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Today’s tutorial concentrates on merging. Merging is a very basic data skill that you are likely to need for
almost any project. If you want to combine more than one piece of data, you need to know how to merge.

In addition to being an important data preparation task, merging can frequently go wrong yielding screwed-up
data than can ruin a project. This tutorial uses small example datasets to show you how merging works. It
builds in examples of “merges gone wrong” to point out the type of problems for which you should be on the
lookout. For your homework, you’ll need to find some data and merge it in to a county-level dataset.

We end with a brief discussion of factor variables in R. Factor variables are a R oddity, and you need to be at
least slightly familiar with them to use R successfully. Next class we begin with graphs!

A. Load Data

As you did last week, create a R script for this class. Write all your commands in the R script (recall, a file
with R commands ending in .R). You can run all of the program at once (code -> run region -> run all), or
just selected lines.

For the purposes of this tutorial, you may wish to run selected lines. At the end, be sure that your entire
script works – this will show whether your logic throughout the program is consistent.

We’ll begin by loading two very small datasets, examining them, and merging them. These are student-level
datasets, and here are the links for what we’ll call students1 and students2.

Like we did last class, we’ll use read.csv() to open these files, and we’ll use other commands to help us
understand the file. This is a small file, and you can understand this file without these commands just by
opening it in Excel. However, you may (in the course of this class!) need to deal with files larger than you
can see in Excel – which is why we learn these tools, and practice them on a small dataset.

Let’s begin by loading students1, printing the data, and then seeing what variable names the data have.
# load the first student data
student1 <- read.csv("H:/pppa_data_viz/2019/tutorial_data/lecture02/2019-01-27_fake_student_data.csv")

# how many students?
student1

## First_name last_name GWID gpa degree remaining_sem
## 1 elpis josefa G37 2.9 mpa 1
## 2 longina nedelya G12 3.9 mpp 4
## 3 richelle bjoern G08 3.4 mpp 1
## 4 mozghan mara G62 3.5 mpa 2
## 5 runa marcelo G14 3.8 mpp 3
dim(student1)

## [1] 5 6
# what variables?
names(student1)
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## [1] "First_name" "last_name" "GWID" "gpa"
## [5] "degree" "remaining_sem"

We can see from the data print-out and from dim() that this dataset has five rows and six variables. The
command names() tells us the variable names in this dataset. Note that there are two ways you could identify
a student: by name (first and last) and by GWID.

Let’s now load the second students dataset, students2.
# load the second student data
student2 <- read.csv("H:/pppa_data_viz/2019/tutorial_data/lecture02/2019-01-27_fake_student_data_part2.csv")

# how many students?
dim(student2)

## [1] 5 4
# what variables?
names(student2)

## [1] "First_name" "last_name" "GWID" "age"

This new dataset also has five rows (students), so it is possible that the datasets could match perfectly (by
which I mean a one-to-one match). The names() command tells us that this dataset has three variables that
we can see overlap with the variables in students1: First_name, last_name and GWID.

B. Merging

B.1. Basic Merge

Let’s start by merging these two datasets by the GWID variable. “Merging by” a variable means matching a
row in dataset A with the row in dataset B using the variable you’ve specified for the match. In this class
we’ll use exact matches; fancier data work can do things like “fuzzy matches.”

Before we merge, however, recall that both datasets have, in addition to GWID, First_name and last_name.
It is very bad data management practice to have two variables that are exactly the same in a dataset. This
leads to confusion (which one is right?) and is wasteful from a data storage point of view. So we will begin
by keeping just GWID and age from students2 before merging. This is syntax we introduced last class; if it
seems unfamiliar, return to last class’s tutorial on subsetting.
# make student2 w/o duplicate variables
student2.nd <- student2[,c("GWID","age")]

Now we want to merge students1 with the newly created student2.nd. R’s basic merge command has four
key components that I show below in generic form:
# do the merge
new.dataframe <- merge(x = DATAFRAME1,

y = DATAFRAME2,
by = VARIABLE COMMON IN BOTH DATASETS,
all = TRUE/FALSE)

Use x= and y= to specify the input datasets. Use by= to specify the variable on which you’d like to merge,
putting it in quotes. In this method, this variable name needs to be common to both datasets (we relax this
requirement later in the tutorial). Finally, all= lets you modify R’s behavior when merging. If you omit this
part, R will just keep observations in the first dataset. I generally suggest that you keep all observations. If
they don’t merge property (more below on what this means) you should generally understand why – so it’s
important to know whether the merge is successful or not.
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So for our particular example, we specify the merge as below:
# do the merge
students <- merge(x = student1, y = student2.nd, by = "GWID", all = TRUE)

How many observations do you expect this new dataframe to have? Five – same number as in each input
dataframe. How many variables? The six variables in students1 plus one (age) from students2. You might
object, saying that students2 has two variables – and that’s right, but one of them is a duplicate of one in
students1 (GWID).

