Admin 000 Organization 00

Ex. 1

Ex. 2

Workshop 000

Lecture 12: How to Present a Causal Strategy

April 9, 2025

Organizati 00

Workshop 000

Course Administration

- 1. First half of class is lecture
- 2. Second half is workshop
- 3. Paper is due April 28 by 5 pm
- 4. Instructions for presentations posted

<mark>Admin</mark> ●○○ Organizat

Ex. 2

Workshop 000

Course Administration

- 1. First half of class is lecture
- 2. Second half is workshop
- 3. Paper is due April 28 by 5 pm
- 4. Instructions for presentations posted

- 5. Next week: presentations
 - presenters, post slides by 4 pm
 - presentation instructions posted
- 6. Please come see me about your replication paper
- 7. Any other issues?

Paper and Presentation: Make Sure Your Words Are Your Own

- What you have to contribute as a scholar is your own words
- Don't use others' words!

Paper and Presentation: Make Sure Your Words Are Your Own

- What you have to contribute as a scholar is your own words
- Don't use others' words!
 - if you want a strict rule, don't use more than three words without quotation
 - or, don't write a sentence while looking at the source document
- It's easy to use others' words

Paper and Presentation: Make Sure Your Words Are Your Own

- What you have to contribute as a scholar is your own words
- Don't use others' words!
 - if you want a strict rule, don't use more than three words without quotation
 - or, don't write a sentence while looking at the source document
- It's easy to use others' words
- I will sadly report you to the university
- Please let's avoid

0.00

Organization 00

Ex. 2

Workshop 000

Order of Discussion

- 1. Goal
- 2. Organization
- 3. Examples
 - Containerization
 - DC civil disturbance

Admin 000 Goal ●○ Organization 00 Ex. 1

Workshop 000

Goal

Workshop 000

- Convince readers of the validity/plausibility of your causal strategy
 - Explain to readers why your strategy is an improvement over a basic regression
 - Illuminate what the variation you use is and where it comes from

Admin 000 Organization

Ex. 2

Workshop 000

Organization

7 / 49

Workshop 000

Leading the Horse to Water and Making it Drink

Leading the Horse to Water and Making it Drink

- 1. Explain the causal question
 - Pose the "naive" OLS estimate
 - · Explain the problems with the naive estimate, ideally with examples
- 2. Propose an alternative superior method to identify causal impact
 - Explain underlying assumptions
 - Explain how your solution satisfies assumptions

Admin 000 Organization 00 Workshop 000

Containerization

1	ntroduction	Containerization	Framework	Data	Methods	Results	Conclusion
						000000000000000000000000000000000000000	0

Empirical Strategy

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Does containerization impact local economic activity?

 $\Delta \ln(y_{i,t}) = eta_0 + eta_1 \Delta C_{i,t} + eta_2 X_{i,1950} + \Delta \epsilon_{i,t}$,

 Δ denotes long-run differences: $\Delta \ln(y_{i,t}) = \ln(y_{i,t}) - \ln(y_{i,1950})$

- $\Delta \ln(y_{i,t}) =$ change in log population
- $\Delta C_{i,t}$ = change in presence of nearby container port
- $X_{i,1950}$ = baseline covariates

 $\beta_1>0$ when containerization is associated with growth relative to non-adopters

Introduction

Methods

Results Conclusio

Parameterizing Distance to Containerized Port

Darkest blue \equiv counties 0 to 100 km from a container port Lightest blue \equiv counties 200 to 300 km from a container port

 $\Delta \ln(y_{i,t}) = \beta_0 + \beta_1 \Delta C_{i,t} + \beta_2 X_{i,1950} + \Delta \epsilon_{i,t}$

- Nets out time-invariant city characteristics: climate, geography, long-run industry mix
- Allows for differential trends in population growth by baseline covariates
 - Region
 - Distance to the ocean
 - Number of ports in 1953 by 100 km distance bins
 - Total value of int. trade in 1955 by 100 km distance bins
 - Log population in 1920, 1930, and 1940
 - Manufacturing share of employment in 1956

