red line is the outline of the convex hull
- Is (2,1) inside the convex hull? yes
- If (2, 1) is the treated point you can use a synthetic control
- Is (3,3) inside the convex hull? no

- Red dots are the set of points $x \in X$
- The red line is the outline of the convex hull
- Is (2,1) inside the convex hull? yes
- If (2, 1) is the treated point you can use a synthetic control
- Is (3,3) inside the convex hull? no
- If (3,3) is the treated point you **cannot** use a synthetic control

Estimation 00000000000 Convex Hull

erence

Example 00000000000000

What Has a Convex Hull?

• Think of a treatment and observations where the donor pool would not form a convex hull.

Example 0000000000000

What Has a Convex Hull?

- Think of a treatment and observations where the donor pool would not form a convex hull.
 - Impact of an additional billion dollars on Bill Gates's charitable giving

What Has a Convex Hull?

- Think of a treatment and observations where the donor pool would not form a convex hull.
 - Impact of an additional billion dollars on Bill Gates's charitable giving
 - Impact of additional billionaires on building height in New York

What Has a Convex Hull?

- Think of a treatment and observations where the donor pool would not form a convex hull.
 - Impact of an additional billion dollars on Bill Gates's charitable giving
 - Impact of additional billionaires on building height in New York
- Sufficient condition for having donor pool observations in the convex hull
 - the "number of pre-intervention periods is large relative to the scale of the transitory shocks"

What Has a Convex Hull?

- Think of a treatment and observations where the donor pool would not form a convex hull.
 - Impact of an additional billion dollars on Bill Gates's charitable giving
 - Impact of additional billionaires on building height in New York
- Sufficient condition for having donor pool observations in the convex hull
 - the "number of pre-intervention periods is large relative to the scale of the transitory shocks"
- Assuming that the donor pool lies in the convex hull is equivalent to assuming

$$X_1 - \sum_{j=2}^{J+1} w_j X_0 \equiv 0$$

in words: pre-treatment outcome for treated observation can be re-created via a weighted average of untreated observations

• The convex hull assumption is sort of testable

 Admin
 Overview
 Set-up
 Goal
 Estimation
 Convex Hull

 000000
 00
 00000
 00
 0000000000
 0000

Inference

Example 00000000000000

Statistical Inference

- We always begin statistics with "descriptive statistics"
 - examples?

- We always begin statistics with "descriptive statistics"
 - examples? mean, median, standard deviation
 - these statistics are "properties of the observed data"

- We always begin statistics with "descriptive statistics"
 - examples? mean, median, standard deviation
 - these statistics are "properties of the observed data"
- But sometimes we want to know how these observed data relate to the larger population from which they are sampled
- We turn in this case to "inferential statistics"

Inference

- We always begin statistics with "descriptive statistics"
 - examples? mean, median, standard deviation
 - these statistics are "properties of the observed data"
- But sometimes we want to know how these observed data relate to the larger population from which they are sampled
- We turn in this case to "inferential statistics"
 - regression coefficient, which approximates parameter of interest
 - confidence interval

- We always begin statistics with "descriptive statistics"
 - examples? mean, median, standard deviation
 - these statistics are "properties of the observed data"
- But sometimes we want to know how these observed data relate to the larger population from which they are sampled
- We turn in this case to "inferential statistics"
 - regression coefficient, which approximates parameter of interest
 - confidence interval
- How do we make statistical inference in the case of synthetic control?

Thank you "statistical inference" in Wikipedia.

Convex Hull

Inference ○○●○○○○ Example 00000000000000

Statistical Interference in Synthetic Control

- A very open question
- Check back in 5 to 10 years

Statistical Interference in Synthetic Control

- A very open question
- Check back in 5 to 10 years
- But we have some interim things we can do

One Way to Evaluate Error in Synthetic Control

RMSPE: Root Mean Squared Prediction Error

$$\mathsf{RMSPE} = \left(\frac{1}{T_0} \sum_{t=1}^{T_0} \left(Y_{1t} - \sum_{j=2}^{J+1} w_j^* Y_{jt}\right)^2\right)^{1/2}$$