More generally, when you’re doing a merge, you should know how many observations you expect in the final
product before you merge, and check to be sure that the total number of observations fits your expectations.

So use the commands below to check on these assumptions:
# check on things
dim(students)

## [1] 5 7
names(students)

## [1] "GWID" "First_name" "last_name" "gpa"
## [5] "degree" "remaining_sem" "age"
str(students)

## 'data.frame': 5 obs. of 7 variables:
## $ GWID : Factor w/ 5 levels "G08","G12","G14",..: 1 2 3 4 5
## $ First_name : Factor w/ 5 levels "elpis","longina",..: 4 2 5 1 3
## $ last_name : Factor w/ 5 levels "bjoern","josefa",..: 1 5 4 2 3
## $ gpa : num 3.4 3.9 3.8 2.9 3.5
## $ degree : Factor w/ 2 levels "mpa","mpp": 2 2 2 1 1
## $ remaining_sem: int 1 4 3 1 2
## $ age : int 40 25 24 22 25

We see that the new dataframe has 5 observations (good!), and seven variables (good!). If you compare
names(students1) to names(students), you see one additional variable: age. Also good.

I include the command str() so you have another tool for examining a dataframe. This tool tells you the
number of observations in a dataframe, the variables, and some hint of the values of those variables.

B.2. Merging by two variables

Sometimes it is necessary to merge by two variables, rather than one. In our small dataframe, first name
information is sufficient to indentify a student. This is not generally true, however. (And frequently names
are insufficient to uniquely identify a student, which is why schools use ID numbers!) But for purposes of
example, we will go through a merge by two variables.

Thinking back to the county data from last class, county IDs are not unique across states. Multiple states
have county 001 – so we need to pair this with a state id (e.g., 11 for DC). State id plus county id do uniquely
identify counties.

To start this merge, let’s first make a dataset that has first name, last name and age from students2.
# make student2 w/o gwid
student2.nd2 <- student2[,c("First_name","last_name","age")]

Using a similar syntax – except note that the two by variables are now inside c().
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# do the merge
students.t2 <- merge(x=student1, y=student2.nd2, by=c("First_name","last_name"), all = TRUE)

Let’s check like before. Does it have 5 observations?
# check on size
dim(students.t2)

## [1] 6 7

No! What went wrong?

B.3. Figuring out problems in a merge

The best place to start when figuring out problems in a merge is to make a marker for each of your datasets.
This is a variable that is equal to one and will aid you when you merge the datasets to pick out problems.

Here we created the marker variable in each dataset before we merge:
# make id variables for each dataset
student2.nd2$s2 <- 1
student1$s1 <- 1

Now, re-do the merge with these revised dataframes:
# re-do merge
students.t2 <- merge(x=student1, y=student2.nd2, by=c("First_name","last_name"), all = TRUE)
dim(students.t2)

## [1] 6 9
students.t2

## First_name last_name GWID gpa degree remaining_sem s1 age s2
## 1 elpis josefa G37 2.9 mpa 1 1 22 1
## 2 longina nedelya G12 3.9 mpp 4 1 25 1
## 3 mozghan mara G62 3.5 mpa 2 1 25 1
## 4 richelle bjoern G08 3.4 mpp 1 1 40 1
## 5 runa marcelo G14 3.8 mpp 3 1 NA NA
## 6 runa marcelo <NA> NA <NA> NA NA 24 1

We still have the same problem of six observations (and we should, since we haven’t yet done anything to fix
it).

Now clean up the marker variables to make <NA> values zero. We do this using the (very useful) ifelse
command. The syntax for this command is output <- ifselse(IF CONDITION,[DO IF TRUE],[OTHERWISE
DO THIS]).
# make marker variables zero
students.t2$s1 <- ifelse(is.na(students.t2$s1)==TRUE,0,students.t2$s1)
students.t2$s2 <- ifelse(is.na(students.t2$s2)==TRUE,0,students.t2$s2)

Now we’ll use these markers to see what’s going on. How many observations are both in the first dataset (s1=1)
and in the second (s2=1)? Use the twoway table command to check. You can also print just observations
where the merge doesn’t work – where s1+s2 != 2, using the same subsetting logic as before.
# check on it
table(students.t2$s1,students.t2$s2)

##
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## 0 1
## 0 0 1
## 1 1 4
students.t2[which(students.t2$s1 + students.t2$s2 != 2),]

## First_name last_name GWID gpa degree remaining_sem s1 age s2
## 5 runa marcelo G14 3.8 mpp 3 1 NA 0
## 6 runa marcelo <NA> NA <NA> NA 0 24 1

The table tells us that there are four observations where s1=1 and s2=1. There is one observation where s1
= 1 and s2 = 0, and one observation where s1 = 0 and s2 = 1.