Introduction	Containerization	Framework	Data	Methods	Results	Conclusion
					00000000 00000	0000
First	Differencing	g Comper	nsates fo	or Level	Differer	nces

	Near C. Port	Not Near C. Port
Population, 1950	31,571	14,472
Payroll/Employee, March 1956	740	640
Manuf. Shr. of Employment	0.42	0.26
Counties	1,335	1,668

- Time-varying feature correlated with containerization that causes population growth
 - for example, counties turn to containerization as a solution for slow growth
- \rightarrow instrument

Instrument for containerization with proximity to 1953 very deep port

$$\Delta C_{i,t} = \alpha_0 + \alpha_1 Z_i + \alpha_2 X_{i,1950} + \eta_i$$

Key identifying assumptions

- 1. Strong relationship between containerization and initial depth of port
- 2. Proximity to very deep port in 1953 affects growth only through its impact on containerization

Methods

Results Conclusion

Assumption 1: Counties Near Deep Ports in 1953 More Likely to Be Near Container Ports in 2010

Results Conclusio

Assumption 2: Proximity to Very Deep Ports in 1953 Impacts Growth Only Through Containerization

Reasonable Objection: Deep Ports Were Always Valuable!

▲□▶▲@▶▲≧▶▲≧▶ 差 のへで

Assumption 2: Proximity to Very Deep Ports in 1953 Impacts Growth Only Through Containerization

Methods

Reasonable Objection: Deep Ports Were Always Valuable!

- Port depth mattered to growth pre-containerization
- Yes: but ships' drafts weren't very deep
- Post-containerization, ships sit deeper in the water
- And require deeper ports
- Therefore, instrument with being "very" deep in 1953
- Historical sources regard 30 feet as the maximum useful depth
- $Z \equiv 1$ {county near port > 30 feet deep in 1953}

Assumption 2: Proximity to Very Deep Ports in 1953 Impacts Growth Only Through Containerization

Methods

Reasonable Objection: Deep Ports Were Always Valuable!

- Port depth mattered to growth pre-containerization
- Yes: but ships' drafts weren't very deep
- Post-containerization, ships sit deeper in the water
- And require deeper ports
- Therefore, instrument with being "very" deep in 1953
- Historical sources regard 30 feet as the maximum useful depth
- $Z \equiv 1$ {county near port > 30 feet deep in 1953}

Assumption 2, restated: Proximity to extreme depth poses no particular advantage before advent of containerization, conditional on covariates

Container Ships Much Larger Than Predecessors

WWII technology

Source: Rodgrigue, 2015.

Container Ships Much Larger Than Predecessors

WWII technology

134x17x9

First container ships, 1956 to 1970s

Source: Rodgrigue, 2015.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Container Ships Much Larger Than Predecessors

WWII technology

134x17x9

First container ships, 1956 to 1970s

Today, Post-Panamax

Source: Rodgrigue, 2015.

And Another Piece of Evidence We Came Up with Later

- impact of depth on population change
- dep var is change in population 1910 to year on x axis
- dot is regression coefficient on depth
- what role does this play in the explanation?

Admin 000 Organiza 00

 Workshop 000

Evolving Consequences of DC's 1968 Civil Disturbance

Estimating Impact of Destruction

Unconditional Impact of Destruction is Large

Isolate the Impact of Destruction

Isolate the Impact of Destruction

Within block comparison of destroyed and undestroyed lots

Long-Run Trajectory and Destruction

$$Y_{l,b,t} = \beta_0 + \beta_{1,t} D_l * \theta_t + X_l * \theta_t + \theta_t * \theta_b + \beta_2 D_l + \epsilon_{l,b,t}$$

• $Y_{l,b,t}$

- presence of a structure
- value of improvements per sq ft
- land value per square foot
- $D_l \in \{0,1\}$, 1 is totally destroyed
- $t \in \{1960, 1967, 1970, 1971, 1972, 1979, 1990, 2000, 2010, 2019\}$

