Tutorial 3: Histograms
Leah Brooks
February 3, 2019

Today’s tutorial is an introduction to ggplot, the package we’ll focus on for most of the rest of the course,
and an overview of options for histograms and histogram-like plots.

Histograms are plots that show the distribution of one variable. They are very useful when you want to
show details of a variable beyond the mean. For example, if you're interested in showing income inequality,
a histogram is one way to visualize income inequality (you can also calculate statistics that summarize
inequality; these are more limited descriptions of what you see in a histogram).

In this tutorial, we first work though some histograms with a small annual dataset of hurricanes by year since
1851. After establishing how histograms work, we then turn to a larger dataset of all small neighborhoods in
the US, and work on further variations of histograms.

We also introduce some elements of graph legibility such as titles and axis scaling.

A. Load Packages and Small Data

As you did last week, create an R script for this class. Write all your commands in the R script (recall, a file
with R commands ending in .R). You can run all of the program at once (code -> run region -> run all), or
just selected lines.

Start by loading the ggplot2 package. If you have not already installed it, you must first do that by typing
install.packages("ggplot2", dependencies = TRUE)

Once ggplot?2 is loaded, you can tell R (and once per session is enough; I usually put this line at the top of
the .R script) to load the package:

library(ggplot2)

Warning: package 'ggplot2' was built under R version 3.4.4

Now you should download the hurricane data, and load them into R using read.csv(). These data come
from this webpage; look at this page for complete variable definitions. I copied the online table into Excel
and saved as a csv file.

load hurricane data
hurr <- read.csv("H:/pppa_data_viz/2019/tutorial_data/lecture03/2019-02-02_hurricaines_by_year.csv")

Take a quick look at these data. What variables does it have? What do the first five observations look like
(head)? And what types of variables does it have (str)?

look at wvariables and types
names (hurr)

[1] "year" "Named.Storms" "Hurricanes" "Major"

head (hurr)

year Named.Storms Hurricanes Major

1 1851 6 3 1
2 1852 5 5 1
3 1853 8 4 2

www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2019/subpages/handouts/tutorials/tutorial03/2019-02-02_hurricaines_by_year.csv
http://www.stormfax.com/huryear.htm

4 1854 5 3 1

5 1855 5 4

6 1856 6 4

str (hurr)

'data.frame': 168 obs. of 4 variables:

$ year : int 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 ...
$ Named.Storms: int 6 58 5564687

$ Hurricanes : int 3543443676

$ Major :int 1121120011

B. Make a simple histogram

B.1. Check on data

Our first goal is to make a histogram of the number of hurricanes. How many years have which numbers
of hurricanes? Before making a histogram, let’s start by making a table shows the data we’ll use in the
histogram. We do this to check on data quality and to make sure that we are graphing something that can
be graphed with a histogram.

We use the command table that we’ve used in the last tutorial.

make sure we know what data will tell us
table (hurr$Major)

##

0 1 2 3 4 5 6 7 8

31 48 4515 9 9 7 2 1

This looks pretty good — except that there is one NA observation. This observation will give error messages
for graphs and generally cause problems. Let’s look into why and where we have this observation. First I use
summary to tell us about the variable and to be sure that there is a problem. Then I print just a subset of

the dataframe hurr where the variable Major takes on a value of missing.

fixz data problem
summary (hurr$Major)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.000 1.000 2.000 1.964 3.000 8.000 1

hurr[which(is.na(hurr$Major) == TRUE),]

#H# year Named.Storms Hurricanes Major
168 NA NA NA NA

I notice that this error occurs in a row without a value for the variable year. I check that this is the last row
of the dataframe by printing the dimensions of the dataframe. Once I learn that this just seems to be an
extra row, I use another subsetting command to take the dataframe without the problematic line.

dim(Churr)

[1] 168 4
hurr <- hurr[1:167,]

B.2. Basic histograms

We begin by briefly discussing the key elements of making a graph with ggplot. The three things R needs to
make a graph are (i) the dataframe, (ii) the variable you want to graph and (iii) the type of graph you’d like
to make.

