
Maps, 3 of 3
Leah Brooks

April 13, 2018

Today is our last formal mapping tutorial. We make choropleth maps, graduated symbol maps, and dot
density maps. But first we get data into shape to map.

A. Get data into shape

We use the same block group data as in previous tutorials. See the tutorial from lecture 2 on where to find
these data.

For this class, we’ll also use the block group map, which I’ve downloaded from NHGIS.org, an organization
that makes available consistent historical geographic information. You can download the DC block group file
here; this is the one we’ll use in today’s tutorial. If you would like the shapefiles for Maryland and Virginia,
follow the links. Any others, you can download directly from nhgis.org

Also, today we avoid anything from sf. It is superior for almost all of the tasks below, but not everyone got
it to load properly – it seems to be quite finnicky.

A.1 Some libraries

We’ll start off loading shapefiles, which means we need to load a few libraries.
library(sp)
library(rgdal)

rgdal: version: 1.2-16, (SVN revision 701)
Geospatial Data Abstraction Library extensions to R successfully loaded
Loaded GDAL runtime: GDAL 2.2.0, released 2017/04/28
Path to GDAL shared files: C:/Users/lbrooks/Documents/R/win-library/3.4/rgdal/gdal
GDAL binary built with GEOS: TRUE
Loaded PROJ.4 runtime: Rel. 4.9.3, 15 August 2016, [PJ_VERSION: 493]
Path to PROJ.4 shared files: C:/Users/lbrooks/Documents/R/win-library/3.4/rgdal/proj
Linking to sp version: 1.2-7

A.2. Load block group maps and data, subset to DC

We begin by loading the DC block group map using readOGR as we did last class. Remember that this is a
shapefile, so it includes information about the location of these places in space.

After loading the shapefile, take a look at its column names, the first few rows of the associated data, and
use dim() to see how many block groups the file has.
load a block group map
dcbgs.map <- readOGR(dsn = "H:/pppa_data_viz/2018/tutorials/lecture11/data/nhgis0018_shape/nhgis0018_shape/nhgis0018_shapefile_tl2010_110_blck_grp_2010",

layer = "DC_blck_grp_2010")

1

www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2018/subpages/handouts/tutorials/lecture11/nhgis0018_shapefile_tl2010_110_blck_grp_2010.zip
www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2018/subpages/handouts/tutorials/lecture11/nhgis0018_shapefile_tl2010_510_blck_grp_2010.zip

OGR data source with driver: ESRI Shapefile
Source: "H:/pppa_data_viz/2018/tutorials/lecture11/data/nhgis0018_shape/nhgis0018_shape/nhgis0018_shapefile_tl2010_110_blck_grp_2010", layer: "DC_blck_grp_2010"
with 450 features
It has 15 fields
Integer64 fields read as strings: ALAND10 AWATER10
take a look at this file
names(dcbgs.map)

[1] "STATEFP10" "COUNTYFP10" "TRACTCE10" "BLKGRPCE10" "GEOID10"
[6] "NAMELSAD10" "MTFCC10" "FUNCSTAT10" "ALAND10" "AWATER10"
[11] "INTPTLAT10" "INTPTLON10" "GISJOIN" "Shape_area" "Shape_len"
dcbgs.map@data[1:5,]

STATEFP10 COUNTYFP10 TRACTCE10 BLKGRPCE10 GEOID10 NAMELSAD10
0 11 001 006801 2 110010068012 Block Group 2
1 11 001 006700 3 110010067003 Block Group 3
2 11 001 007803 2 110010078032 Block Group 2
3 11 001 007803 3 110010078033 Block Group 3
4 11 001 007502 2 110010075022 Block Group 2
MTFCC10 FUNCSTAT10 ALAND10 AWATER10 INTPTLAT10 INTPTLON10
0 G5030 S 90744 0 +38.8881502 -076.9821208
1 G5030 S 167777 0 +38.8872631 -076.9932764
2 G5030 S 137978 0 +38.8962653 -076.9371881
3 G5030 S 181559 0 +38.8923288 -076.9369370
4 G5030 S 346034 0 +38.8546445 -076.9674792
GISJOIN Shape_area Shape_len
0 G11000100068012 90742.78 1260.214
1 G11000100067003 167777.14 1711.157
2 G11000100078032 137978.41 1525.427
3 G11000100078033 181560.19 1728.923
4 G11000100075022 346034.20 3475.022
dim(dcbgs.map)