The printed out subset shows that the problem observations are Runa Marcelo. In this dataframe, where
there are no missing data, we could also use missing values in any variable to pick out the problem. However,
this is generally not the case, which is why the markers are so useful.

Why doesn’t the Marcelo observation merge? There’s a hint in the print out: one marcelo is longer than the
other. We can check whether this is the case by creating new variables that are the length of the name (where
this is the length in characters). The command nchar() counts the number of characters in a string. If the
variable is a factor (as these names are; more on factors later), you need to tell R to treat it as a character
variable, using as.character().
# look at the length of the merging variables
students.t2$first.length <- nchar(as.character(students.t2$First_name))
students.t2$last.length <- nchar(as.character(students.t2$last_name))
students.t2

## First_name last_name GWID gpa degree remaining_sem s1 age s2
## 1 elpis josefa G37 2.9 mpa 1 1 22 1
## 2 longina nedelya G12 3.9 mpp 4 1 25 1
## 3 mozghan mara G62 3.5 mpa 2 1 25 1
## 4 richelle bjoern G08 3.4 mpp 1 1 40 1
## 5 runa marcelo G14 3.8 mpp 3 1 NA 0
## 6 runa marcelo <NA> NA <NA> NA 0 24 1
## first.length last.length
## 1 5 6
## 2 7 7
## 3 7 4
## 4 8 6
## 5 4 7
## 6 4 8

Looking at the output, we can see that in the fifth observation the last name has length 7; in the sixth
observation, last name has length 8. It has a space after “marcelo”! You can fix this using a ifselse()
command on the student2 dataset for this particular observation. This is for your homework.

C. Many-to-1 merges

So far we have done 1:1 merges, where observations should have a one corresponding match in each dataset.
Now we’ll try a many to one match, where many observations in a dataset correspond to one observation in
the merging dataset.
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C.1. Merge in attributes by degree program

For this example, we’ll merge in attributes of the degree program. Each degree program has some features
(perhaps number of students, mean time to graduation) that you may want to add to the individual student
records. Begin by downloading these data, and then load them and look at them.
# bring in degree program info
dp <- read.csv("H:/pppa_data_viz/2019/tutorial_data/lecture02/2019-01-27_program_data_1.csv")
dp

## deg grad_rate
## 1 mpp 0.95
## 2 mpa 0.96
names(dp)

## [1] "deg" "grad_rate"

Note that this degree program data has a different variable name for the degree program (deg) than the
students dataset (degree). We want to merge by this variable and that’s ok: we just let R know that the
merging variable has a diffeent name in dataframes x and y as below.

Before merging, how many observations do you expect these data to have?
# merge with student data
students.wd <- merge(x=students,y=dp, by.x="degree", by.y="deg", all = TRUE)
dim(students.wd)

## [1] 5 8
names(students.wd)

## [1] "degree" "GWID" "First_name" "last_name"
## [5] "gpa" "remaining_sem" "age" "grad_rate"

After merging, we find that the dataset has the expected 5 observations, and that the new dataframe has a
graduation rate variable. All good.

Helpfully, R does not keep degree and deg: one is enough!

C.2. Another many-to-one merge example

That merge went very smoothly. Here’s a (more typical) example when things don’t go as you’d hoped.
Download this new program csv file, and load the data.
# bring in degree program info
dp2 <- read.csv("H:/pppa_data_viz/2019/tutorial_data/lecture02/2019-01-27_program_data_2.csv")
names(dp2)

## [1] "degree" "grad_rate"
dp2

## degree grad_rate
## 1 mpp 0.95
## 2 mpa 0.96
## 3 enrp 0.95

Again, how many observations do we expect after the merge? Here is the merge:
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# merge with student data
students.wd2 <- merge(x=students,y=dp2, by="degree", all = TRUE)
dim(students.wd2)

## [1] 6 8

Why are we adding an observation? You can use merging logic to show the problems. Below I tell R to print
any observation that does not have a value for the variable First_name, using is.na(), which evaluates to
TRUE if the value for the variable is missing.
students.wd2[which(is.na(students.wd2$First_name) == TRUE),]

## degree GWID First_name last_name gpa remaining_sem age grad_rate
## 6 enrp <NA> <NA> <NA> NA NA NA 0.95

I can get rid of this extra row – we have no ENRP students in the students dataframe – by using a subsetting
command as we learned last class:
# keep only true students
students.wd2 <- students.wd2[which(is.na(students.wd2$GWID) == FALSE),]
dim(students.wd2)

## [1] 5 8

D. Using the merged data

The point of merging data is to do something with the results.