- θ_t , time fixed effects
- θ_b , block fixed effects
- Coefficient of interest is $\beta_{1,t}$
- $\theta_b * \theta_t \rightarrow$ evolution relative to same-block lots in same year

1. Destruction is random conditional on block

1. Destruction is random conditional on block

1. Destruction is random conditional on block

 conditional on block fixed effects, only stone material predicts destruction • characteristics

2. Absent treatment, destroyed properties would have no differential trajectory post-treatment

1. Destruction is random conditional on block

 conditional on block fixed effects, only stone material predicts destruction • characteristics

- 2. Absent treatment, destroyed properties would have no differential trajectory post-treatment
 - destroyed and other properties have similar pre-treatment trends pre-trend

Assess Whether 1967 Characteristics Correlated with Destruction

- $D_l = \alpha_0 + \alpha_1 \log(\text{land}/\text{sqft})_l + \alpha_2 \log(\text{imprvmt}/\text{sqft})_l + \alpha_5 \text{material}_l$
 - + $\alpha_3 \mathbf{use}_l + \alpha_4 \mathbf{quality}_l$
 - + α_6 black-owned biz $_l + \theta_b + \epsilon$

Assess Whether 1967 Characteristics Correlated with Destruction

- $D_l = \alpha_0 + \alpha_1 \log(\text{land}/\text{sqft})_l + \alpha_2 \log(\text{imprvmt}/\text{sqft})_l + \alpha_5 \text{material}_l$
 - + $\alpha_3 \mathbf{use}_l + \alpha_4 \mathbf{quality}_l$
 - + α_6 black-owned biz $_l + \theta_b + \epsilon$

Material

- stone or concrete
- wood frame
- other non-brick

- Use
 - commercial
 - residential
 - store
 - other

Quality

- ranked 1 to 10
- $\bullet\,>\,5$ in one category

Assess Whether 1967 Characteristics Correlated with Destruction

- $D_l = \alpha_0 + \alpha_1 \log(\text{land}/\text{sqft})_l + \alpha_2 \log(\text{imprvmt}/\text{sqft})_l + \alpha_5 \text{material}_l$
 - + $\alpha_3 \mathbf{use}_l + \alpha_4 \mathbf{quality}_l$
 - + α_6 black-owned biz $_l + \theta_b + \epsilon$

Material

- stone or concrete
- wood frame
- other non-brick

- Use
 - commercial
 - residential
 - store
 - other

- Quality
 - ranked 1 to 10
 - $\bullet\,>\,5$ in one category

If destruction is random, conditional on block (θ_b), we expect $\alpha = 0$

	1967 Lot Means				
	Totally destroyed	Not totally destroyed	p-value, H_0 : diff = 0	Regre DV is totall	ssion, y destroyed
	(1)	(2)	(3)	(4)	(5)
Type of building, commercial use omitted					
Residential	0.04	0.17	0.00	0.056	-0.033
Store	0.96	0.76	0.00	0.268***	0.085
Other	0.00	0.01	0.17	-0.038	0.129
Material of construction, brick omitted				(0.050)	(0.123)
Stone or concrete	0.00	0.01	0.14	-0.029	-0.272*
Wood frame	0.02	0.02	0.72	0.164	0.057
Other, non-brick	0.01	0.01	0.54	0.046	-0.126
Site, Black-owned bus.	0.1	0.20	0.00	-0.124***	-0.046
Lot value, Construction quality, depreciation Block fixed effects	on			(0.031) X	(0.020) X
Observations R-squared	175	646		821 0.092	821 0.394

