
Tutorial 4: Bar Charts
Leah Brooks

February 18, 2019

Today is dedicated to bar charts: a workhorse data visualization product. Bar charts are great for comparisons
across categories, and sometimes for comparisons across groups. Today, in addition to basic bar charts, you’ll
learn how to make

• grouped bars
• faceted bars
• stacked bars

Like last class, we’ll start with a small dataset and then turn to a larger one.

To achieve bar charts that communicate, you’ll frequently need to modify the underlying data frame. We also
learn some steps to do this. Specifically, we review some R commands we learned previously and introduce
new R commands, including

• as.factor()
• levels()
• mutate()
• going from wide data to long data with gather()

A. What to start with

As always, we need to load the packages I’ve listed below. If R tells you you don’t have these packages, you
can use install.packages() to load them.
library(ggplot2)

Warning: package 'ggplot2' was built under R version 3.4.4
library(dplyr)

##
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
##
filter, lag

The following objects are masked from 'package:base':
##
intersect, setdiff, setequal, union
library(tidyr)

Warning: package 'tidyr' was built under R version 3.4.4
library(scales)

Alternatively, you can use the command require() which checks for the package and loads it if it does not
exist.

1

Figure 1: North Korean Defectors

B. Basic Bar Chart

Last year, a student brought Figure 1 to class as her “Good/Bad/Ugly” submission. We use these data to get
started with bar chart examples.

B.1. Input data

Figure 1’s bar chart is not the best way to make the point the author was trying to convey: it’s odd to use a
bar chart for time, and each year only takes on values 1 to 4, but the chart seems to suggest that you could
get 1.5.

We begin by modifying this chart. To modify, we need a dataframe. Below I create a small dataframe based
on the information in the chart and print it to make sure it seems ok.
load north korean data
nkd <- data.frame(year = c("2000","2001","2002","2003","2004",

"2005","2006","2007","2008","2009",
"2010","2011","2012","2013","2014",
"2015","2016","2017"),

defectors = c("0","0","1","0","0",
"0","0","0","2","0",

2

"1","0","3","0","0",
"1","1","4"))

nkd

year defectors
1 2000 0
2 2001 0
3 2002 1
4 2003 0
5 2004 0
6 2005 0
7 2006 0
8 2007 0
9 2008 2
10 2009 0
11 2010 1
12 2011 0
13 2012 3
14 2013 0
15 2014 0
16 2015 1
17 2016 1
18 2017 4

3

B.2. Regular bar chart

Let’s make the most basic possible bar chart, by just adding the geom_bar() command. Note that our
dataset is at the year level, and that R adds up the number of years for each number of defectors.
make a bar chart
a2 <- ggplot() +

geom_bar(data = nkd, aes(x=defectors))
a2

0

3

6

9

0 1 2 3 4

defectors

co
un

t

4

This is missing any kind of helpful label to be even vaguely interpretable, so using the labs() command we
introduced last class, I add labels:
a2a <- ggplot() +

geom_bar(data = nkd, aes(x=defectors)) +
labs(x = "number of defectors by year", y="number of years")

a2a

0

3

6

9

0 1 2 3 4

number of defectors by year

nu
m

be
r

of
 y

ea
rs

B.3. Colors within bars

What the above graph is missing is some sense of time. Are the high-defection years recent? To figure this
out, I color in the bars that are from the last five years. To “color in”, you need to have a variable that
indicates whether a year is in the last five.

Below we create a new variable called last.five.yrs that takes on two values: “after 2012” and “2012 or
before,” using the ifselse() command from the previous class.

We also need to use as.numeric(as.character()) around the year variable. It seems that the year variable
is a factor, so its actual numeric representation is meaningless. But if we want to use an operator like >, we
need a number, not a factor or a character. So we first make year a character variable with as.character()
and then make that character variable numeric with as.numeric().

After I create this new variable, I check on it: are there as many “last five years” as we should expect?
create a variable for the last five years
nkd$last.five.yrs <- ifelse(as.numeric(as.character(nkd$year)) > 2012,"after 2012","2012 or before")
table(nkd$last.five.yrs)

5

##
2012 or before after 2012
13 5

6

With this new variable in hand, we fill in the bars, using the fill= command.
a3 <- ggplot() +

geom_bar(data = nkd, aes(x = defectors, fill = nkd$last.five.yrs)) +
labs(x = "number of defectors by year", y="number of years")

a3

0

3

6

9

0 1 2 3 4

number of defectors by year

nu
m

be
r

of
 y

ea
rs

nkd$last.five.yrs

2012 or before

after 2012

This graph looks a little funny, because the new years are on bottom. Visually, this is disconcerting. There
are at least two ways to fix this problem.

7

The easiest way is to use position = position_stack(reverse=TRUE) to flip the order of the bars, as
below:
re-order, so that -after- bars are on top
here, using position_stack()
a3 <- ggplot() +

geom_bar(data = nkd,
aes(x = defectors, fill = nkd$last.five.yrs),
position = position_stack(reverse = TRUE)) +

labs(x = "number of defectors by year", y="number of years") +
ggtitle("fix w/o factor")

a3

0

3

6

9

0 1 2 3 4

number of defectors by year

nu
m

be
r

of
 y

ea
rs

nkd$last.five.yrs

2012 or before

after 2012

fix w/o factor

8

Here we have two categories, so this works fine. But sometimes this fix is insufficient. An alternative method
is to make the new variable a factor, and make sure the order of the factor is as we prefer. First, make the
factor variable by making a character variable (last.five.yrsf) and then making that variable a factor
with as.factor(). We can check the levels of the factor and its ordering with levels().
make a factor variable, then re-order it
nkd$last.five.yrsff <- as.factor(nkd$last.five.yrs)
str(nkd)

