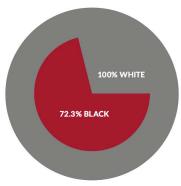

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lecture 1: Welcome to Data Visualization Using R

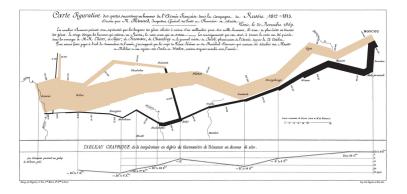
January 22, 2018


Take This Class So You Won't Make This Graphic

From Trachtenberg's most recent magazine issue.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Or This One



EQUALITY INDEX OF BLACK AMERICA, 2016-2017

	REVISED 2016	2017		
EQUALITY INDEX	72.2%	72.3%		
Economics	56.2%	56.5%		
Health	79.4%	80.0%		
Education	77.4%	78.2%		
Social Justice	60.9%	57.4%		
Civic Engagement	100.6%	100.6%		

"U.S. Metros Ranked on Black-White Income Inequality," Next City, May 2,

Instead, Aspire to This

See Tufte for citation.

R

Overview

Course Administration

Tufte, Grandfather of Visualization

Getting Started with R

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Course Administration

1. Syllabus

- sign up for good/bad/ugly
- 2. Questions/issues with readings?
- 3. Make sure you're signed up for Piazza
- 4. Introductions
 - name and degree
 - why this course?
 - what you do now
 - what you'd like to do when you're done

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

R

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

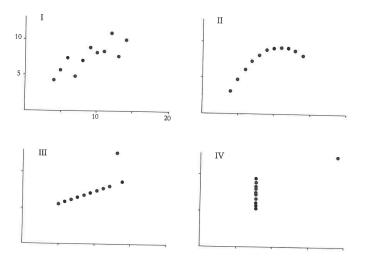
Tufte

Edward Tufte

- A quantitative political scientist
- Writing in the mid-1970s
- Became interested in visualization by working with pioneering statistician John Tukey
- Remember that this is the pre-Excel era, in which data graphics are difficult to make

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

An Argument for Better Visualization


Because good visualizations tell the most compelling story

	I	1	I]	II]	V
х	Y	х	Y	x	Y	Х	Y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

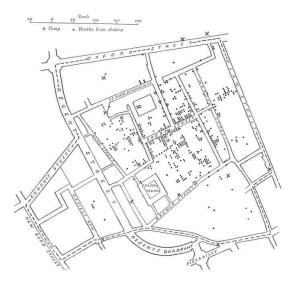
An Argument for Better Visualization

Because good visualizations tell the most compelling story

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Tufte's Types of Graphs

- 1. Data maps
- 2. Time series
- 3. Space-time narrative designs
- 4. Relational graphs the holy grail

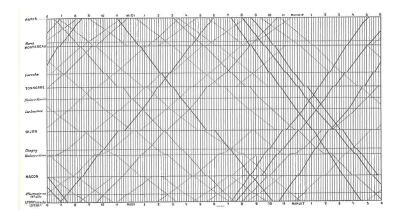

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Data Maps

- Describe the location of numbers
- This can be revealing or obfuscating
- We will make these in this class

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Data Map Example


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Time Series

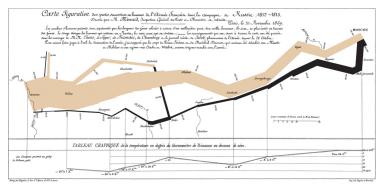
- Time on the horizontal axis
- Something else on the vertical axis
- One of the first types of data graphics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Train, Paris to Lyon

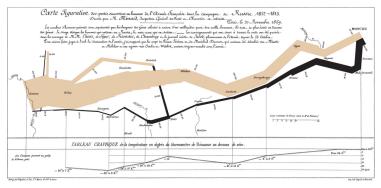
・ロト ・聞ト ・ヨト ・ヨト

ж


See Tufte for citation.

Space-Time Narrative Designs

- Move over space and time at the same time
- A time series plus


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Space-Time Narrative Example

Which dimensions?

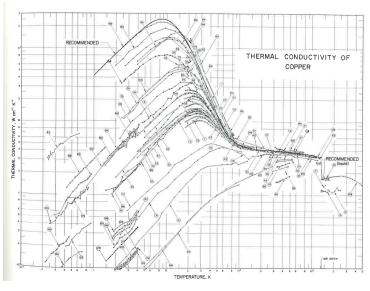
Space-Time Narrative Example

Which dimensions?

- 1. army size
- 2. army location, N/S
- 3. army location, E/W

4. direction of movement

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

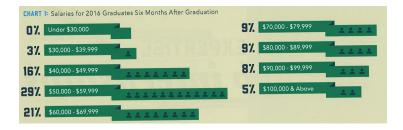

- 5. temperature
- 6. by date

Relational Graphics

- One variable on the vertical, another on the horizontal
- A conceptual advance in graphics
- A more sophisticated way of thinking

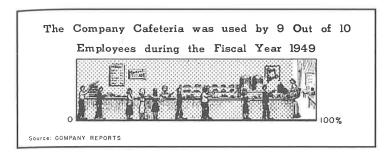
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Relational Graphics Example


▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Tufte's Main Causes of Distortion in Graphics

1. Data are bad


- should be per capita and are not
- data are not consistent over time
- don't adjust for inflation
- 2. Graphics are rotten
 - size doesn't match the numbers
 - colors and styles are misleading
 - graphic fails to highlight key point
- 3. Graphics are irrelevant
 - too much extraneous stuff

Size and Number Don't Match

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A Continuing Problem: Graphics are Irrelevant

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Tufte's Six Rules of Graphic Integrity, 1 to 3 of 6

- 1. The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities represented.
- Clear, detailed, and thorough labeling should be used to defeat graphical distortion and ambiguity. Write out explanations of the data on the graphic itself. Label important events in the data.
- 3. Show data variation, not design variation.

Tufte's Six Rules of Graphic Integrity, 4 to 6

- In time-series displays of money, deflated and standardized units of monetary measurement are nearly always better than nominal units.
- 5. The number of information-carrying (variable) dimensions depicted should not exceed the number of dimensions in the data.
- 6. Graphics must not quote data out of context.

Admin

R

What is R?

- A programming language
- Developed by statisticians from New Zealand
- Open source, and therefore free
- Based on "S," developed by Bell Labs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Today's Goals

- When you leave today, you will be able to
 - run a R script
 - create a R Markdown file
- Download the R tutorial for this class now.
- You'll continue work at home on your own and turn in a problem set next lecture

Next Lecture

- Turn in PS 1
- Read Few Chapters 5 and 7
- R Graphics Cookbook, Chapters 2 and 15 see readings list for specific pages
- I'll hand out instructions for class project

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