R’s ggplot is set up so that you can either use the same dataframe for all types of graph within one call, or
you can name different dataframes in each graph that you combine. We’ll begin with the first possibility
today and move on to the second later in the class.

If you just tell R that you want to use ggplot and specify only the variable of interest, you will get a blank
plot:

ggplot basics

cl <- ggplot(data = hurr, aes(Major))

cl

0 2 4 6 8
Major

Note that I am creating the chart as an object c1, and I can refer to cl elsewhere in the program if I like. I
can add to it, as we’ll see later, and I can output it.

To get an actual plot, I need to add a geom. The ggplot world is based on this geom command, which you
add to the ggplot command to get a graph. There are tons of kinds of geoms that you can use, and we’ll
explore ones for scatter plots, bar plots and many more in this class.

A small programming note: R will fail if you put the + on the second line. So make sure that you never start
a continuing line of ggplot with a plus. See here for details.
how many hurricanes by year?
cl <- ggplot(data = hurr) +
geom_histogram(aes(Major))
cl

“stat_bin()" using “bins = 30°. Pick better value with “binwidth".

50-
40-
30-
IS
>
o
(&)
20-
10- I
0 2 4 6 8
Major

https://stackoverflow.com/questions/17240536/r-unary-operator-error-from-multiline-ggplot2-command

It is entirely equvalent to write the graph this way:

how many hurricanes by year?
cl <- ggplot() +

geom_histogram(data = hurr, aes(Major))
cl

“stat_bin() using “bins = 307 . Pick better value with “binwidth”.
50-

40-

30-

20~

10- I

v ' ' I. I .I - !

0 2 4 6 8
Major

count

This second format is preferred if you think you’ll be using multiple dataframes.

Note that you can also just write the ggplot command directly without assigning to an object, as below. I
usually don’t do this, because I eventually want to save my graph (something we’ll learn in a future class)
and to tell R to save something, you need to have an object to save.
how many hurricanes by year?
ggplot () +

geom_histogram(data = hurr, aes(Major))

All of those charts look odd. There are only 9 categories, not the strange number that the x axis above
reflects. We can change this by telling R the the number of bins we’d like to use as below.

we know there are only 9 bins. fixz to reflect

cl <- ggplot(data = hurr) +
geom_histogram(aes(Major), bins = 9)

cl

50-

40-

30-

count

20~

10-

0.0 25 5.0 7.5
Major

However, the axis labels in the above are entirely unhelpful. We now do two things to make the axes more
legible. First, we modify axis labels by using the labs command to add in x and y axis labels. You can also
use this command to get rid of labels.

Second, to change the numeric labeling on the x axis, I use the scale_x_continuous(breaks =
seq(0,8,1)) to tell R to use numbers 0 to 8 as the labeled breakpoints on the horizontal axis. The command
seq(0,8,1) means “create a sequence starting at 0, going to 8, by 1.” Alternatively, I could have written
scale_x_contintuous(breaks = ¢(0,1,2,3,4,5,6,7,8)), but the first one is shorter, cleaner and easier
to modify if you want to later make changes.

The sequence framework is easily modifiable. For example, seq(0,1,0.25) means “create a sequences starting
at 0, going to 1, by 1/4” Try it and see:

my.seq <- seq(0,1,0.25)
my.seq
[1] 0.00 0.25 0.50 0.75 1.00

Does the sequence look as you expected?

And now for the new graph with both additions:

yes, but nutty labels!

cl <- ggplot(data = hurr) +
geom_histogram(aes(Major), bins = 9) +
scale_x_continuous(breaks = seq(0,8,1)) +

labs(x = "number of hurricanes in a year",
y = "number of years")
cl
50-
40 -
%)
5 30-
Qo
>
S
@
Qo
g 20-
S
c
10-

