
Lecture 7 Tutorial: Maps 1 of 3
Leah Brooks

March 8, 2018

A. Agenda for Today

Our goals today are two-fold. We will gain some programming experience

• loops
• merging
• string functions

We will also learn a lot about making maps in R. We will do with by using plot() from Base R, and also a
very new variant of ggplot which allows for the simple plotting of spatial objects, based on a package called
sf.

B. Packages

This class requires many new packages. Right now, you should install

• rgdal
• raster
• sp
• sf
• devtools
• digest
• scales
• tibble

But that’s not it. We are using the new geom_sf() command from ggplot. It’s so new, it’s not yet available in
standard packages from CRAN (Comprehensive R Action Network). Instead, we have to load it from github,
which is website for all kinds of programming stuff. To do this, you’ll need to do run the code below. R may
ask you about installing a .exe file or files, and you should say yes. R may also ask you about restarting and
you should say yes.
library(devtools)
devtools::install_github("tidyverse/ggplot2")

Finally, you also need to install the devtools version of the sf package. To do this, try
devtools::install_github("r-spatial/sf")

If you’ve successfully installed all those packages, you’re ready to go.

C. Load a first shapefile

We are going to load the shapefile that corresponds with the county data that we’ve been using. We read
shapefiles differently than we read dataframes. Below I use the writeOGR command to load a shapefile (later
in this tutorial, we’ll explore an alternate method).

1

You can download this shapefile from here. You will need to unzip after downloading. A complete shapefile
has 4 to 6 separate files – and you need them all. This file has 5 parts with extensions as listed below

• .dbf : a spreadsheet file with information about the polygons
• .prj : the coordinate reference system for the polygons
• .shp : the actual polygon information in coordinate terms
• .shx : not sure what this adds
• .xml : not sure what this adds

For all the libraries below, you may need to install the associated package for it to work. For example, if you
don’t find the package rgdal, you should do install.packages("rgdal").
library(rgdal)

Loading required package: sp

rgdal: version: 1.2-16, (SVN revision 701)
Geospatial Data Abstraction Library extensions to R successfully loaded
Loaded GDAL runtime: GDAL 2.2.0, released 2017/04/28
Path to GDAL shared files: C:/Users/lbrooks/Documents/R/win-library/3.4/rgdal/gdal
GDAL binary built with GEOS: TRUE
Loaded PROJ.4 runtime: Rel. 4.9.3, 15 August 2016, [PJ_VERSION: 493]
Path to PROJ.4 shared files: C:/Users/lbrooks/Documents/R/win-library/3.4/rgdal/proj
Linking to sp version: 1.2-7
library(raster)
cnty.map <- readOGR(dsn = "h:/pppa_data_viz/2018/tutorials/lecture07/data",

layer ="gz_2010_us_050_00_500k")

OGR data source with driver: ESRI Shapefile
Source: "h:/pppa_data_viz/2018/tutorials/lecture07/data", layer: "gz_2010_us_050_00_500k"
with 3221 features
It has 6 fields

We have just created a Spatial Polygon Data Frame. This is an object of the “S4” class in R. To date we
have worked with objects of the “S3” class. I tell you this not because you need to know the details of these
separate classes, but to say that all the tools we’ve learned to date work on S3 objects. They may or may not
work on S4 objects.

R has many tools to help you figure out what’s in this spatial polygon dataframe.
what kind of file is it?
class(cnty.map)

[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"
how many features does this file have?
feature: point, polygon, line
length(cnty.map)

[1] 3221
how far does this thing go out?
extent(cnty.map)

class : Extent
xmin : -179.1473
xmax : 179.7785

2

http://www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2018/subpages/handouts/tutorials/lecture07/gz_2010_us_050_00_500k.zip

ymin : 17.88481
ymax : 71.35256
metadata summary
cnty.map

class : SpatialPolygonsDataFrame
features : 3221
extent : -179.1473, 179.7785, 17.88481, 71.35256 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +datum=NAD83 +no_defs +ellps=GRS80 +towgs84=0,0,0
variables : 6
names : GEO_ID, STATE, COUNTY, NAME, LSAD, CENSUSAREA
min values : 0500000US01001, 01, 001, Abbeville, Borough, 1.999
max values : 0500000US72153, 72, 840, Ziebach, Parish, 145504.789
look at the attributes
head(cnty.map)