[1] 450 15

Make sure that we have what we think we do by plotting this map.
plot it
plot(dcbgs.map)

2

Now we load block group data. This is the file we worked with before that has information about the
attributes of individual block groups. I use the table() function to see how many states this file has. Since
we’ll just be working with DC, I subset the file to DC.
load block group data
block.groups <- read.csv(

"h:/pppa_data_viz/2018/tutorials/lecture02/acs_bgs20082012_dmv_20180123.csv")
#names(block.groups)
dim(block.groups)

[1] 9708 3063
table(block.groups$STATE)

##
11 24 51
450 3926 5332
subset to dc
block.groups.dc <- block.groups[which(block.groups$STATE == 11),]

lets verify a variable we'll use in a minute
summary(block.groups.dc$B07201e1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 855 1222 1330 1644 4835

3

A.3. Merge map file and data, version 1

Recall that a block group is identified by a combination of state id (2 digit) + county id (3 digits) + tract id
(6 digits) + block group id (1 digit). Thus, when we combine the block group map with the data, we need to
merge on all four fields.

Another way of saying this is that tract 001001, block group 2 might exist in both Washington, DC and
Prince George’s County. Thus you need both the state and county ids as well as the tract and block group
ones.

As we did last class, we use sp’s merge feature to add data to the shapefile.
dcbgs.map.test <- sp::merge(dcbgs.map,

block.groups.dc,
by.x = c("STATEFP10","COUNTYFP10","TRACTCE10","BLKGRPCE10"),
by.y = c("STATE","COUNTY","TRACT","BLKGRP"),
all.x = TRUE)

summary(dcbgs.map.test@data$B07201e1)

The variable B07201 is the total “population 1 year and over living in a Metropolitan Statistical Area in the
United States” (Census). Note that while it had values before, it doesn’t now. This tells us that there is
something screwy in our merge.

Always check merges!

A.4. Merge map file and data, version 2

To figure out why these files didn’t merge, I looked at the merging variables in both datasets to see how they
differed. I realized that the tract IDs in the data file (block.groups.dc) were not always six digits with
leading and lagging zeros.

I fix this below (this took a fair amount of trial and error to get right). There are no new commands here,
but putting a bunch of commands that we have used before together. The fundamental problem was that the
tract field in the data file was missing leading zeros (zeros that go before the number to make it the full six
digits).
add leading and lagging zeros to tract ids
first, variable is an integer, so we need a string variable to work with
block.groups.dc$tract.str <- as.character(block.groups.dc$TRACT)
now add leading/lagging zeros as needed
block.groups.dc$county.fp <- ifelse(block.groups.dc$COUNTY == 1,"001",NA)
block.groups.dc$tract.fp <- block.groups.dc$tract.str
block.groups.dc$tract.fp <- ifelse(nchar(block.groups.dc$tract.str)==5,

paste0("0",block.groups.dc$tract.str),
block.groups.dc$tract.fp)

block.groups.dc$tract.fp <- ifelse(nchar(block.groups.dc$tract.str)==4,
paste0("00",block.groups.dc$tract.str),
block.groups.dc$tract.fp)

block.groups.dc$tract.fp <- ifelse(nchar(block.groups.dc$tract.str)==3,
paste0("000",block.groups.dc$tract.str),
block.groups.dc$tract.fp)

check results
block.groups.dc[which((block.groups.dc$tract.fp=="003000" & block.groups.dc$BLKGRP ==1) |

(block.groups.dc$tract.fp=="003000" & block.groups.dc$BLKGRP ==2) |
(block.groups.dc$tract.fp==NA)),

c("STATE","COUNTY","TRACT","tract.fp","county.fp","BLKGRP","tract.str")]

4

STATE COUNTY TRACT tract.fp county.fp BLKGRP tract.str
142 11 1 3000 003000 001 1 3000
143 11 1 3000 003000 001 2 3000

After I do all this fixing, I do some checking. In datasets like these, the file should have only one observation
for each block group (state+county+tract+block group). We say that the file is “unique” by block group.
Below I check whether this is the case.