This equation in words

- for each period before the treatment, $t < T_0$
- find squared difference between treated outcome, Y_{1t} , and synthetic control, $\sum_{j=2}^{J+1} w_j^* Y_{jt}$
- add up for all pre-treatment years and take square root

- Is a bigger or smaller RMSPE a good sign?
- First, think pre-treatment

- Is a bigger or smaller RMSPE a good sign?
- First, think pre-treatment
 - smaller is better
 - a synthetic control a better match
- Then post-treatment

- Is a bigger or smaller RMSPE a good sign?
- First, think pre-treatment
 - smaller is better
 - a synthetic control a better match
- Then post-treatment
 - bigger RMSPE is evidence of larger impact of treatment
 - more deviation from synthetic control

- Is a bigger or smaller RMSPE a good sign?
- First, think pre-treatment
 - smaller is better
 - a synthetic control a better match
- Then post-treatment
 - bigger RMSPE is evidence of larger impact of treatment
 - more deviation from synthetic control
- Then a big value for post / pre treatment RMSPE may be useful

1. In time placebo

1 000 Set-up

Estima 00000 Convex Hull

Inference 00000●0 Example 00000000000000

Two More Inferential Methods

1. In time placebo

- Pretend the evaluation took place earlier, or some t < T₀
- Do synthetic control estimation
- Do we find results after the fake treatment?

nin Dooo Set-

ioal 0 0000

onvex Hull

Inference 00000000 Example 0000000000000

Two More Inferential Methods

- 1. In time placebo
 - Pretend the evaluation took place earlier, or some t < T₀
 - Do synthetic control estimation
 - Do we find results after the fake treatment?

- 2. In space placebo
 - Pretend that another observation is the treated one

nin

bet-up

Estimat 00000 Convex Hull

Inference 00000●0 Example 0000000000000

Two More Inferential Methods

- 1. In time placebo
 - Pretend the evaluation took place earlier, or some t < T₀
 - Do synthetic control estimation
 - Do we find results after the fake treatment?

- 2. In space placebo
 - Pretend that another observation is the treated one
 - Do the synthetic control
 - Is post-treatment RMSPE for treated obs bigger than for other obs?

dmin 000000 Set-

Goal 00 imation 000000000 Convex Hull

Inference

Example 0000000000000

In Space Placebo

FIGURE 5 Ratio of Postreunification RMSPE to Prereunification RMSPE: West Germany and Control Countries

West Germany				
Norway		8		
Greece		8		
Italy				
New Zealand				
United States				
Spain				
Australia				
Belgium				
Switzerland				
Austria				
United Kingdom				
Japan				
Netherlands				
France				
Denmark				
Portugal				
	L	1		_
		5	10	15
	Postperiod BMSPE / Prepariod BMSPE			

- Do synthetic control method for each country as if it were treated
- Find pre- and post-treatment RMSPE
- This is goodness of fit before what you want
- And badness of fit afterward what you see if there is an effect
- Chart reports this ratio
- West Germany is an outlier

California Tobacco Tax Example

Example •000000000000

Tobacco tax in California

- In 1998 CA passed Prop 99: tobacco tax increase + funding for tobacco control programs
- Did Prop. 99 decrease smoking?
- What endogeneity issues could be concerning?

Tobacco tax in California

- In 1998 CA passed Prop 99: tobacco tax increase + funding for tobacco control programs
- Did Prop. 99 decrease smoking?
- What endogeneity issues could be concerning?
- Use state level data on smoking and state characteristics
- Who is in the synthetic control?