GEO_ID STATE COUNTY NAME LSAD CENSUSAREA
0 0500000US01029 01 029 Cleburne County 560.100
1 0500000US01031 01 031 Coffee County 678.972
2 0500000US01037 01 037 Coosa County 650.926
3 0500000US01039 01 039 Covington County 1030.456
4 0500000US01041 01 041 Crenshaw County 608.840
5 0500000US01045 01 045 Dale County 561.150

We also care about how the file is projected, which is a way of saying we may be interested in how we’re
telling R to lay our shapes out across space. You can see the “coordinate reference system” directly using the
crs() command below. You can also make the coordinate reference system an object itself, in case you want
to give this CRS to another map.
how is this map projected?
crs(cnty.map)

CRS arguments:
+proj=longlat +datum=NAD83 +no_defs +ellps=GRS80 +towgs84=0,0,0
note that you can store this in something
cproj <- crs(cnty.map)
cproj

CRS arguments:
+proj=longlat +datum=NAD83 +no_defs +ellps=GRS80 +towgs84=0,0,0

Spatial polygon data frames (or their parallel in lines or points) have a “dataframe” component – the
equivalent of the .dbf file that is part of a shapefile. You can use specific language when you want to get to the
data, which is called a data “slot.” In particular, you get to the data by writing dataframe@data$varname,
where dataframe is the name of the data frame, varname is the name of the variable, and @data is always
the same, letting R know that you’re getting to the attributes part of this file.

As you see below, you can do regular dataframe things like head() and table() with this slot. You can also
subset the spatial polygon dataframe like you would a regular dataframe, using standard subset language.
Below I subset the map to be only the continental US, dropping Alaska (“02”), Hawaii (“15”) and Puerto
Rico (“72”). See lecture 6’s tutorial for more explanation on this command.
shapefiles have a -data- slot
@data is common to all files
head(cnty.map@data)

3

GEO_ID STATE COUNTY NAME LSAD CENSUSAREA
0 0500000US01029 01 029 Cleburne County 560.100
1 0500000US01031 01 031 Coffee County 678.972
2 0500000US01037 01 037 Coosa County 650.926
3 0500000US01039 01 039 Covington County 1030.456
4 0500000US01041 01 041 Crenshaw County 608.840
5 0500000US01045 01 045 Dale County 561.150
you can do regular R things with the @data part
table(cnty.map@data$LSAD)

##
Borough CA city County Cty&Bor Muno Muny Parish
12 11 41 3007 4 78 2 64
table(cnty.map@data$STATE)

##
01 02 04 05 06 08 09 10 11 12 13 15 16 17 18 19 20 21
67 29 15 75 58 64 8 3 1 67 159 5 44 102 92 99 105 120
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
64 16 24 14 83 87 82 115 56 93 17 10 21 33 62 100 53 88
40 41 42 44 45 46 47 48 49 50 51 53 54 55 56 72
77 36 67 5 46 66 95 254 29 14 134 39 55 72 23 78
lets get rid of alaska and hi! too bothersome for plotting
ccnties <- cnty.map[!(cnty.map@data$STATE %in% c("02","15","72")),]
length(ccnties)

[1] 3109

4

D. Make a map

It’s surprisingly easy to make a no-fills map in R. We’ll start by using R’s very basic plot() command. We’ll
make the whole US, and then the new continental US file we created.
make the whole US
plot(cnty.map)

5

make just the continental US
plot(ccnties)

Of course, there are about a 1000 different options for improving the look of these plots. In the interest of
time, I am going to leave them to your exploration.

E. Color by Attribute

You’ll very frequently see maps with attributes colored in. This kind of map is called a choropleth. We’ll now
do a very simple version of such a map, coloring in the census divisions that we have used before.

We begin by assigning a division to each state. We did this before in tutorial 4, so you can copy and modify
your code from that tutorial if you’d like. I use the table command at the end to make sure that every county
is assigned (as it should be) to a division.
assign a division to each state
we did this before in tutorial 4 -- just go copy your old code
i used search and replace to change the dataframe name
and watch out -- numbers w/ leading zeros in map, so your numbers need to comply
ccnties@data$division <-

ifelse(ccnties@data$STATE == "09" | ccnties@data$STATE == 23 |
ccnties@data$STATE == 25 | ccnties@data$STATE == 33 |
ccnties@data$STATE == 44 | ccnties@data$STATE == 50, 1,

ifelse(ccnties@data$STATE == 34 | ccnties@data$STATE == 36 |
ccnties@data$STATE == 42, 2,