Non-unique dataframes cause big troubles in merging.

To check for uniqueness, I use a plyr command called count, which counts unique values of the columns you
request. The command count creates a variable in the output dataframe called freq, which is the number of
times – the frequency – of each ID group that you put into the command.

In general, when you are merging, at least one of your dataframes should be unqiue by the merging variables.
If both are not unique by the mergning variables, you’re going to get unexpected (and perhaps unwanted)
results.

Thus, to tell whether your dataframe is unique by the variables you’ve specified, you can look (as we do
below) at the distribution of the count of by ID frequencies. If the variable freq always takes on the value 1,
the dataset is unique by the ID variables.
merge with spatial polygon
dim(block.groups.dc)

[1] 450 3066
library(plyr)
check if data obs are unique
d.unique <- count(block.groups.dc[,c("STATE","county.fp","tract.fp","BLKGRP")])
table(d.unique$freq)

##
1
450
d.unique.m <- d.unique[which(d.unique$freq > 1),]
d.unique.m

[1] STATE county.fp tract.fp BLKGRP freq
<0 rows> (or 0-length row.names)
check if map obs are unique
dim(dcbgs.map)

[1] 450 15
m.unique <- count(dcbgs.map@data[,c("STATEFP10","COUNTYFP10","TRACTCE10","BLKGRPCE10")])
table(m.unique$freq)

##
1
450

Now that the data are fixed, let’s try another merge, and check the variable that we looked at initially. As a
reminder, the first two parts of the merge statement are the input dataframes. Next I specificy the merging
variables frm the x and y datasets, and then finally, we tell R to keep all observations from dataframe x(all.x
= TRUE) and dataframe y (all.x = TRUE).
dcbgs.map.data <- sp::merge(dcbgs.map,

block.groups.dc,

5

by.x = c("STATEFP10","COUNTYFP10","TRACTCE10","BLKGRPCE10"),
by.y = c("STATE","county.fp","tract.fp","BLKGRP"),
all.x = TRUE, all.y = TRUE)

dim(dcbgs.map.data@data)

[1] 450 3077
summary(dcbgs.map.data@data$B07201e1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 855 1222 1330 1644 4835

As an aside, (no need to do this yourself) here is how I finally figured out what was going on in the problematic
merge. I took a dataframe from the map, merged it with the block group data, and looked at the non-matches.
how i finally solved the problem
get two dataframes and check for non-matches
get dataframe from map file
dcbgs.map.dataf <- as.data.frame(dcbgs.map)
dcbgs.map.dataf$md <- 1
block.groups.dc$dd <- 1
bgdc.dat <- block.groups.dc[,c("STATE","county.fp","tract.fp","BLKGRP","B00001e1","dd","TRACT")]
checker <- merge(dcbgs.map.dataf,

bgdc.dat,
by.x = c("STATEFP10","COUNTYFP10","TRACTCE10","BLKGRPCE10"),
by.y = c("STATE","county.fp","tract.fp","BLKGRP"),
all.x = TRUE, all.y = TRUE)

dim(checker)
checker[which(is.na(checker$md) == TRUE | is.na(checker$dd) == TRUE),

c("STATEFP10","COUNTYFP10","TRACTCE10","TRACT","BLKGRPCE10","md","dd")]
names(checker)

B. Create tract-level data

Remember that each tract is made up of individual block groups. Sometimes block groups are so small that
they are difficult to see on a map. In this case, a researcher may wish to turn to tracts. Below we create a
tract-level spatial dataframe.

I do this for both the data file – here we aggregate to tracts – and the map file, where we take a spatial union
of block groups by tract.

B.1. Prepare the map

We begin with the map. I use the unionSpatialPolygons() function to do this. The inputs to this function
are the original shapefile and the second argument is you telling R how to combine. In our case we combine
by tract ID. Unfortunately, this output is not a spatial polygons dataframe – it’s just a spatial polygon.

