
Admin G/B/U Stories R

Lecture 6:
Functions and Storytelling

March 18, 2019

Admin G/B/U Stories R

Overview

Course Administration

Good, Bad and Ugly

Telling a Story

Maps in R

Admin G/B/U Stories R

Course Administration

1. Sign up for consultations!
• sign up for slots April 8, 10 or 11
• no class meeting April 15

2. In-class workshop April 8: handout today

3. Anything else?

Admin G/B/U Stories R

Class 7, March 25: Good Bad and Ugly

Send by 9 am next Monday. See if you can find a story-telling
graphic.

• MF

• IT

Admin G/B/U Stories R

This Week’s Good Bad and Ugly

• EW

• MP

Admin G/B/U Stories R

McCall’s Example

Admin G/B/U Stories R

Ellen’s Example

Admin G/B/U Stories R

Stories

Admin G/B/U Stories R

Today

1. Components of a story

2. Pulling apart a graph

Admin G/B/U Stories R

1. Components of a Story

• Act 1: introduce characters, set up problem

• Act 2: working on the problem, main character changes as a
result of problem

• Act 3: climax and resolution of the problem

Admin G/B/U Stories R

What Does this Mean for a Policy Brief?

1. Pose the problem, showing its importance

2. Give evidence for the problem or magnitude

3. Propose resolutions

Admin G/B/U Stories R

What Does this Mean for a Policy Brief?

1. Pose the problem, showing its importance

2. Give evidence for the problem or magnitude

3. Propose resolutions

Admin G/B/U Stories R

Which of Knaflic’s Advice is Most Relevant for this
Communication?

• Storyboard

• Motivate: identify a problem/question/tension

• The evidence
• In Knaflic’s book this is the lead-up to a policy
• In this work, it can be the lead-up to a conclusion
• Or an establishment of fact

• Call to action
• people want a resolution
• make sure these relate to evidence

• All parts should be linked

Admin G/B/U Stories R

Which of Knaflic’s Advice is Most Relevant for this
Communication?

• Storyboard

• Motivate: identify a problem/question/tension

• The evidence
• In Knaflic’s book this is the lead-up to a policy
• In this work, it can be the lead-up to a conclusion
• Or an establishment of fact

• Call to action
• people want a resolution
• make sure these relate to evidence

• All parts should be linked

Admin G/B/U Stories R

Which of Knaflic’s Advice is Most Relevant for this
Communication?

• Storyboard

• Motivate: identify a problem/question/tension

• The evidence

• In Knaflic’s book this is the lead-up to a policy
• In this work, it can be the lead-up to a conclusion
• Or an establishment of fact

• Call to action
• people want a resolution
• make sure these relate to evidence

• All parts should be linked

Admin G/B/U Stories R

Which of Knaflic’s Advice is Most Relevant for this
Communication?

• Storyboard

• Motivate: identify a problem/question/tension

• The evidence
• In Knaflic’s book this is the lead-up to a policy
• In this work, it can be the lead-up to a conclusion
• Or an establishment of fact

• Call to action
• people want a resolution
• make sure these relate to evidence

• All parts should be linked

Admin G/B/U Stories R

Which of Knaflic’s Advice is Most Relevant for this
Communication?

• Storyboard

• Motivate: identify a problem/question/tension

• The evidence
• In Knaflic’s book this is the lead-up to a policy
• In this work, it can be the lead-up to a conclusion
• Or an establishment of fact

• Call to action

• people want a resolution
• make sure these relate to evidence

• All parts should be linked

Admin G/B/U Stories R

Which of Knaflic’s Advice is Most Relevant for this
Communication?

• Storyboard

• Motivate: identify a problem/question/tension

• The evidence
• In Knaflic’s book this is the lead-up to a policy
• In this work, it can be the lead-up to a conclusion
• Or an establishment of fact

• Call to action
• people want a resolution
• make sure these relate to evidence

• All parts should be linked

Admin G/B/U Stories R

Which of Knaflic’s Advice is Most Relevant for this
Communication?