6

ifelse(ccnties@data$STATE == 18 | ccnties@data$STATE == 17 |
ccnties@data$STATE == 26 | ccnties@data$STATE == 39 |
ccnties@data$STATE == 55, 3,

ifelse(ccnties@data$STATE == 19 | ccnties@data$STATE == 20 |
ccnties@data$STATE == 27 | ccnties@data$STATE == 29 |
ccnties@data$STATE == 31 | ccnties@data$STATE == 38 |
ccnties@data$STATE == 46, 4,

ifelse(ccnties@data$STATE == 10 | ccnties@data$STATE == 11 |
ccnties@data$STATE == 12 | ccnties@data$STATE == 13 |
ccnties@data$STATE == 24 | ccnties@data$STATE == 37 |
ccnties@data$STATE == 45 | ccnties@data$STATE == 51 |
ccnties@data$STATE == 54, 5,

ifelse(ccnties@data$STATE == "01" | ccnties@data$STATE == 21 |
ccnties@data$STATE == 28 | ccnties@data$STATE == 47,6,

ifelse(ccnties@data$STATE == "05" | ccnties@data$STATE == 22 |
ccnties@data$STATE == 40 | ccnties@data$STATE == 48, 7,

ifelse(ccnties@data$STATE == "04" | ccnties@data$STATE == "08" |
ccnties@data$STATE == 16 | ccnties@data$STATE == 35 |
ccnties@data$STATE == 30 | ccnties@data$STATE == 49 |
ccnties@data$STATE == 32 | ccnties@data$STATE == 56, 8,

ifelse(ccnties@data$STATE == "02" | ccnties@data$STATE == "06" |
ccnties@data$STATE == 15 | ccnties@data$STATE == 41 |
ccnties@data$STATE == 53,9,0)))))))))

table(ccnties@data$division)

##
1 2 3 4 5 6 7 8 9
67 150 437 618 589 364 470 281 133

We should see that there are no counties with a division code of 0, the final residual category of the ifelse()
statements.

Rosa points out that you can do this same thing with an easier-to-read command as below. These two
commands are equivalent.
assign a division to each state
ccnties@data$division <- ifelse(ccnties@data$STATE %in% c("09", "23", "25", "33", "44",

"50"), 1,
ifelse(ccnties@data$STATE %in% c("34", "36", "42"), 2,
ifelse(ccnties@data$STATE %in% c("18", "17", "26", "39", "55"), 3,
ifelse(ccnties@data$STATE %in% c("19", "20", "27", "29", "31",

"38", "46"), 4,
ifelse(ccnties@data$STATE %in% c("10", "11", "12", "13", "24",

"37", "45", "51", "54"), 5,
ifelse(ccnties@data$STATE %in% c("01", "21", "28", "47"), 6,
ifelse(ccnties@data$STATE %in% c("05", "22", "40", "48"), 7,
ifelse(ccnties@data$STATE %in% c("04", "08", "16", "35", "30",

"49", "32", "56"), 8,
ifelse(ccnties@data$STATE %in% c("02", "06", "15", "41", "53")

, 9, 0)))))))))

First, we’ll show you the power of stacking plots in R. We begin by plotting all counties with a light grey
background (col="lightgrey"). On top of that, we add (add = TRUE) another plot, which is a subset of
our map to division one (ccnties[ccnties@data$division %in% c("1"),]), colored in red.

7

now color in one division
plot(ccnties, col="lightgrey")
plot(ccnties[ccnties@data$division %in% c("1"),],

col = "red",
add = TRUE)

This is great if you want to highlight one division. If you want to show where all the divisions are, you need
something slightly more complicated. We’ll use the spplot() command, which is designed for making maps
by attributes.

8

spplot(ccnties, "division", col = "transparent")

1

2

3

4

5

6

7

8

9

You might also need to make a bunch of maps – perhaps one by division. To do this, you can type the same
code nine times – or you can use a loop.