The next three lines of code take the spatial polygons and make it a spatial polygons dataframe; the final
lines of code check this.
make tract-level map
library(maptools)

Checking rgeos availability: TRUE

6

library(raster)
class(dcbgs.map)

[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"
dcts.map.sp <- unionSpatialPolygons(dcbgs.map, dcbgs.map$TRACTCE10)
class(dcts.map.sp)

[1] "SpatialPolygons"
attr(,"package")
[1] "sp"
this output is a spatialpolygon file, not a spatial polygons dataframe
so we need to add some basic data
this seems to put tract ids as row names
thank you example here
https://gis.stackexchange.com/questions/61633/convert-a-spatial-polygon-object-to-data-frame-using-r
dcts.map.df<- data.frame(tract.fp = getSpPPolygonsIDSlots(dcts.map.sp))

Warning: use *apply and slot directly
row.names(dcts.map.df) <- getSpPPolygonsIDSlots(dcts.map.sp)

Warning: use *apply and slot directly
dcts.map <- SpatialPolygonsDataFrame(dcts.map.sp, data=dcts.map.df)
names(dcts.map@data)

[1] "tract.fp"
dcts.map@data[1:5,]

[1] 000100 000201 000202 000300 000400
179 Levels: 000100 000201 000202 000300 000400 000501 000502 ... 011100

B.2. Prepare the data

Now we need to make tract-level data from the block group data. We do this by summarizing the data using
dplyr’s ddply function. I then check the variables I just created, and I can therefore tell you that there is
something wrong with the population variable. This is a problem from my initial creation of these data, but
I haven’t been able to find the error. You should not use variables B00001e1 and B00002e2 – apologies.
make tract-level data
tracts.dc <- ddply(block.groups.dc, "tract.fp", summarize,

mob.same.house = sum(B07201e2, na.rm = TRUE),
mob.tot.pop = sum(B07201e1, na.rm = TRUE))

summary(tracts.dc$mob.same.house)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 1959 2487 2686 3356 6533
summary(tracts.dc$mob.tot.pop)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 2440 3077 3345 4164 7907

7

dim(tracts.dc)

[1] 179 3
tracts.dc[1:5,]

tract.fp mob.same.house mob.tot.pop
1 000100 3862 4895
2 000201 2787 4074
3 000202 3385 4923
4 000300 4550 5310
5 000400 1325 1501

B.3. Merge the data

Now we are finally ready to have a tract-level spatial dataset by merging the map and data files we just
created. After the merge I check the size of the file, and whether there are any tracts with missing values for
the variable we just created mob.tot.pop.
merge the two
dim(dcts.map)

[1] 179 1
dim(tracts.dc)

[1] 179 3
dcts.map.data <- sp::merge(dcts.map,

tracts.dc,
by.x = c("tract.fp"),
by.y = c("tract.fp"),
all.x = TRUE, all.y = TRUE)

dim(dcts.map.data@data)

[1] 179 3
dcts.map.data@data[which(is.na(dcts.map.data@data$mob.tot.pop) == TRUE),]

[1] tract.fp mob.same.house mob.tot.pop
<0 rows> (or 0-length row.names)

B.4. Create new variables

Finally, we create a new variable that tells us the share of people over the age of one who lived in the same
house one year ago. Make summaries of the variable just created and its components to check if things seem
reasonable.
dcts.map.data@data$mob.same.hs.shr <-

dcts.map.data@data$mob.same.house / dcts.map.data@data$mob.tot.pop
summary(dcts.map.data@data$mob.same.house)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 1959 2487 2686 3356 6533
summary(dcts.map.data@data$mob.tot.pop)

8

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 2440 3077 3345 4164 7907
summary(dcts.map.data@data$mob.same.hs.shr)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.2304 0.7566 0.8201 0.8068 0.8786 0.9889 1

C. Choropleth maps

Now, with all these data prepared, we are ready to make some choropleth maps. This tutorial owes a big
debt to Claudia Engel’s work here, which you might like to look at.

Using the sp package, we can make a very simple choropleth plot. We need to tell R just the spatial polygon
dataframe and the variable you would like to plot. R chooses cutoffs and colors.
lets try with defaults
names(dcts.map.data@data)

[1] "tract.fp" "mob.same.house" "mob.tot.pop" "mob.same.hs.shr"
dcts.map.data@data[1:5,]

tract.fp mob.same.house mob.tot.pop mob.same.hs.shr
1 000100 3862 4895 0.7889683
2 000201 2787 4074 0.6840943
3 000202 3385 4923 0.6875889
4 000300 4550 5310 0.8568738
5 000400 1325 1501 0.8827448
spplot(dcts.map.data, "mob.same.hs.shr")

9

https://cengel.github.io/rspatial/4_Mapping.nb.html

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Hopefully we can do a little better with color. We are using a new library which pulls up good-looking
palettes. You may need to install the package RColorBrewer. I use the display.brewer.all() command
to see what types of sequential palettes the program has. I create a palette of greys with 5 colors called
grey.pal using the brewer.pal function, which takes the number of colors and the name of the colors (from
the earlier plot) as arguments.

