Lecture 4:
 What Graphs Do and Making Bar Charts

February 12, 2018

Overview

Course Administration

Good, Bad and Ugly

Few, Chapters 6

Bar Charts in R

Course Administration

1. Will return proposal comments during programming
2. Rosa has graded problem sets - thank you
3. Grades posted?
4. Missing anything from me?

Next Week's Good Bad and Ugly

Monday by 9 am. Earlier is ok.

- Adam Brooks
- Gulfishan Khadim

This Week's Good Bad and Ugly

- Kelsey Wilson
- Nathan Rupp
- Haley Dunn

Kelsey's Example

Figure 1: Most Prevalent Types of ECD Programs Administered by Counties

- Food/nutrition assistanctPre-kindergarten progran

Child-care servicesPrenatal screeningOther None

Note: Figure 1 represents the percent of respondents who indicated that counties in their state provide that type of ECD program

Nathan's Example

Figure 4.1 $\triangleright \quad$ Trends in energy intensity and GDP per capita in selected countries, 1980-2011

Note: GDP is measured at market exchange rates (MER) in year-2012 dollars.

Haley's Example

Globally, assessments vary on whether life is better or worse than $\mathbf{5 0}$ years ago
Life in our country today is _than itwas jo years ago
for people îlie me

	Worsc	Better
Vietnem		B\%\%
India	17	69
South korea	4781	681
Japan	[L5	651
Germany	20	
Turkey	21	66
Nethe rlards	19	C4
Swedon	$\underline{23}$	64
Poland	27	62
Spein	28	C01
Cenasa	$\mathrm{F}_{5 \times 24}$	[561
Isreel	$\underline{47}$	152
Indonesia	$\underline{18}$	51
Russia	28.	50
Australia	\%38	50
South Africa	36	47
Chile	138	[4.5
UK	H51	- 45
Philppincs	19	49
Tanzanis	[35	48
Senegel	45	12
Nigeria	$5{ }_{54}$	411
Kenva	W5	\|361
us.	$\underline{41}$	${ }^{37}$
Ghana	47	136
Brazil	49	35
France	46	1331
Hungry	539	3)
Lebanon	[84	301
Peru	E0	291
Greace	53	
Colombia	E4	7
Tunisis	[6a	$7{ }^{17}$
traly	[min	
Argertina	-51	
Jordan	- 0^{1}	
Mexico	$6{ }^{63}$	
Venezuela	$\underline{10}$	
global median	43 43	
Note: 'Aboutthesame' responses notshown. Source: Spring 2017 Glohe1 Attitudes Survey. Q3 U.S. sunvey conducted June 27-July 9, 2017.		
PEW RESEAROH Center		

Few:
Fundamental Variations of Graphs

Today

1. Types of graphs
2. What you can communicate, by graph

1. Types of Graphs

- Points
- Lines
- Bars
- Boxes
- Shapes with varying 2-D areas
- Lines

Why to Avoid 2-D Sizes

Graph Design Solutions

As we go through these, we'll discuss policy examples

1. Nominal Comparisons
2. Time Series Designs
3. Ranking Designs
4. Part-to-Whole Designs
5. Deviation Designs
6. Distribution Designs
7. Correlation Designs
8. Geospatial Designs

1. Nominal Comparisons

- Use bars: horizontal or vertical
- Or points to compare values
- Possible for not "too many" values

For Example

2. Time Series Designs

- Present data over time: months, days, hours, years, decades,
- Almost required to use horizontal axis left to right for time
- And usually a connected line, with or without dots
- If time intervals are not consistent, then maybe dots or bars
- Lines indicate connection between observations, so watch out if you're using them in another context

For Example

Market summary > KB Home
NYSE: KBH - Feb 9, 4:02 PM EST
29.42 usd 0.00 (0.00%)

1 day	5 day	1 month	3 month	1 year	5 year	\max

3. Ranking Designs

- Like nominal, but ranked
- So use a bar chart
- And sort by value
- Put the item you want to call attention to at top or left

For Example

Attendance at different types of cultural event, Britain 1999-2000

Source: mpwstatistics.gov.uk

Courtesy of this site

4. Part-to-Whole Designs

- Comparison of shares
- Use simple bar
- Use stacked bar only when you want to compare across categories
- So use a bar chart
- And sort by value
- Put the item you want to call attention to at top or left

For Example

Courtesy of this site

5. Deviation Designs

- Highlight differences across types
- Paired bars
- Doesn't work too well with too many comparison categories
- Use stacked bar only when you want to compare across categories
- More sophisticated (not in Few): scatterplot and compare to 45 degree line

For Example

6. Distribution Designs

- Distributions can be continuous or by bin
- And you want to display one or many
- Use a bar chart
- Or a line chart
- Or a box plot - not too keen on these