• Storyboard

• Motivate: identify a problem/question/tension

• The evidence
• In Knaflic’s book this is the lead-up to a policy
• In this work, it can be the lead-up to a conclusion
• Or an establishment of fact

• Call to action
• people want a resolution
• make sure these relate to evidence

• All parts should be linked

Admin G/B/U Stories R

Common Pitfalls

• Failure to motivate problem or issue

• Too little definition

• Too much information

• Conclusion without evidence

Admin G/B/U Stories R

Telling a Story with Graphics

FIG0801

Price has declined for all products on the market
since the launch of Product C in 2010

$0

$100

$200

$300

$400

$500

Product A Product B Product C Product D Product E

Average Retail Product Price Per Year

2008 2009 2010 2011 2012 2013 2014

Admin G/B/U Stories R

Telling a Story with Graphics

FIG0811

A
B

C

D

E

In the next 5 minutes...

OUR GOAL:
Understand how prices have changed
over time in the competitive landscape.

Use this knowledge to inform the pricing
of our product.

We will end with a specific recommendation.

1
2

Admin G/B/U Stories R

Telling a Story with Graphics

FIG0812

Products A and B were launched in 2008 at price points of $360+

$0

$100

$200

$300

$400

$500

2008 2009 2010 2011 2012 2013 2014

Av
er

ag
e

pr
ic

e

Year

Retail price over time

A
B

C

D

E

Admin G/B/U Stories R

Telling a Story with Graphics

FIG0813

They have been priced similarly over time, with B consistently
slightly lower than A

$0

$100

$200

$300

$400

$500

2008 2009 2010 2011 2012 2013 2014

Av
er

ag
e

pr
ic

e

Year

Retail price over time

A
B

C

D

E

Admin G/B/U Stories R

Telling a Story with Graphics

FIG0814

In 2014, Products A and B were priced at $260 and $250,
respectively

$0

$100

$200

$300

$400

$500

2008 2009 2010 2011 2012 2013 2014

Av
er

ag
e

pr
ic

e

Year

Retail price over time

A
B

C

D

E

Admin G/B/U Stories R

Telling a Story with Graphics

FIG0815

Products C, D, and E were each introduced later
at much lower price points...

$0

$100

$200

$300

$400

$500

2008 2009 2010 2011 2012 2013 2014

Av
er

ag
e

pr
ic

e

Year

Retail price over time

A
B

C

D

E

Admin G/B/U Stories R

Telling a Story with Graphics

FIG0816

…but all have increased in price since their respective launches

$0

$100

$200

$300

$400

$500

2008 2009 2010 2011 2012 2013 2014

Av
er

ag
e

pr
ic

e

Year

Retail price over time

A
B

C
D

E

Admin G/B/U Stories R

Telling a Story with Graphics

FIG0817

In fact, with the launch of a new product in this space, we tend to
see an initial price increase, followed by a decrease over time

$0

$100

$200

$300

$400

$500

2008 2009 2010 2011 2012 2013 2014

Av
er

ag
e

pr
ic

e

Year

Retail price over time

A
B

C
D

E

Admin G/B/U Stories R

Telling a Story with Graphics

FIG0818

As of 2014, retail prices have converged, with an average retail
price of $223, ranging from a low of $180 (C) to a high of $260 (A)

$0

$100

$200

$300

$400

$500

2008 2009 2010 2011 2012 2013 2014

Av
er

ag
e

pr
ic

e

Year

Retail price over time

A
B

C
D

E

Admin G/B/U Stories R

Telling a Story with Graphics

FIG0819

To be competitive, we recommend introducing our product below
the $223 average price point in the $150-$200 range

$0

$100

$200

$300

$400

$500

2008 2009 2010 2011 2012 2013 2014

Av
er

ag
e

pr
ic

e

Year

Retail price over time

A
B

C
D

E

Recommended range
$200

$150

AVG

Admin G/B/U Stories R

R

Why Functions?

I Many times, you need to repeat very similar code
I You can copy and paste, but ..

I Subject to error when you make your small changes
I A real bother when you need to change things

I For example
I Make many similar graphs
I Load multiple files with similar names
I Create summary stats with different subsets

Good Functions

1. Make code more readable
2. Avoid coding errors
3. Make you more productive

From “Nice R Code” on github.

However: Never Start with a Function

I Get one version of your code working first
I Then build the function
I When you’ve been programming for two years, try the function

first

Defining a Function

function.name <- function(arg1, arg2){
stuff your function does

}

I function.name: what you call the function
I function: needed to tell R this is a function
I arg1: first argument of the function
I inside the curly braces: what you want the function to do

Simple Function Example

summer <- function(x,y){
x^y

}

I function name?
I arguments?
I body of the function?