With this palette, I make the choropleth plot with 4 cut (thus requiring five colors). I have no idea how R
cuts the data for this.
lets try to do better with color
library(RColorBrewer)
display.brewer.all(type="seq")

10

Blues
BuGn
BuPu
GnBu

Greens
Greys

Oranges
OrRd
PuBu

PuBuGn
PuRd

Purples
RdPu
Reds
YlGn

YlGnBu
YlOrBr

YlOrRd

grey.pal <- brewer.pal(5,"Greys")
class(grey.pal)

[1] "character"
notice that cuts is one less than the number of colors
spplot(dcts.map.data, "mob.same.hs.shr", col.regions = grey.pal, cuts = 4)

11

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Though how you should just the data depends on what question you are asking, it is frequently useful to
make bins with equal numbers of observations. Here I divide the data into quintiles, as we did in a previous
lecture. But I do not need to create a quintiles variable (which I do just for kicks). I also add a title and use
the at= option to tell R that we are dividing by the quint variable.
now lets use quintiles instead
quints <- quantile(dcts.map.data$mob.same.hs.shr, probs = seq(0,1,0.2), na.rm = TRUE)
quints

0% 20% 40% 60% 80% 100%
0.2304081 0.7374368 0.8013798 0.8408305 0.8871339 0.9889120
dcts.map.data@data <- within(dcts.map.data@data,

quintile <- as.integer(cut(mob.same.hs.shr,quints,
include.lowest = TRUE)))

table(dcts.map.data@data$quintile)

##
1 2 3 4 5
36 35 36 35 36
spplot(dcts.map.data, "mob.same.hs.shr",

at = quints,
col.regions = grey.pal,
main = "DC: Share of Population in Same House One Year Ago")

12

DC: Share of Population in Same House One Year Ago

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Rosa provides a better legend solution: Let’s use other map package. First, check whether you have the tmap
and tmaptools packages. If you do not have, please install these packages first.

With the tmap package, you can generate choropleth maps with great flexibility and the syntax is similar to
that of ggplot2. Here is the basic command.

Note that this basic command automatically makes an equal division of categories between 0 and 1; this is
likely a poor choice for these particular data.
library(tmap)
library(tmaptools)

qtm(dcts.map.data, fill = "mob.same.hs.shr",
title = "DC: Share of Population in Same House One Year Ago")

13

DC: Share of Population in Same House One Year Ago

mob.same.hs.shr
0.2 to 0.4
0.4 to 0.6
0.6 to 0.8
0.8 to 1.0
Missing

D. Graduated Symbol Maps

Graduated symbol maps, unlike choropleth maps, rely on points. Our first job, therefore, is to make a new
point version of the polygon census tract map. Then, with the map in hand, we can add data and plot the
points. I relied heavily on this tutorial when crafting this section.

D.1. Make point data

We begin by using the gCentroid function to extract the point at the center of each tract (R calculates this
for you). The byid = TRUE part of this command tells R to make a centroid for each ID in your dataframe.
We then make these points into a spatial points dataframe with the SpatialPointsDataFrame() command.

I check the output a bit with class(), head(), plot() and summary().
first, lets find the x/y centroid of every census tract, so we'll have points to map
see explanation
https://stackoverflow.com/questions/32571956/get-data-frame-with-polygons-id-and-centroid-lat-long-information-from-shapefi
library(rgeos)

rgeos version: 0.3-26, (SVN revision 560)
GEOS runtime version: 3.6.1-CAPI-1.10.1 r0
Linking to sp version: 1.2-7
Polygon checking: TRUE

14

http://www.milanor.net/blog/maps-in-r-plotting-data-points-on-a-map/

tpoints <- SpatialPointsDataFrame(gCentroid(dcts.map.data, byid = TRUE),
dcts.map.data@data)

class(tpoints)