Here are some examples of things you can do with this newly merged dataframe.
# what is the average age in the class?
av.age <- mean(students.wd2$age, na.rm = TRUE)
av.age

## [1] 27.2
# standard deviation of age?
std.age <- sd(students.wd2$age, na.rm = TRUE)

# how many people by degree program?
table(students.wd2$degree)

##
## mpa mpp enrp
## 2 3 0

E. Factor variables

The UCLA website writes that “Factor variables are categorical variables that can be either numeric or
string variables. There are a number of advantages to converting categorical variables to factor variables.
Perhaps the most important advantage is that they can be used in statistical modeling where they will be
implemented correctly, i.e., they will then be assigned the correct number of degrees of freedom. Factor
variables are also very useful in many different types of graphics. Furthermore, storing string variables as
factor variables is a more efficient use of memory.”
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Our students.wd2 dataframe has some factor variables. We can get a sense of them by using the str()
command. You can also test the type of a specific variable using class():
# look at the variables here
str(students.wd2)

## 'data.frame': 5 obs. of 8 variables:
## $ degree : Factor w/ 3 levels "mpa","mpp","enrp": 1 1 2 2 2
## $ GWID : Factor w/ 5 levels "G08","G12","G14",..: 4 5 1 2 3
## $ First_name : Factor w/ 5 levels "elpis","longina",..: 1 3 4 2 5
## $ last_name : Factor w/ 5 levels "bjoern","josefa",..: 2 3 1 5 4
## $ gpa : num 2.9 3.5 3.4 3.9 3.8
## $ remaining_sem: int 1 2 1 4 3
## $ age : int 22 25 40 25 24
## $ grad_rate : num 0.96 0.96 0.95 0.95 0.95

It is helpful to have factors when you’re looking to tabulate categorical data:
# look more carefully at factors
table(students.wd2$degree)

##
## mpa mpp enrp
## 2 3 0

But remember that although factors sort of look like numbers when you do str(), they are not numbers and
can’t be treated as such:
# can you add factors?
students.wd2$odd <-- students.wd2$degree + students.wd2$GWID

## Warning in Ops.factor(students.wd2$degree): '-' not meaningful for factors

## Warning in Ops.factor(-students.wd2$degree, students.wd2$GWID): '+' not
## meaningful for factors
str(students.wd2)

## 'data.frame': 5 obs. of 9 variables:
## $ degree : Factor w/ 3 levels "mpa","mpp","enrp": 1 1 2 2 2
## $ GWID : Factor w/ 5 levels "G08","G12","G14",..: 4 5 1 2 3
## $ First_name : Factor w/ 5 levels "elpis","longina",..: 1 3 4 2 5
## $ last_name : Factor w/ 5 levels "bjoern","josefa",..: 2 3 1 5 4
## $ gpa : num 2.9 3.5 3.4 3.9 3.8
## $ remaining_sem: int 1 2 1 4 3
## $ age : int 22 25 40 25 24
## $ grad_rate : num 0.96 0.96 0.95 0.95 0.95
## $ odd : logi NA NA NA NA NA

We will return to factor variables when we make graphs, predominantly for labeling.

G. PS 2: Try it yourself with bigger data

1. Use R programming commands to fix the one problematic observation in the student2 dataframe and
make it merge properly (by first and last name) with student1.

2. Find a dataset with county information and merge it either with the data we used last class, or with a
larger county-level dataset for all counties in the US, 1910 to 2010. This second dataset is here, and the
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variable definitions are here.

It is sufficient for your new dataset to have just one year of information.

The final dataset could be at the county level, or at some other unit of observation. (If you found a dataset
about power plants, which had one observation per power plant with a county ID, you would end up with a
power plant-level dataset.)

Make sure you explain the following:

• the source of your additional data
• how many observations you expect
• how many observations you get; if this seems off, fix it and explain what you did

Finally, make three relevant summary statistics. What these output are depends on what you’re merging in.

As with the first problem set, you need to turn in

• your R script
• your R log
• and some text that explains answers to questions
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