Calling a Function

summer <- function(x,y){
x^y

}

summer(x=2,y=3)

[1] 8

summer(3,2)

[1] 9

Calling a Function

summer <- function(x,y){
x^y

}

summer(x=2,y=3)

[1] 8

summer(3,2)

[1] 9

Calling a Function

summer <- function(x,y){
x^y

}

summer(x=2,y=3)

[1] 8

summer(3,2)

[1] 9

Calling a Function

summer <- function(x,y){
x^y

}

summer(x=2,y=3)

[1] 8

summer(3,2)

[1] 9

Getting things out of a function

I Suppose you want to use the output of summer elsewhere in
your program

I Functions “return” the last line
I “Return” means makes a value that exists outside of the

function
I Best explained via example

However, if you save a graph with ggsave() in the function, that
will exist outside the function.

Getting things out of a function

I Suppose you want to use the output of summer elsewhere in
your program

I Functions “return” the last line
I “Return” means makes a value that exists outside of the

function
I Best explained via example

However, if you save a graph with ggsave() in the function, that
will exist outside the function.

What Gets Returned, 1 of 4
summer2 <- function(x,y){

o1 <- x^y
o1
print(paste0("o1 is ", o1))
o2 <- x + y
print(paste0("o2 is ", o2))

}

summer2(1,2)

[1] "o1 is 1"
[1] "o2 is 3"

What if I write o2?

o2

Error in eval(expr, envir, enclos): object 'o2' not found

What Gets Returned, 1 of 4
summer2 <- function(x,y){

o1 <- x^y
o1
print(paste0("o1 is ", o1))
o2 <- x + y
print(paste0("o2 is ", o2))

}

summer2(1,2)

[1] "o1 is 1"
[1] "o2 is 3"

What if I write o2?

o2

Error in eval(expr, envir, enclos): object 'o2' not found

What Gets Returned, 1 of 4
summer2 <- function(x,y){

o1 <- x^y
o1
print(paste0("o1 is ", o1))
o2 <- x + y
print(paste0("o2 is ", o2))

}

summer2(1,2)

[1] "o1 is 1"
[1] "o2 is 3"

What if I write o2?

o2

Error in eval(expr, envir, enclos): object 'o2' not found

What Gets Returned, 2 of 4
summer2 <- function(x,y){

o1 <- x^y
print(paste0("o1 is ", o1))
o2 <- x + y
print(paste0("o2 is ", o2))

}

o3 <- summer2(1,2)

[1] "o1 is 1"
[1] "o2 is 3"

What if I call o3?

o3

[1] "o2 is 3"

What Gets Returned, 2 of 4
summer2 <- function(x,y){

o1 <- x^y
print(paste0("o1 is ", o1))
o2 <- x + y
print(paste0("o2 is ", o2))

}

o3 <- summer2(1,2)

[1] "o1 is 1"
[1] "o2 is 3"

What if I call o3?

o3

[1] "o2 is 3"

What Gets Returned, 2 of 4
summer2 <- function(x,y){

o1 <- x^y
print(paste0("o1 is ", o1))
o2 <- x + y
print(paste0("o2 is ", o2))

}

o3 <- summer2(1,2)

[1] "o1 is 1"
[1] "o2 is 3"

What if I call o3?

o3

[1] "o2 is 3"

What Gets Returned, 3 of 4
summer2 <- function(x,y){

o1 <- x^y
print(paste0("o1 is ", o1))
o2 <- x + y
#print(paste0("o2 is ", o2))

}

o3 <- summer2(1,2)

[1] "o1 is 1"

What if I call o3?

o3

[1] 3

What Gets Returned, 3 of 4
summer2 <- function(x,y){

o1 <- x^y
print(paste0("o1 is ", o1))
o2 <- x + y
#print(paste0("o2 is ", o2))

}

o3 <- summer2(1,2)

[1] "o1 is 1"

What if I call o3?

o3

[1] 3

What Gets Returned, 3 of 4
summer2 <- function(x,y){

o1 <- x^y
print(paste0("o1 is ", o1))
o2 <- x + y
#print(paste0("o2 is ", o2))

}

o3 <- summer2(1,2)

[1] "o1 is 1"

What if I call o3?