[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"
head(tpoints)

tract.fp mob.same.house mob.tot.pop mob.same.hs.shr quintile
1 000100 3862 4895 0.7889683 2
2 000201 2787 4074 0.6840943 1
3 000202 3385 4923 0.6875889 1
4 000300 4550 5310 0.8568738 4
5 000400 1325 1501 0.8827448 4
6 000501 2070 3189 0.6491063 1
plot(tpoints)

summary(tpoints)

Object of class SpatialPointsDataFrame
Coordinates:
min max
x 1611978.6 1628568.3
y 310127.5 328201.1
Is projected: TRUE

15

proj4string :
[+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96 +x_0=0
+y_0=0 +datum=NAD83 +units=m +no_defs +ellps=GRS80 +towgs84=0,0,0]
Number of points: 179
Data attributes:
tract.fp mob.same.house mob.tot.pop mob.same.hs.shr quintile
000100 : 1 Min. : 0 Min. : 0 Min. :0.2304 Min. :1
000201 : 1 1st Qu.:1959 1st Qu.:2440 1st Qu.:0.7566 1st Qu.:2
000202 : 1 Median :2487 Median :3077 Median :0.8201 Median :3
000300 : 1 Mean :2686 Mean :3345 Mean :0.8068 Mean :3
000400 : 1 3rd Qu.:3356 3rd Qu.:4164 3rd Qu.:0.8786 3rd Qu.:4
000501 : 1 Max. :6533 Max. :7907 Max. :0.9889 Max. :5
(Other):173 NA's :1 NA's :1

Unfortunately, I know from painful experience that the projection we just created will not match with the
google map we’d like to match to. So we need to change the projection of this map to something that has
coordinates in latitude and longitude, rather than meters (from some point).

I use the spTransform() function to tell R that we want to go from the current coordinate reference system
to EPSG number 4326. See this handy website with information on virtually all projections.
but we need to put points into lat/long to get them to agree with the google map
tpoints.geog <- spTransform(tpoints, CRS("+init=epsg:4326"))
crs(tpoints.geog)

CRS arguments:
+init=epsg:4326 +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84
+towgs84=0,0,0

Of course, the mapping we’ll do below requires a dataframe, not a spatial points dataframe. This means that
we need a dataframe with the x/y coordinates of each tract. We do this below. First we find the coordinates
of tpoints.geog using the coordinates() function, and then make a dataframe with the data.frame()
function.

Unfortunately, R puts the tract ID as a row name, rather than as a varaible. I fix this with the plyr function
rownames_to_column from the tibble package.

Finally, I check the output. Does it look ok?
make a dataframe with coordinates
tract.coords <- data.frame(coordinates(tpoints.geog))
library(dplyr)

##
Attaching package: 'dplyr'

The following objects are masked from 'package:rgeos':
##
intersect, setdiff, union

The following objects are masked from 'package:raster':
##
intersect, select, union

The following objects are masked from 'package:plyr':
##
arrange, count, desc, failwith, id, mutate, rename, summarise,
summarize

The following objects are masked from 'package:stats':

16

http://spatialreference.org/ref/epsg/wgs-84/

##
filter, lag

The following objects are masked from 'package:base':
##
intersect, setdiff, setequal, union
class(tract.coords)

[1] "data.frame"
tract.coords <- tibble::rownames_to_column(tract.coords, "tract.fp")
names(tract.coords)

[1] "tract.fp" "x" "y"
tract.coords[1:5,]

tract.fp x y
1 000100 -77.06059 38.90836
2 000201 -77.07483 38.90934
3 000202 -77.06828 38.90784
4 000300 -77.07566 38.91755
5 000400 -77.06590 38.92389

D.2. Add in data to points

Of course, these points are not very useful without any data. Here we merge in the tract-level data, and
check on the results. Since I already merged in tract level data to dcts.map.data, I just tell R to treat that
as a dataframe (using the as.data.frame() command) and merge it in. Finally, I check the results.
merge in the data
names(dcts.map.data)

[1] "tract.fp" "mob.same.house" "mob.tot.pop" "mob.same.hs.shr"
[5] "quintile"
tract.coords <- merge(tract.coords,as.data.frame(dcts.map.data),

by = "tract.fp")
dim(tract.coords)