0 1 2 3 4 5
number of hurricanes in a year

I find the background in the above chart distracting and unhelpful. Like almost everything in ggplot, the
background is also modifiable. The background and the types of axes, and many other things are parts
of the “theme” of the graph, and you modify them with the theme () command. You can see the zillions
of full options for modification here. Right now, we’ll just get rid of the grid and the background color.
Here I use panel.grid, but you can adjust both the major and minor grids with panel.grid.major and
panel.grid.minor. “Getting rid” means setting to element_blank(). I also set the axis lines black.

get rid of crazy background that is confusing
cl <- ggplot(data = hurr) +
geom_histogram(aes(Major), bins = 9) +
scale_x_continuous(breaks = seq(0,8,1)) +
labs(x = "number of hurricanes in a year",
y = "number of years") +
theme (panel.grid = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"))
cl

501

40 1

w
o
1

number of years
N
o

10

0 1 2 3 4 5 6 7 8
number of hurricanes in a year

This histogram above is doing one job: telling us the overall distribution of number of major hurricaines by
year. Suppose we want to convey some additional information — perhaps we’d like to show that the number
of hurricaines by century is on the rise.

Below is an interesting but not-perfect technique for doing this. We color in the bars to reflect the number
of observations that come from each century. This is visually clear, but somewhat misleading because each
century does not have the same number of observations, so three observations from the 2000s should carry
more weight than three observations from the 1900s. We are not going to deal with this concern here, but
return to ways to compare distributions later in this tutorial.

https://ggplot2.tidyverse.org/reference/theme.html

To color bars by century, we first need a variable that marks century. I do this with an ifelse() command.
I then check my work with a table() command, making sure that I have roughly the number of observations
for each century that I think I should.

color sections of bars?
summary (hurr$year)

Min. 1st Qu. Median Mean 3rd Qu. Max.
#i#t 1851 1892 1934 1934 1976 2017

hurr$century <- ifelse(hurr$year < 1900,"1800s",
ifelse(hurr$year >= 1900 & hurr$year < 2000,"1900s","2000s"))
table (hurr$century)

##
1800s 1900s 2000s
49 100 18

10

To add color to the graph, I add to the “aesthetics” command for the graph. I tell R to fill in the bars by the
century, using £ill = century.

color bars by century
cl <- ggplot(data = hurr) +
geom_histogram(aes(x = Major, fill = century), bins = 9) +
scale_x_continuous(breaks = seq(0,8,1)) +
labs(x = "number of hurricanes in a year",
y = "number of years") +
theme (panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),

axis.line = element_line(colour = "black"))
cl
504
404
7]
g 301 century
>
< " 1800s
o B 1000s
€ 20-
£ " 2000s
c
104
O-

0 1 2 3 4 5 6 7 8
number of hurricanes in a year

11

All the graphs we’ve made till now use the number of observations on the vertical axis. Sometimes it is more
useful to show shares rather than numbers. You can do this easily by telling R that the y axis is a share: y =
stat(count / sum(count)). This will change the numbering on the y axis, but not the height of the bars
(why?).
show as percentage, rather than number
cl <- ggplot(data = hurr) +
geom_histogram(aes(y = stat(count / sum(count)), x = Major), bins = 9) +
scale_x_continuous(breaks = seq(0,8,1)) +
labs(x = "number of hurricanes in a year",
y = "share of years") +
theme (panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"))

cl

0.3

©
[N}
)

share of years

©
=
"

0.01

0 1 2 3 4 5 6 7 8
number of hurricanes in a year

I wanted to also show you how you could make this plot with dots instead of bars, sort of like the example
below. However, this requires using a new geom command, so we’ll save it for later in the semester.

knitr::include_graphics("https://camo.githubusercontent.com/a78925c179daccb698eccc463af675627f65dbf1/68

12

C. Load and examine a new dataset

Now we are going to do more histogram examples with a larger dataset where you cannot see all the values.
We do this to work on your skills with larger datasets and to have enough data to make interesting histogram
comparisons.

Specifically, we are using data on neighborhoods called block groups. A block group is a neighborhood of
typically between 600 to 3,000 people. You can find examples of block groups by looking here.

For each block group, we observe data on people and housing. These data come from surveys conducted by
the Census Bureau and are 5-year averages from 2008-2012.