I’ve gone over loops in class, but the basic idea is that you have sometime you want to repeat by an index
value. Below we plot each division separately with a title. First I create a vector called divisions which
is sequence of numbers 1 to 9 (by 1). Then, for each of those numbers – indexed by d, the loop does the
commands below. Note that the loop begins with { and ends with }. The loop

• creates a character string that says “this is division [whatever the division number is]”
– this line uses the paste command, which squishes strings of characters together, separated (or

not) by whatever is after the sep= option. Here we separate by nothing.
• if you’d like to print this character string to the screen, add print(tito)

– this isn’t necessary – but it can be helpful for de-bugging problems
– I don’t do it here for space reasons

• makes a plot of just the counties in this specific division, colored in blue, and with the title of the text
string we just created

do a loop and plot each division
divisions <- seq(1,9,1)
divisions

[1] 1 2 3 4 5 6 7 8 9
for(d in divisions){

tito <- paste("this is division ",d,sep="")
plot(ccnties[ccnties@data$division == c(d),],

9

col = "blue",
main = tito)

}

this is division 1

10

this is division 2

11

this is division 3

12

this is division 4

13

this is division 5

14

this is division 6

15

this is division 7

16

this is division 8

17

this is division 9

You can use this technique for anything you want to replicate by a list.

F. Preparing attribute data

Of course, what we can show with just this map file is pretty limited. There are no demographic or
environmental variables. However, we do have a dataset with county information. So the next step in this
tutorial is to link the county dataset with the map. We’ll begin by preparing the county dataframe.

The commands below do things we’ve already practiced. They load the data, keep just 2010, limit to a few
variables so that things are easier, get rid of Alaska, Hawaii and Puerto Rico to make the data match the
map, and then look at the data that are left.
load the county data
counties <- read.csv("h:/pppa_data_viz/2018/tutorials/lecture01/counties_1910to2010_20180115.csv")

just keep 2010
counties.2010 <- counties[which(counties$year == 2010),]
dim(counties.2010)

[1] 3143 68
just keep a few variables to make this a little easier
dim(counties.2010)

[1] 3143 68

18

counties.2010 <- counties.2010[,c("statefips","countyfips","cv1")]
dim(counties.2010)

[1] 3143 3
get rid of alaska, hawaii and puerto rico for easier matching later
dim(counties.2010)

[1] 3143 3
table(counties.2010$statefips)

##
1 2 4 5 6 8 9 10 11 12 13 15 16 17 18 19 20 21
67 29 15 75 58 64 8 3 1 67 159 5 44 102 92 99 105 120
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
64 16 24 14 83 87 82 115 56 93 17 10 21 33 62 100 53 88
40 41 42 44 45 46 47 48 49 50 51 53 54 55 56
77 36 67 5 46 66 95 254 29 14 134 39 55 72 23
counties.2010 <- counties.2010[!(counties.2010$statefips %in% c("2","15","72")),]
dim(counties.2010)

[1] 3109 3
look at the variables we need to merge on
head(counties.2010)

statefips countyfips cv1
31007 1 1 54571
31008 1 3 182265
31009 1 5 27457
31010 1 7 22915
31011 1 9 57322
31012 1 11 10914
head(ccnties)

GEO_ID STATE COUNTY NAME LSAD CENSUSAREA division
0 0500000US01029 01 029 Cleburne County 560.100 6
1 0500000US01031 01 031 Coffee County 678.972 6
2 0500000US01037 01 037 Coosa County 650.926 6
3 0500000US01039 01 039 Covington County 1030.456 6
4 0500000US01041 01 041 Crenshaw County 608.840 6
5 0500000US01045 01 045 Dale County 561.150 6

If you’ve been paying careful attention, you may have realized that while this dataframe and our spatial
polygons dataframe both have state and county IDs, their formats are rather different. The state and county
in the map are character variables, where each state ID is always two characters, and each county ID is always
three. To make this consistent number of characters, when the value is less than the number of characters,
strings are filled with leading zeros. For example, California is state code 6, or 06 in the map; Los Angeles
county is code 37, and is 037 in the map.

In contrast, county numbers in counties.2010 are regular old numbers.

In order for the merge between the two datasets to work properly, both variables need to be expressed in the
same way. The variables don’t have to be named the say, but the do have to be expressed the same way,
since the computer will not merge 037 with 37.

To make these consistent, I change the data into character strings (rather than the map into numeric). The

19

code for this is below. The only new command here is nchar(), which counts the number of characters in a
string. If the state code is less than two characters, add a leading zero. If the county code is 1 character, add
two zeros; if the county code is 2 characters, add one zero. Otherwise, keep it the same.