	1967 Lot Means				
	Totally destroyed	Not totally destroyed	p-value, H_0 : diff = 0	Regre DV is total	ssion, y destroyed
	(1)	(2)	(3)	(4)	(5)
Type of building, commercial use omitted	1				
Residential	0.04	0.17	0.00	0.056 (0.04)	-0.033 (0.066)
Store	0.96	0.76	0.00	0.268***	0.085
Other	0.00	0.01	0.17		0.129
Material of construction, brick omitted					(0.125)
Stone or concrete	0.00	0.01	0.14		-0.272* (0.142)
Wood frame	0.02	0.02	0.72		0.057
Other, non-brick	0.01	0.01	0.54		-0.126
Site, Black-owned bus.	0.1	0.20	0.00	-0.124***	-0.046
Lot value, Construction quality, depreciat	ion			(0.031) ×	(0.028) x
Observations Required	175	646			821 0.304

	1967 Lot Means				
	Totally destroyed	Not totally destroyed	p-value, H_0 : diff = 0	Regre DV is total	ession, ly destroyed
	(1)	(2)	(3)	(4)	(5)
Type of building, commercial use omitted					
Residential	0.04	0.17	0.00	0.056	-0.033 (0.066)
Store	0.96	0.76	0.00	0.268***	
Other	0.00	0.01	0.17	-0.038	
Material of construction, brick omitted				()	
Stone or concrete	0.00	0.01	0.14	-0.029	-0.272* (0.142)
Wood frame	0.02	0.02	0.72	0.164 (0.103)	
Other, non-brick	0.01	0.01	0.54	0.046	
Site, Black-owned bus.	0.1	0.20	0.00	-0.124***	
Lot value, Construction quality, depreciation Block fixed effects	1			×	x x
Observations R-squared	175	646		821 0.092	821 0.394

Without block fixed effects, destroyed properties

- more likely to have higher land value per square foot
- more likely to have retail use
- less likely to have a Black owner

Without block fixed effects, destroyed properties

- more likely to have higher land value per square foot
- more likely to have retail use
- less likely to have a Black owner

Conditional on block fixed effects

- Only one significant difference
- 1{material is stone or concrete} aka banks

Without block fixed effects, destroyed properties

- more likely to have higher land value per square foot
- more likely to have retail use
- less likely to have a Black owner

Conditional on block fixed effects

- Only one significant difference
- 1{material is stone or concrete} aka banks

Therefore

- control for interaction of year and stone building
- also control for interaction of year and retail
- robustness tests omitting these properties

Testing for Pre-Destruction Differences

Sample is 1960 and 1967 lots.

Outcome variable	log(improvements assessment/sqft)	log(land assessment/sqft)			
Sample	Lots with improve- ments	All lots	Lots with im- provements		
	(1)	(2)	(3)		
$1967 \times \text{destroyed}$	0.0342 (0.0721)	0.00947 (0.0414)	0.0227 (0.0409)		
Year-Block FE	X	X	X		
Destroyed FE	×	Х	Х		
Observations R-squared	1,770 0.329	1,898 0.779	1,770 0.783		

Characterizing the Entire Path of Development with Intra-Block Analysis

$$\begin{split} Y_{l,b,t} &= \beta_0 + \frac{\beta_{1,t}}{D_l} N_l * \theta_t + \beta_2 D_l \\ &+ \theta_t * \theta_b + \beta_3 1 \{\text{retail}\}_l + \beta_4 1 \{\text{stone}\}_l + \beta_5 1 \{\text{Black biz}\}_l \\ &+ \theta_t * 1 \{\text{retail}\}_l + \theta_t * 1 \{\text{stone}\}_l + \theta_t * 1 \{\text{Black biz}\}_l + e_{l,b,t} \end{split}$$

Measureable outcomes, $Y_{l,b,t}$

- Presence of structure
- Value of improvements per square foot
- Falsification: land value per square foot

Next slides report $\beta_{1,t}$

Structure Presence Requires at Least 30 Years to Converge

Dependent Variable is Absence of Any Structure

probability of no structure

Admin 000 Organization 00

Workshop ●○○

Workshop

47 / 49

Admin 000 Organizati 00

Workshop ○●○

Workshop

- Go find your group
- Talk amongst yourselves
- Stay as long or as little as you'd like
- I'll stay till 8

- Focus on issues of causality in your replication!
- Lecture 13: Presentations
- Lecture 14: Presentations
- Done!

Workshop