For each block group, we observe a variety of characteristics. Use this Census provided dictionary to
understand variables. Look at this file and you will see what the Census calls “tables.” Table B00001 is total
population, and the variable in the dataset that relates to this table is called BO0001el (e is for estimate).
Similarly, BO0002el is the number of housing units, and B01001e2 is number of males under 5 years of age.

Be aware that

o the file T created does not include all of these variables (there are more than 10,000)

e I loaded variables from sequence numbers 1, 4, 9, 19, 41, 43, 58, 59, 62, 63, 64, 78, 81, 83, 105, and 106

e not all variables are available at the block group level. This file tells you whether variables are available
at the block group level.

For further information, consult documentation from the American Community Survey.
A block group is uniquely identified by the variables state + county + tract 4+ blkgrp.

This file contains just data from VA, MD and DC so as to be of a manageable size. If at some point you
want the whole file (6G), let me know.

Download the data from here

Remember where you saved your data, and use that path in the read.csv() command below. We also use
some of the commands we’ve seen before to explore the data.

load the data
block.groups <- read.csv("H:/pppa_data_viz/2018/tutorials/lecture02/acs_bgs20082012_dmv_20180123.csv")

How big is it?
dim(block.groups)

[1] 9708 3063

What wvariables does it have?
str(block.groups)

'data.frame': 9708 obs. of 3063 variables:
$ FILEID : Factor w/ 1 level "ACSSF": 1111111111 ...

13

http://www.mdp.state.md.us/msdc/census/cen2010/maps/blkgrp10/mont_blkgrp10Roads.pdf
http://www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2018/subpages/handouts/tutorials/lecture01/Sequence_Number_and_Table_Number_Lookup.xls
http://www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2018/subpages/handouts/tutorials/lecture02/ACS_2015_SF_5YR_Appendices.xls
http://www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2018/subpages/handouts/tutorials/lecture02/acs_bgs20082012_dmv_20180123.csv

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

B P P PP PP P DR PR DD PP DD PP D PP D PR P D PP D NP P DN PR D PP P DR PP DN P DN PP D NP

STUSAB
SUMLEVEL
COMPONENT
LOGRECNO
Us
REGION
DIVISION
STATECE
STATE
COUNTY
COUSUB
PLACE
TRACT
BLKGRP
CONCIT
CSA
METDIV
UA

UACP

VID
ZCTA3
SUBMCD
SDELM
SDSEC
SDUNI

UR

PCI

TAZ

UGA
GEOID
NAME
ATANHH
ATANHHFP
ATHHTLI
AITSCE
AITS
ANRC
CBSA
MACC
MEMI
NECTA
CNECTA
NECTADIV
CDCURR
SLDU
SLDL
ZCTAS
PUMAS
PUMA1
BTTR
BTBG
FILETYPE
CHARITER
SEQUENCE

: int
: logi
: logi
: int
: int
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: Factor w/ 9708
: Factor w/ 9708
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi ..
: num 2.01e+08 2.01e+08 2.01e+08 2.01e+08 2.01e+08 ...
:int 0000000000 ...

: int

150

NA
NA
NA
NA

11
NA
NA

100

12
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

150 150 150
000000
368 369 370
NA NA NA NA
NA NA NA NA
NA NA NA NA
NA NA NA NA Ce
11 11 11 11 11 11 11 11 11 11 ...
111111
NA NA NA NA
NA NA NA NA
100 100 100

341

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

123

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

levels "15000US110010001001",..:
levels "Block Group 0, Census Tract 751.01, Suffolk city, Virginia",.

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

: Factor w/ 3 levels "dc","md","va": 1111111111
: int
:int 0O
: int 367
: logi
: logi
: logi
: logi
: int

150 150 150 150 150 150 ...
00 ...

371 372 373 374 375 376 ...
NA ...

NA ...

NA ...

NA

11 ...
NA ...
NA ...
201 202 202 202 202 300 ...
41 ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA

NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA .

106 106 106 106 106 106 106 106 106 106 ...

14

12345678910 ...