I check the results using the table() command.
need to fix counties.2010 to have character state and county variable
state values
counties.2010$cstatefips <- as.character(counties.2010$statefips)
counties.2010$cstatefips <- ifelse(nchar(counties.2010$cstatefips)==1,

paste("0",counties.2010$cstatefips,sep=""),counties.2010$cstatefips)
table(counties.2010$cstatefips)

##
01 04 05 06 08 09 10 11 12 13 16 17 18 19 20 21 22 23
67 15 75 58 64 8 3 1 67 159 44 102 92 99 105 120 64 16
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
24 14 83 87 82 115 56 93 17 10 21 33 62 100 53 88 77 36
42 44 45 46 47 48 49 50 51 53 54 55 56
67 5 46 66 95 254 29 14 134 39 55 72 23
county values
counties.2010$ccountyfips <- as.character(counties.2010$countyfips)
counties.2010$ccountyfips <- ifelse(nchar(counties.2010$ccountyfips)==1,

paste("00",counties.2010$ccountyfips,sep=""),
ifelse(nchar(counties.2010$ccountyfips)==2,

paste("0",counties.2010$ccountyfips,sep=""),
counties.2010$ccountyfips))

table(counties.2010$ccountyfips)

##
001 003 005 006 007 009 011 012 013 014 015 017 019 021 023 025 027 028
48 48 48 1 46 47 46 1 46 1 46 45 45 44 44 42 44 1
029 031 033 035 036 037 039 041 043 045 047 049 051 053 055 057 059 061
41 41 40 39 1 39 38 38 38 38 37 36 36 36 35 36 35 35
063 065 067 069 071 073 075 077 078 079 081 083 085 086 087 089 091 093
34 34 34 34 34 33 33 33 1 32 32 32 32 1 32 31 31 30
095 097 099 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129
30 30 30 30 30 30 29 29 28 27 27 26 26 26 25 25 24 22
131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161 163 165
22 22 20 20 19 19 18 18 18 18 16 17 16 16 16 16 16 15
167 169 171 173 175 177 179 181 183 185 186 187 189 191 193 195 197 199
14 14 14 14 13 12 12 12 12 11 1 10 9 8 8 9 9 8
201 203 205 207 209 211 213 215 217 219 221 223 225 227 229 231 233 235
6 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3
237 239 241 243 245 247 249 251 253 255 257 259 261 263 265 267 269 271
3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
273 275 277 279 281 283 285 287 289 291 293 295 297 299 301 303 305 307
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
309 311 313 315 317 319 321 323 325 327 329 331 333 335 337 339 341 343
2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1
345 347 349 351 353 355 357 359 361 363 365 367 369 371 373 375 377 379
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
381 383 385 387 389 391 393 395 397 399 401 403 405 407 409 411 413 415
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
417 419 421 423 425 427 429 431 433 435 437 439 441 443 445 447 449 451

20

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
453 455 457 459 461 463 465 467 469 471 473 475 477 479 481 483 485 487
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
489 491 493 495 497 499 501 503 505 507 510 515 520 530 540 550 570 580
1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1
590 595 600 610 620 630 640 650 660 670 678 680 683 685 690 700 710 720
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
730 735 740 750 760 770 775 790 800 810 820 830 840
1 1 1 1 1 1 1 1 1 1 1 1 1

The only thing left to do before merging (you could do it after merging, but this seemed simpler to me, since
we don’t have to work with the spatial data frame) is to make deciles of population size for the maps we
want to make.

As we have done in previous classes, we make a vector that holds the quantiles of population, pdec. We then
“cut” the counties.2010 dataset by this decile vector, so that each county has a marker for the decile into
which it falls. I use the table function to check that counties are evenly divided by decile as they should be,
and they are.
lets make deciles of population
similar to what we did last class
pdec <- quantile(counties.2010$cv1, probs=seq(0,1,0.1), na.rm = TRUE)
pdec

0% 10% 20% 30% 40% 50% 60%
82.0 5297.8 9254.6 13891.6 19105.0 26008.0 36837.8
70% 80% 90% 100%
52512.0 90918.4 198081.0 9818605.0
counties.2010$pop.decile <- cut(counties.2010$cv1, pdec,

include.lowest = TRUE,
right = FALSE)

table(counties.2010$pop.decile)

##
[82,5.3e+03) [5.3e+03,9.25e+03) [9.25e+03,1.39e+04)
311 311 311
[1.39e+04,1.91e+04) [1.91e+04,2.6e+04) [2.6e+04,3.68e+04)
311 310 311
[3.68e+04,5.25e+04) [5.25e+04,9.09e+04) [9.09e+04,1.98e+05)
311 311 311
[1.98e+05,9.82e+06]
311

G. Load simple shapefile

Now we are ready to merge the map file and the data file.