[1] 179 7
tract.coords[1:5,]

tract.fp x y mob.same.house mob.tot.pop mob.same.hs.shr
1 000100 -77.06059 38.90836 3862 4895 0.7889683
2 000201 -77.07483 38.90934 2787 4074 0.6840943
3 000202 -77.06828 38.90784 3385 4923 0.6875889
4 000300 -77.07566 38.91755 4550 5310 0.8568738
5 000400 -77.06590 38.92389 1325 1501 0.8827448
quintile
1 2
2 1
3 1
4 4
5 4

17

D.3. Make a map

Now we are ready to make a graduated density map. First we’ll pull a map from google as the background.
For more details, see last week’s tutorial.
lets get a dc map from google
library(ggmap)

Warning: package 'ggmap' was built under R version 3.4.4

Loading required package: ggplot2

##
Attaching package: 'ggplot2'

The following object is masked from 'package:raster':
##
calc
dmv.map.gl <- get_map(location = c(lon = -77.04, lat = 38.9), zoom = 12, source = "google")

Map from URL : http://maps.googleapis.com/maps/api/staticmap?center=38.9,-77.04&zoom=12&size=640x640&scale=2&maptype=terrain&language=en-EN&sensor=false
ggmap(dmv.map.gl)

38.85

38.90

38.95

−77.10 −77.05 −77.00 −76.95

lon

la
t

Now that I have this map, I double-check the data, and use ggplot to make a combination of graduated size
circles (from geom_point()) on top of the google map.
plot number of people in the same house a year ago
summary(tract.coords$mob.same.house)

18

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 1959 2487 2686 3356 6533
summary(tract.coords$x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-77.11 -77.03 -77.01 -77.01 -76.99 -76.92
names(tract.coords)

[1] "tract.fp" "x" "y" "mob.same.house"
[5] "mob.tot.pop" "mob.same.hs.shr" "quintile"
plot people in same city one year ago with circles of varying size
library(ggplot2)
ggmap(dmv.map.gl) +

geom_point(data=tract.coords, aes(x=x, y = y, size = mob.same.house))

Warning: Removed 4 rows containing missing values (geom_point).

38.85

38.90

38.95

−77.10 −77.05 −77.00 −76.95

lon

la
t

mob.same.house

0

2000

4000

6000

I don’t love this final product. I think the google map background is too noisty – recall that this is fixable
with input options – and that the circles are probably too dark and too equally-sized to convey information
well.

19

E. Dot Density Maps

We wrap up with dot density plots. This portion of the tutorial is very heavily draw from this work, and I
am appreciative.

For this map, we’ll use the block group data, since it will generate more finely spaced dots. The idea here is
that you use dots to represent a certain number of people – here each dot represents 10.

We begin by making a subset of the block group dataframe, keeping only five columns that describe your
housing one year ago: Lived in the same house, lived in the same metro area, lived in a different metro area,
lived in a non-metro area, and lived outside the US. We divide these figures by 10 so that each dot will
represent ten people.
we'll start with the block group data
num.dots <- select(block.groups.dc,

c("B07201e2","B07201e4","B07201e7","B07201e13","B07201e14")) / 10
dim(num.dots)

[1] 450 5

The trick to the dot density is putting dots in polygons. We rely on a R function called dotsInPolys() that
does this for us. Here, for each column in num.dots we are creating a list of polygons called sp.dfs that
have dots randomly assigned within the relevant polygon (f="random").

I will go over this command in greater detail during the lecture, but the idea is that we are using R’s lapply()
function to do things over a list of x, where x takes on the values of the names of the columns in num.dots
(names(num.dots)). The output is a list of dataframes, each of which is created by the dotsInPolys()
command.

Note that because dots are randomly assigned within polygons of the tracts, we could theoretically get a
different looking map each time we do this. However, tracts are quite small, so the map is unlikely to look
different in practice (as Rosa can attest, since she tried it.)
then put dots randomly in the polygons
sp.dfs <- lapply(names(num.dots), function(x) {

dotsInPolys(dcbgs.map, as.integer(num.dots[, x]), f="random")
})

Finally, we plot this dot density map. First we look at the coordinates of the tpoints file, so I can properly
locate my legend (though I want to admit this took a lot of trial and error).