o3

[1] 3

What Gets Returned, 4 of 4
summer2 <- function(x,y){

o1 <- x^y
print(paste0("o1 is ", o1))
o2 <- x + y
print(paste0("o2 is ", o2))
return(o2)

}

o3 <- summer2(1,2)

[1] "o1 is 1"
[1] "o2 is 3"

What if I call o3?

o3

[1] 3

What Gets Returned, 4 of 4
summer2 <- function(x,y){

o1 <- x^y
print(paste0("o1 is ", o1))
o2 <- x + y
print(paste0("o2 is ", o2))
return(o2)

}

o3 <- summer2(1,2)

[1] "o1 is 1"
[1] "o2 is 3"

What if I call o3?

o3

[1] 3

What Gets Returned, 4 of 4
summer2 <- function(x,y){

o1 <- x^y
print(paste0("o1 is ", o1))
o2 <- x + y
print(paste0("o2 is ", o2))
return(o2)

}

o3 <- summer2(1,2)

[1] "o1 is 1"
[1] "o2 is 3"

What if I call o3?

o3

[1] 3

What About Modifying a Dataframe?
load north korean data
nkd <- data.frame(year = c("2000","2001","2002","2003",

"2004","2005","2006","2007",
"2008","2009","2010","2011",
"2012","2013","2014","2015",
"2016","2017"),

defectors = c("0","0","1","0","0",
"0","0","0","2","0",
"1","0","3","0","0",
"1","1","4"))

nkd

year defectors
1 2000 0
2 2001 0
3 2002 1
4 2003 0
5 2004 0
6 2005 0
7 2006 0
8 2007 0
9 2008 2
10 2009 0
11 2010 1
12 2011 0
13 2012 3
14 2013 0
15 2014 0
16 2015 1
17 2016 1
18 2017 4

Modifications don’t come out here
addone <- function(fixyear){

nkd$defectors <- ifelse(nkd$year == fixyear,
100,
nkd$defectors)

}

How do you call this?

addone(fixyear = 2002)
addone(fixyear = 2005)
nkd

year defectors
1 2000 0
2 2001 0
3 2002 1
4 2003 0
5 2004 0
6 2005 0
7 2006 0
8 2007 0
9 2008 2
10 2009 0
11 2010 1
12 2011 0
13 2012 3
14 2013 0
15 2014 0
16 2015 1
17 2016 1
18 2017 4

Modifications don’t come out here
addone <- function(fixyear){

nkd$defectors <- ifelse(nkd$year == fixyear,
100,
nkd$defectors)

}

How do you call this?

addone(fixyear = 2002)
addone(fixyear = 2005)
nkd

year defectors
1 2000 0
2 2001 0
3 2002 1
4 2003 0
5 2004 0
6 2005 0
7 2006 0
8 2007 0
9 2008 2
10 2009 0
11 2010 1
12 2011 0
13 2012 3
14 2013 0
15 2014 0
16 2015 1
17 2016 1
18 2017 4

Modifications don’t come out here
addone <- function(fixyear){

nkd$defectors <- ifelse(nkd$year == fixyear,
100,
nkd$defectors)

}

How do you call this?

addone(fixyear = 2002)
addone(fixyear = 2005)
nkd

year defectors
1 2000 0
2 2001 0
3 2002 1
4 2003 0
5 2004 0
6 2005 0
7 2006 0
8 2007 0
9 2008 2
10 2009 0
11 2010 1
12 2011 0
13 2012 3
14 2013 0
15 2014 0
16 2015 1
17 2016 1
18 2017 4

But modifications do come out here
addone <- function(fixyear){

nkd$defectors <- ifelse(nkd$year == fixyear,
100,
nkd$defectors)

return(nkd)
}
nkd <- addone(fixyear = 2002)
nkd <- addone(fixyear = 2005)
nkd

year defectors
1 2000 1
2 2001 1
3 2002 100
4 2003 1
5 2004 1
6 2005 100
7 2006 1
8 2007 1
9 2008 3
10 2009 1
11 2010 2
12 2011 1
13 2012 4
14 2013 1
15 2014 1
16 2015 2
17 2016 2
18 2017 5

Bottom Line

I Use functions
I Check output

Admin G/B/U Stories R

Next Lecture

• Next week: Maps 2 of 2

• Read Monominier, Chapter 6 and NYT mapping article

	Course Administration
	Good, Bad and Ugly
	Telling a Story
	Maps in R