However, we are going to use the hot-off-the-presses sf function to do this. This function is so new that you
had to use the version set up for software developers to use it (that’s why you had to use devtools:: to
load it). I recommend the overview file here.

To get the map into a “simple polygon” version, you need to reload it using sf’s st_read() command. The
syntax for this is very similar to readOGR. Once you load this file, you can inspect it like a regular dataframe.

21

https://cran.r-project.org/web/packages/sf/vignettes/sf5.html

library(sf)

Linking to GEOS 3.6.1, GDAL 2.2.3, proj.4 4.9.3
sfcounties <- st_read(dsn = "h:/pppa_data_viz/2018/tutorials/lecture07/data",

layer ="gz_2010_us_050_00_500k")

Reading layer `gz_2010_us_050_00_500k' from data source `h:\pppa_data_viz\2018\tutorials\lecture07\data' using driver `ESRI Shapefile'
Simple feature collection with 3221 features and 6 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -179.1473 ymin: 17.88481 xmax: 179.7785 ymax: 71.35256
epsg (SRID): 4269
proj4string: +proj=longlat +datum=NAD83 +no_defs
sfcounties$geometry

Geometry set for 3221 features
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -179.1473 ymin: 17.88481 xmax: 179.7785 ymax: 71.35256
epsg (SRID): 4269
proj4string: +proj=longlat +datum=NAD83 +no_defs
First 5 geometries:

MULTIPOLYGON (((-85.38872 33.91304, -85.38088 3...

MULTIPOLYGON (((-86.03044 31.61894, -86.00408 3...

MULTIPOLYGON (((-86.00928 33.10164, -86.00917 3...

MULTIPOLYGON (((-86.34851 30.99434, -86.35023 3...

MULTIPOLYGON (((-86.14699 31.68045, -86.14711 3...
names(sfcounties)

[1] "GEO_ID" "STATE" "COUNTY" "NAME" "LSAD"
[6] "CENSUSAREA" "geometry"

You can use these sf files to make maps using the geom_sf() command in ggplot.

In the examples below, I first chart all states, coloring by color. In the second set of lines I keep only the
continental US via subsetting. I then plot the continental US, coloring by state (aes(fill=STATE)).
library(ggplot2)

##
Attaching package: 'ggplot2'

The following object is masked from 'package:raster':
##
calc
ggplot(sfcounties) +

geom_sf(aes(fill=STATE))

22

20°N
30°N
40°N
50°N
60°N
70°N

120°W 60°W 0° 60°E 120°E

STATE

01

02

04

05

06

08

09

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

46

47

48

49

50

51

53

54

55

56

72

23

keep only continental us
sfcountiesc <- sfcounties[!(sfcounties$STATE %in% c("02","15","72")),]
dim(sfcountiesc)

[1] 3109 7
ggplot(sfcountiesc) +

geom_sf(aes(fill=STATE))

25°N

30°N

35°N

40°N

45°N

50°N

120°W 110°W 100°W 90°W 80°W 70°W

STATE

01

04

05

06

08

09

10

11

12

13

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

46

47

48

49

50

51

53

54

55

56

Here are two more examples of ggplot’s reach. The first is the same map, but filled by area of the polygon.

24

make a map, color coding by area (silly)
library(ggplot2)
ggplot(sfcountiesc) +

geom_sf(data = sfcountiesc, aes(fill=CENSUSAREA))

25°N

30°N

35°N

40°N

45°N

50°N

120°W 110°W 100°W 90°W 80°W 70°W

5000

10000

15000

20000
CENSUSAREA

25

The second subsets to California and gets rid of most of the background junk.
lets do just Ca and see if I can get rid of ugly background
ggplot(sfcountiesc[sfcountiesc$STATE == "06",]) +

geom_sf(aes(fill=CENSUSAREA)) +
coord_sf(crs = st_crs(sfcountiesc), datum = NA) +
theme(panel.background = element_blank())

5000

10000

15000

20000
CENSUSAREA

H. Merge in County Data

Finally, we’re ready to merge in the county data. Check the size of the map file and the data file beforehand.
Your merged file should have this same number of observations. The command merge() puts the datasets
together, specifying the variables from the first dataset (by.x=c("STATE","COUNTY")) and the second dataset
(by.y=c("cstatefips","ccountyfips")). The option all = TRUE keeps all observations from both datasets,
regardless of whether there is a match. This is key for quality control.