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

P P PP D PP P DN P DD PP D PP DD PP DR PR D NP P DN PR DD PP DN P PD DN P D

B0O00O1e1l
B00002e1
B02001e1l
B02001e2
B02001e3
B02001e4
B02001eb
B02001e6
B02001e7
B02001e8
B02001e9
B02001e10
B02005e1
B02005e2
B02005e3
B02005e4
B02005e5
B02005e6
B02005e7
B02005e8
B02005e9
B02005e10
B02005e11
B02005e12
B02005e13
B02005e14
B02005e15
B02005e16
B02005e17
B02005e18
B02005e19
B02005e20
B02005e21
B02005e22
B02005e23
B02005e24
B02005e25
B02005e26
B02005e27
B02005e28
B02005e29
B02005e30
B02005e31
B02005e32 :
[1ist output t

: int
: int
: int
: int
: int
: int
: int
: int
: int
: int
: int
: int
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
: logi
runcated]

63 75 80 54 423 101 60 76 204 65 ...

40 52 33 30 0 46 29 37 44 33 ...

1296 1322 1430 992 4074 1268 869 976 1863 1209 ...
1155 1204 1241 924 3079 1131 800 922 1599 1137 ...
027 00323120009 0 ...

00800000 14 12 ...

44 46 108 68 500 81 59 7 88 40 ...

00000O0O0O
97 22 0 0 16 32
0 23 00 156 12
000000O0O
0230

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

0 156

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

12
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

00 ...

00

020 ...
10 47 66 0 ...

00 ...

10 47 66 0 ...

NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...
NA ...

15

D. Basic histograms, bigger data

Let’s return to histograms and plot the distribution of median household income over the past 12 months, or
B19013el.

Here is what R does with the most basic command:

this makes a basic histogram
ggplot(data = block.groups) + geom_histogram(aes(x=B19013el))

“stat_bin()~ using “bins = 307 . Pick better value with “binwidth”.

Warning: Removed 108 rows containing non-finite values (stat_bin).

900 -
., 600~
c
=]
o
o

300 -

0- L—.
1 1 1
0e+00 1le+05 2e+05

B19013el

16

Now that we have a wealth of data, we can explore how changing the bin width (the width of the vertical
bar, or how many values of income you group together) impacts the look of the graph.

here we begin changing the width of the histogram bins
ggplot(data = block.groups) + geom_histogram(aes(x=B19013el), binwidth = 50)

Warning: Removed 108 rows containing non-finite values (stat_bin).

30-
20-
€
>
S
10-
0- |‘I}|“I“WW WWWMMW{IWIIIIIIIIIIIIIIIh“}HIIIIIIHI|| W O
(I) 50(I)00 1OOIOOO 150IOOO 200I000 250I000
B19013el
again

ggplot(data = block.groups) + geom_histogram(aes(x=B19013el), binwidth = 200)

Warning: Removed 108 rows containing non-finite values (stat_bin).

17

N | NNWM A o

B19013el

and again

ggplot(data = block.groups) + geom_histogram(aes(x=B19013el), binwidth = 5000)

Warning: Removed 108 rows containing non-finite values (stat_bin).

18

600 -

400 -
I=
5
(@]
(&)

200 -

0- IIIIIII'III.IE.lIn-.......l'
0 50000 100000 150000 200000 250000
B19013el

Note that the choice of bin is very important to the final look of the graph. Also notice that very small

bins make the top-coded final category (for all block groups with a median income greater than 250,000, the
Census reports 250,000) look big. Why is this?

19

E. Make things a bit more legible: titles and axis labels

Even with the small number of plots we just made, we can get lost without titles. (Though frequently I end
up omitting the title in the very final product because I put the title on with other software.) Here again we
use labs for labels, and I introduce ggtitle for the main plot title.

make things legible: titles and axes

ggplot(data = block.groups) + geom_histogram(aes(x=B19013el), binwidth = 5000) +
ggtitle("Median Household Income") +
labs(y="number of block groups", x="median household income, 2008-2012")

Warning: Removed 108 rows containing non-finite values (stat_bin).