Tobacco tax in California

- In 1998 CA passed Prop 99: tobacco tax increase + funding for tobacco control programs
- Did Prop. 99 decrease smoking?
- What endogeneity issues could be concerning?
- Use state level data on smoking and state characteristics
- Who is in the synthetic control?
- Utah (0.33), Nevada (0.23), Montana (0.22), Colorado (0.16), CT (0.07)

Abadie, Diamond and Hainmueller, 2010

Things You Should Expect in a Synthetic Control Paper

- 1. Comparison without synthetic control
- 2. Comparison with synthetic control
- 3. Covariates with and without synthetic control
- 4. And sometimes even covariates on which we don't match
- 5. Some kind of inference

Prop. 99: Comparison without Synthetic Control

Example

Prop. 99: Comparison With Synthetic Control

Example

dmin

S

Estimat 00000 Convex Hull

Inference 0000000 Example 0000000000000

Prop. 99: Both Comparisons

Prop. 99: Covariates With Synthetic Control

Set-up

Table 1. Cigarette sales predictor means

Variables	California		Average of
	Real	Synthetic	38 control states
Ln(GDP per capita)	10.08	9.86	9.86
Percent aged 15-24	17.40	17.40	17.29
Retail price	89.42	89.41	87.27
Beer consumption per capita	24.28	24.20	23.75
Cigarette sales per capita 1988	90.10	91.62	114.20
Cigarette sales per capita 1980	120.20	120.43	136.58
Cigarette sales per capita 1975	127.10	126.99	132.81

Example

Prop. 99: Covariates With Synthetic Control

Table 1. Cigarette sales predictor means

Variables	California		Average of
	Real	Synthetic	38 control states
Ln(GDP per capita)	10.08	9.86	9.86
Percent aged 15-24	17.40	17.40	17.29
Retail price	89.42	89.41	87.27
Beer consumption per capita	24.28	24.20	23.75
Cigarette sales per capita 1988	90.10	91.62	114.20
Cigarette sales per capita 1980	120.20	120.43	136.58
Cigarette sales per capita 1975	127.10	126.99	132.81

These are targeted covariates - we can also compare untargeted covariates

Example

Admin

S

Set-up 00000

Estir 000 Convex Hull

Inference 0000000 Example

Prop. 99: Starting Inference

Admin

ip 00 Estima 0000 Convex Hull

Inference 000000 Example

Prop. 99: Starting Inference

Set-up 00000 ioal

timation

Convex Hull

Infere

Example 000000000000000

Prop. 99: Inference

- Repeat analysis for California
- But with each donor pool state as "treated"
- One gray line for each placebo state
- If Prop. 99 has a real effect, what should the other gray lines look like?

Left panel has all states; right panel limits to 34 states with pre-treatment $\mathsf{RMPSE} < 20$ times CA's

Example

Prop. 99: Possibly Stronger Inference

Left panel has all states; right panel limits to 34 states with pre-treatment RMPSE < 20 times CA's

Set-up 00000 Est 00 Convex Hull

Inference 0000000 Example 000000000000000

Prop. 99: Alternative Inference

- Divide squared treatment-control difference after treatment by
- squared treatment-control difference before treatment
- If Prop. 99 has a real effect, should this be big or small?

Overview 00 Set-up 00000 Esti

Convex Hull

nference 2000000 Example

Prop. 99: Alternative Inference

- Divide squared treatment-control difference after treatment by
- squared treatment-control difference before treatment
- If Prop. 99 has a real effect, should this be big or small?

$$\mathsf{MSPE}_{j=s} = \frac{\frac{1}{T_0} \sum_{T=0}^{T_0} (Y_{j=s,t} - Y_{j\neq s,t})^2}{\frac{1}{(T - (T_0 + 1))} \sum_{T=T_0 + 1}^{T} (Y_{j=s,t} - Y_{j\neq s,t})^2}$$

Prop. 99: Alternative Inference

- Divide squared treatment-control difference after treatment by
- squared treatment-control difference before treatment
- If Prop. 99 has a real effect, should this be big or small?

$$\mathsf{MSPE}_{j=s} = \frac{\frac{1}{T_0} \sum_{T=0}^{T_0} (Y_{j=s,t} - Y_{j\neq s,t})^2}{\frac{1}{(T - (T_0 + 1))} \sum_{T=T_0 + 1}^{T} (Y_{j=s,t} - Y_{j\neq s,t})^2}$$

No synthetic control

Prop. 99: Comparison

No synthetic control

With synthetic control

Example

- Lecture 12: In-class workshop and how to explain a causal strategy
- Lecture 13: Presentations
- Lecture 14: Presentations