Luckily, the datasets merge perfectly – that is each has 3109 observations to start with, and the final merged
dataset also have 3109 observations. I know the latter using the dim() command, and I also check to see
that the new dataframe looks ok with the head() command.

26

merge the county dataframe with the shapefile
have to put spatial file first
then data.frame second
dim(sfcountiesc)

[1] 3109 7
dim(counties.2010)

[1] 3109 6
cntystuff <- merge(sfcountiesc,counties.2010,

by.x=c("STATE","COUNTY"),
by.y=c("cstatefips","ccountyfips"),

all = TRUE)
head(cntystuff)

Simple feature collection with 6 features and 10 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -88.02927 ymin: 30.22113 xmax: -85.05307 ymax: 34.26048
epsg (SRID): 4269
proj4string: +proj=longlat +datum=NAD83 +no_defs
STATE COUNTY GEO_ID NAME LSAD CENSUSAREA statefips
1 01 001 0500000US01001 Autauga County 594.436 1
2 01 003 0500000US01003 Baldwin County 1589.784 1
3 01 005 0500000US01005 Barbour County 884.876 1
4 01 007 0500000US01007 Bibb County 622.582 1
5 01 009 0500000US01009 Blount County 644.776 1
6 01 011 0500000US01011 Bullock County 622.805 1
countyfips cv1 pop.decile geometry
1 1 54571 [5.25e+04,9.09e+04) MULTIPOLYGON (((-86.52469 3...
2 3 182265 [9.09e+04,1.98e+05) MULTIPOLYGON (((-87.41247 3...
3 5 27457 [2.6e+04,3.68e+04) MULTIPOLYGON (((-85.13285 3...
4 7 22915 [1.91e+04,2.6e+04) MULTIPOLYGON (((-87.11632 3...
5 9 57322 [5.25e+04,9.09e+04) MULTIPOLYGON (((-86.73121 3...
6 11 10914 [9.25e+03,1.39e+04) MULTIPOLYGON (((-85.74209 3...
dim(cntystuff)

[1] 3109 11

Finally, I create population density for mapping.

27

make population density
cntystuff$pop.density <- cntystuff$cv1/cntystuff$CENSUSAREA/1000

28

I. Make maps from these merged data

Here is a black and white map of California plotting population density (recall we defined this on a national
scale).
population decile
ggplot(cntystuff[cntystuff$STATE == "06",]) +

scale_fill_manual(values = colorRampPalette(c("black","white"))(9)) +
geom_sf(aes(fill=pop.decile)) +
coord_sf(crs = st_crs(cntystuff), datum = NA) +
theme(panel.background = element_blank())

pop.decile

[82,5.3e+03)

[9.25e+03,1.39e+04)

[1.39e+04,1.91e+04)

[1.91e+04,2.6e+04)

[2.6e+04,3.68e+04)

[3.68e+04,5.25e+04)

[5.25e+04,9.09e+04)

[9.09e+04,1.98e+05)

[1.98e+05,9.82e+06]

Here is a similar map for the entire US.

29

population decile
ggplot(cntystuff) +

geom_sf(aes(fill=pop.decile)) +
coord_sf(crs = st_crs(cntystuff), datum = NA) +
scale_color_gradient() +
theme(panel.background = element_blank())

pop.decile

[82,5.3e+03)

[5.3e+03,9.25e+03)

[9.25e+03,1.39e+04)

[1.39e+04,1.91e+04)

[1.91e+04,2.6e+04)

[2.6e+04,3.68e+04)

[3.68e+04,5.25e+04)

[5.25e+04,9.09e+04)

[9.09e+04,1.98e+05)

[1.98e+05,9.82e+06]

J. Homework

1. Repeat the final charts with another county variable that has a different range from what we plotted in
the tutorial.

2. Make a choropleth map from another dataset! It is ok to bring in a shapefile that already has values
attached so you can skip the bothersome merging bit.

30

	A. Agenda for Today
	B. Packages
	C. Load a first shapefile
	D. Make a map
	E. Color by Attribute
	F. Preparing attribute data
	G. Load simple shapefile
	H. Merge in County Data
	I. Make maps from these merged data
	J. Homework