(As an aside, we can use the original projection here, since we are not matching this map with any other. We
could alternatively use the second one; it doesn’t really matter.)

We choose another Brewer palette and add a legend to the plot.
needed for figuring out legend
summary(coordinates(tpoints))

x y
Min. :1611979 Min. :310128
1st Qu.:1618026 1st Qu.:318600
Median :1620668 Median :320302
Mean :1620742 Mean :320177
3rd Qu.:1623404 3rd Qu.:322430
Max. :1628568 Max. :328201
plot them
plot(dcbgs.map, lwd = 0.01, border = "grey")
pal <- c("#8dd3c7", "#ffffb3", "#fb8072", "#bebada", "#80b1d3")

20

https://www.blog.cultureofinsight.com/2017/06/building-dot-density-maps-with-uk-census-data-in-r/

for (i in 1:length(sp.dfs)) {
plot(sp.dfs[[i]], add = T, pch = 16, cex = 0.1, col = pal[i])

}
legend(1605000, 317400, legend=c("Same house", "Same metro", "Different metro","non-metro","non-US"),

col=pal, lty=1:2, cex=0.8)

Same house
Same metro
Different metro
non−metro
non−US

summary(dcbgs.map)

Object of class SpatialPolygonsDataFrame
Coordinates:
min max
x 1610830.2 1629412
y 308504.6 329361
Is projected: TRUE
proj4string :
[+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96 +x_0=0
+y_0=0 +datum=NAD83 +units=m +no_defs +ellps=GRS80 +towgs84=0,0,0]
Data attributes:
STATEFP10 COUNTYFP10 TRACTCE10 BLKGRPCE10 GEOID10
11:450 001:450 001001 : 6 1:179 110010001001: 1
002102 : 6 2:156 110010001002: 1
001500 : 5 3: 74 110010001003: 1
002101 : 5 4: 33 110010001004: 1
005500 : 5 5: 6 110010002011: 1
007601 : 5 6: 2 110010002021: 1
(Other):418 (Other) :444

21

NAMELSAD10 MTFCC10 FUNCSTAT10 ALAND10 AWATER10
Block Group 1:179 G5030:450 S:450 100233 : 1 0 :378
Block Group 2:156 1011677: 1 83 : 2
Block Group 3: 74 102295 : 1 1059 : 1
Block Group 4: 33 1033566: 1 106 : 1
Block Group 5: 6 1040527: 1 11701 : 1
Block Group 6: 2 104202 : 1 124342 : 1
(Other):444 (Other): 66
INTPTLAT10 INTPTLON10 GISJOIN
+38.8132451: 1 -076.9143351: 1 G11000100001001: 1
+38.8221670: 1 -076.9178170: 1 G11000100001002: 1
+38.8259640: 1 -076.9185396: 1 G11000100001003: 1
+38.8260370: 1 -076.9200165: 1 G11000100001004: 1
+38.8263382: 1 -076.9222541: 1 G11000100002011: 1
+38.8269677: 1 -076.9232083: 1 G11000100002021: 1
(Other) :444 (Other) :444 (Other) :444
Shape_area Shape_len
Min. : 31158 Min. : 745.7
1st Qu.: 126137 1st Qu.: 1547.6
Median : 214271 Median : 2184.4
Mean : 353585 Mean : 2632.4
3rd Qu.: 366470 3rd Qu.: 2975.5
Max. :6636981 Max. :33406.2
##

F. Homework

1. How many block groups are there in Washington, DC? How many tracts?

2. Make a different choropleth map using a non-grey ColorBrewer palette.

3. Make either a graduated density plot or a dot density plot using at least one dataset not from this
tutorial.

22

	A. Get data into shape
	A.1 Some libraries
	A.2. Load block group maps and data, subset to DC
	A.3. Merge map file and data, version 1
	A.4. Merge map file and data, version 2

	B. Create tract-level data
	B.1. Prepare the map
	B.2. Prepare the data
	B.3. Merge the data
	B.4. Create new variables

	C. Choropleth maps
	D. Graduated Symbol Maps
	D.1. Make point data
	D.2. Add in data to points
	D.3. Make a map

	E. Dot Density Maps
	F. Homework