Median Household Income

600 -

400 -

200 -

number of block groups

h——__l

1 1 1 1 1
0 50000 100000 150000 200000 250000
median household income, 2008-2012

We will talk more later about the power of titles and axis labels. You should consider them key to any decent
final product.

20

F. Other ggplot options for types of histograms

Here we explore density curves and subsets.

F.1. Density curves

We begin by using curves. One way to get a curve is to use stat_bin(), which calculates statistics by bin.

density curve instead of bars

ggplot(data = block.groups) +
stat_bin(aes(x=B19013el), geom = "line") +
ggtitle("Look, Lines!")

“stat_bin()" using “bins = 307 . Pick better value with “binwidth".

Warning: Removed 108 rows containing non-finite values (stat_bin).

Look, Lines!

900 -

600 -

count

300 -

Oe;OO le;05 26;05
B19013el

21

Alternatively, you can use geom_density (), which makes a smoothed density curve (very close to a continuous
histogram). Whether or not smoothing is appropriate depends on your data and goals.
with geom_density
ggplot(data = block.groups) +
geom_density(aes(x=B19013el)) +
ggtitle("Look, Lines!")

Warning: Removed 108 rows containing non-finite values (stat_density).

Look, Lines!

1e-05-
P
s
[
(]
o

5e-06 -

0e+00 -

0 50000 100000 150000 200000 250000

B19013el

22

It is sometimes useful to color in the area under the line, which you can do by changing geom="1ine" to
geom="area":

ggplot(data = block.groups) +
stat_bin(aes(x=B19013el), geom = "area") +
ggtitle("Look, Area!")

“stat_bin() using “bins = 30°. Pick better value with “binwidth”.

Warning: Removed 108 rows containing non-finite values (stat_bin).

Look, Area!

900~

600 -

count

300 -

O-

0e+00 16+05 26+05
B19013el

I don’t view these as superior to the previous final histogram because to me they seem more difficult to
understand without any other benefit.

23

F.2. Subgroups

We can limit the analysis only to a subgroup — this can frequently be useful and enlightening. Note that we
use the double equals sign for evaluating (here we evaluating, not assigning).

subsetting to only certain data

ggplot(data = block.groups[which(block.groups$STATE == "11"),]) +
geom_histogram(aes(x=B19013e1), binwidth = 5000) +
ggtitle("Median Household Income: DC Only")+
labs(y="number of block groups", x="median household income, 2008-2012")

Warning: Removed 3 rows containing non-finite values (stat_bin).

Median Household Income: DC Only

30-

20~

number of block groups

10-

Li

0 50000 100000 150000 200000 250000
median household income, 2008-2012

Compare this distribution to the previous to see how DC’s relative distribution. Of course, looking across
two graphs is not an ideal comparison method. We’ll work on this as we go along.

As an aside, you can accomplish the same thing with the code below. Use the tidyverse command of filter
to make a new dataframe, then justs plot the new dataframe.)
block.groups.dc <- block.groups %>} filter (STATE == 11)
ggplot(data = block_groups_dc) +
geom_histogram(aes(x=B19013e1), binwidth = 5000) +
ggtitle("Median Household Income: DC Only")+
labs(y="number of block groups", x="median household income, 2008-2012")

The first code is more efficient, since we don’t make a new data frame, but it may be less clear.

24

G. Comparing the three jurisdictions

If you want to look at three groups and have used other programming languages, you might think about
using a loop. However, loops are not very R-like. Almost everything that a loop does is better done with a
matrix or list in R. You sometimes have to do heroic coding to make a loop work like you’d like, and heroics
are not needed.

So, to compare the three jurisdictions, you should not use a loop. Instead, use ggplot’s built-in tools to
make graphs by group.

The important missing ingredient before we do this is to recall our discussion of R’s “factor” variables. In
essence, a factor variable is a variable that takes on a limited number of values. This may also be known as a
categorical variable.

We care about factors here because we can only make graphs by factor variables. If something is not already
a factor variable, but it takes on a limited set of values, we can pretend it is by putting as.factor () around
it.