For Example

Strip Plot - Single Group with Binned Data

Courtesy of this site

7. Correlation Designs

- Scatter chart
- Or scatter and trend line
- You can enhance scatter with color and weight variations
- Too many variations are not comprehensible
- No pic as you know this one

8. Geospatial Designs

- Map with
- Color fills
- Lines
- Much more on this later in the course

Bar Charts in R

Today's Goals

- A few non-graph commands
- ifelse
- data.frame, c
- For graphing, via ggplot
- geom_bar()
- geom_text(), geom_label()
- theme()

A Basic Programming Command: ifelse

data\$var <- ifelse(test_expression, [outcome if true], [outcome if false])

- var
- Outcome is a variable in the dataframe data
- Or something to do, instead of a variable
- test_expression
- an expression that is evaluated, e.g. $x>y$?, $a=b$?
- After evaluation
- if $x>y$, then you get the outcome if true - the second element
- if $X<y$, then you get the outcome if false - the third element
- you can nest another ifelse in the third one

Get Started and Make Your Own Dataframe: data.frame

dfname <- data.frame (col1 =, col2 =, ...)

- data.frame creates a dataframe called dfname
- write column as name = c("e1", "e2", ... "en")

Make a dataframe

```
newframe <- data.frame(fruit = c("apples", "bananas",
    "pomegranates"),
    price.per.lb = c("2.49", "0.79",
        "6"),
    junk = rep(1,
    length(c("apples",
    "bananas",
    "pomegranates")\
newframe
```

\#\#	fruit	price.per.lb	junk
\#\#	1	apples	2.49
\#\#	2	bananas	0.79
\#\#	3 pomegranates	6	1

Meryl's Example from Last Class

Runs Across the Border

A Dataframe from Last Class's Bad Graph

\# load north korean data
nkd <- data.frame (year = c("2000", "2001", "2002", "2003", "2004", "2005", "2006", "2007", "2008", "2009", "2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017"), defectors = c("0", "0", "1", "0", "0",
"0", "0", "0", "2", "0",
"1", "0", "3", "0", "0",
"1", "1", "4"))
nkd

\#\#	year	defectors
\#\#	1	2000
\#\# 2	2001	0
\#\# 3	2002	0
\#\# 4	2003	1
\#\# 5	2004	0

And on to ggplot

For today we're exploring

- geom_bar
- geom_text
- theme

Making a Bar Chart

```
# make a bar chart
library(ggplot2)
ggplot(nkd, aes(x=defectors)) + geom_bar() +
    labs(x = "annual number of defectors",
    y="number of years")
```

- call the ggplot library
- a similar first part to last lecture:
- x axis is determined by quantity of defectors
- tell R we want a bar chart with geom_bar
- default is to count the total number of observations by type (defectors)
- labs() makes the graph comprehensible

What It Looks Like

annual number of defectors

Other Options for geom_bar()

- if you want R to use the value in the dataframe, rather than counting observations, use geom_bar(stat="identity")
- you can control aesthetics within the bar via geom_bar(aes(fill= [something])), useful for stacked graphs
- you can weight the totals
- zillions more are available

geom_text() to Put Things on Your Chart

- puts variable value (maybe a fruit name) where you say based on the value of another variable
- very powerful: need to set up data the right way to use this power

geom_text() Example

Adding text to the chart with geom_text, telling R that the mapping for labels is divisions\$div. name.

```
ggplot(data = divisions, aes(x = division, y=ppl.by.cnty))
    geom_bar(stat = "identity") +
    ggtitle("counties by division using summarized data") +
    coord_flip() +
    labs(x="", y="people per county") +
    geom_text(mapping = aes(label=div.name))
```


What This Looks Like

counties by division using summarized data

Fixing the Previous

```
# make labels legible
divisions$nada <- c(rep(0, length(divisions$div.name)))
ggplot(data = divisions, aes(x = division,
                                    y=ppl.by.cnty)) +
geom_bar(stat = "identity") +
ggtitle("counties per capita by division
    using summarized data") +
coord_flip() +
labs(x="", y="people per county") +
geom_text(mapping = aes(y=nada, label=div.name),
    hjust = 0)
```

－make a new variable that tells R where to put the name

How Does it Look?

counties per capita by division using summarized data

ggplot's theme Commands

- a theme is a set of commands that standardize the look of the graph
- ggplot has a built-in default
- you can choose another default
- or modify the theme
- we'll focus on the latter

Modifying the Default Theme

- there are >60 different parts of the default theme, including
- axis.ticks.x()
- legend.title()
- legend.box.margin()
- see them all here
- in this class we mostly get rid of parts by adding the below to the ggplot command
- theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.ticks.y=element_blank())

Try Today's Tutorial

- Pay attention to the output of each bit
- Go forth!

Next Lecture

- Turn in PS 4
- Read Few Chapter 6
- R Graphics Cookbook, Chapter 4
- Next policy brief deadline: April 2 for draft