Here we use yet another potential command for creating histograms: geom_freqpoly(). This command also
generates a density curve, but does not smoothy like geom_density().

25

The code below shows the number of block groups by state for median income:

ggplot(data = block.groups) +
geom_freqpoly(aes(x=B19013el, color = as.factor(STATE)), binwidth=5000) +
ggtitle("Number of Block Groups by Median Income By State in the DMV") +
labs (y="number of block groups", x="median household income, 2008-2012")

Warning: Removed 108 rows containing non-finite values (stat_bin).

Number of Block Groups by Median Income By State in the DMV

400 -
o 300-
o
3
> as.factor(STATE)
X
5 — 11
o] -
= 200 — 24
5 — 51
o]
S
>
c

100 -

O-

0e+00 1e+05 26405
median household income, 2008-2012

26

One might prefer to show the share of block groups, rather than the number when making this cross-state
comparison. To do so, tell R that we want density. Using the code we did above calculates the share relative
to all observations — not what we want. Why is this density formulation more appropriate for cross-state
comparisons?

ggplot(data = block.groups) +
geom_freqpoly(aes(x=B19013el, stat(density),
color = as.factor(STATE)), binwidth=5000) +
ggtitle("Share of Block Groups by Median Income By State in the DMV") +
labs(y="share of block groups", x="median household income, 2008-2012")

Warning: Removed 108 rows containing non-finite values (stat_bin).

Share of Block Groups by Median Income By State in the DMV

1.5e-05-
(7]
o
>
c% 1.0e-05- as.factor(STATE)
S — 11
S
° — 24
=
(@]
P — 51
@
% 5.0e-06-

0.0e+00 -

0e+00 1e+05 26+05
median household income, 2008-2012

Alternatively, you can show multiple small versions of the same chart using fact_wrap():

ggplot(data = block.groups) +
geom_freqpoly(aes(x=B19013el, stat(density)), binwidth=5000) +
facet_wrap(block.groups$STATE) +
ggtitle("Share of Block Groups by Median Income By State in the DMV") +
labs(y="share of block groups", x="median household income, 2008-2012")

Warning: Removed 108 rows containing non-finite values (stat_bin).

27

share of block groups

Share of Block Groups by Median Income By State in the DMV

11 24 51

1.5e-05-

1.0e-05-
5.0e-06 -
0.0e+00 -

0e+00 1e+05 2e+05 0e+00 1e+05 2e+05 0e+00 1e+05 2e+05
median household income, 2008-2012

There are still plenty of unpleasant things about these graphs. In this list, I would include

illegible numbers on the horizontal axis

probably bad smoothing making the DC line more jerky than the others
density in illegible units

hard to read legend

unhelpful color scheme

potentially useless grey background

poor axis labels

lines too jerky to convey desired idea

To my mind, the most immediate obstacle to comprehension are the axis numbers; we will return to this next
class.

H.

Homework: Try it yourself

. Answer the red question(s) in the text.

Create a sequence of odd numbers from 1 to 11, inclusive. (Not a graph, just a list of numbers.)

Use something from Few’s rules about preattentive processing to highlight the larger share of years
with large numbers of hurricanes in the 2000s relative to the other centuries.

. Choose a new variable for which to make a histogram from the block group data (not income!)

o plot it by the three states
« then based on a share you calculate in the data (recall that last class we calculated shares)

28

5. Make two histograms from a dataset (one dataset is sufficient) we have not used in this class. A good
place to start if you have no favorite data is Open Data DC here.

e use whatever you please
o write 2 to 3 sentences describing what you find

29

http://opendata.dc.gov/

	A. Load Packages and Small Data
	B. Make a simple histogram
	B.1. Check on data
	B.2. Basic histograms

	C. Load and examine a new dataset
	D. Basic histograms, bigger data
	E. Make things a bit more legible: titles and axis labels
	F. Other ggplot options for types of histograms
	F.1. Density curves
	F.2. Subgroups

	G. Comparing the three jurisdictions
	H. Homework: Try it yourself