'data.frame': 18 obs. of 4 variables:
$ year : Factor w/ 18 levels "2000","2001",..: 1 2 3 4 5 6 7 8 9 10 ...
$ defectors : Factor w/ 5 levels "0","1","2","3",..: 1 1 2 1 1 1 1 1 3 1 ...
$ last.five.yrs : chr "2012 or before" "2012 or before" "2012 or before" "2012 or before" ...
$ last.five.yrsff: Factor w/ 2 levels "2012 or before",..: 1 1 1 1 1 1 1 1 1 1 ...
note, if x is not a factor use levels(factor(x))
levels(nkd$last.five.yrsff)

[1] "2012 or before" "after 2012"

9

Now when we use the factor variable to fill, things still look bad. The ordering of the bars doesn’t match the
ordering of the legend.
now use factor variables
a3 <- ggplot() +

geom_bar(data = nkd,
aes(x = defectors, fill = nkd$last.five.yrsff),
position = position_stack(reverse = TRUE)) +

labs(x = "number of defectors by year", y="number of years") +
ggtitle("fix w factor")

a3

0

3

6

9

0 1 2 3 4

number of defectors by year

nu
m

be
r

of
 y

ea
rs

nkd$last.five.yrsff

2012 or before

after 2012

fix w factor

This is because the factor variable is not in the right order. Below we re-order the levels of the factor variable
with the levels command. The first input into this command is the variable to re-order and the second is
the order in which to put them. We define that order as what’s currently number two, followed by what’s
currently number 1.

Check the re-ordering with levels().
make the factor levels in a different order
nkd$last.five.yrsff <- factor(nkd$last.five.yrsff,levels(factor(nkd$last.five.yrsff))[c(2,1)])
levels(nkd$last.five.yrsff)

[1] "after 2012" "2012 or before"

10

Now, re-do the graph, remaving the position_stack command:
with factors but bad
a4 <- ggplot() +

geom_bar(data = nkd,
aes(x = defectors, fill = nkd$last.five.yrsff)) +

labs(x = "number of defectors by year", y="number of years") +
ggtitle("factor fix improved")

a4

0

3

6

9

0 1 2 3 4

number of defectors by year

nu
m

be
r

of
 y

ea
rs

nkd$last.five.yrsff

after 2012

2012 or before

factor fix improved

C. Bigger data

It’s useful to have small data to get started. However, in general you’ll be working with data that are much
larger – or at least start out much larger than the defector dataset.

C.1. Load data

So we’ll practice bar graphs with a much larger dataset – the one we used last class on DC-area block groups.
Find wherever it was you saved it last time, or re-download, following the instructions in tutorial 3.
block.groups <- read.csv("H:/pppa_data_viz/2018/tutorials/lecture02/acs_bgs20082012_dmv_20180123.csv")

11

C.2. Set up data

We are going to start with a focus on household income, which is variable B19001. We’ll begin with a bar
chart for the entire metro area, which means we need a dataframe that has one observation per household
income type. We start with summarize() to add up the observations and make a new dataframe called metro.

Note that the syntax for this command is .data =, not data =. This is a dplyr syntax requirement. I’m
not entirely sure why they do this (though I’m certain there’s a reason; if you learn it, let me know!).
lets do housing unit type if it exists
bars basic: total housing units for metro area
metro <- summarize(.data = block.groups, B19001e2 = sum(B19001e2),

B19001e3 = sum(B19001e3),
B19001e4 = sum(B19001e4),

B19001e5 = sum(B19001e5),
B19001e6 = sum(B19001e6),
B19001e7 = sum(B19001e7),
B19001e8 = sum(B19001e8),
B19001e9 = sum(B19001e9),
B19001e10 = sum(B19001e10),
B19001e11 = sum(B19001e11),
B19001e12 = sum(B19001e12),
B19001e13 = sum(B19001e13),
B19001e14 = sum(B19001e14),
B19001e15 = sum(B19001e15),
B19001e16 = sum(B19001e16),
B19001e17 = sum(B19001e17))

metro

B19001e2 B19001e3 B19001e4 B19001e5 B19001e6 B19001e7 B19001e8 B19001e9
1 307670 209124 207501 213894 214987 222597 214435 227519
B19001e10 B19001e11 B19001e12 B19001e13 B19001e14 B19001e15 B19001e16
1 202610 411089 532979 713353 526071 361313 412551
B19001e17
1 428524

This one-observation dataframe is great in terms of the underlying data: it has exactly what we need. But it
won’t work with ggplot, as it’s wide instead of long. “Wide” means that the data are in the variable labels;
long means that the same data in the label will go into a new variable.

One way to take data from wide to long, is a command called gather() from tidyr, which does exactly this.
It asks for an input dataframe, the name of your new column that you want to put the label into (key), the
name of the new column into which you want to put the value (value), and finally, the variables that you
want to made long.

We have a long list of variables to make long, so we use a command to get a list of all of them. The command
grep() looks for the thing in the first part of the command (“B19001”) in the thing in the second part of the
command (names(metro)) and checkitout is the output. It looks odd, but it is the column numbers where
any column has the letters “B19001” in its name.

We then use gather() to make a new dataframe (metro.long) that pushes all household income numbers
into one category. And finally we print the final product to make sure it is what we expect.
but this is wide, not long
make it long to make a bar chart
checkitout <- grep("B19001", names(metro))
checkitout

12

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
metro.long <- gather(data = metro, key = invar, value = B19001, grep("B19001", names(metro)))
metro.long

invar B19001
1 B19001e2 307670
2 B19001e3 209124
3 B19001e4 207501
4 B19001e5 213894
5 B19001e6 214987
6 B19001e7 222597
7 B19001e8 214435
8 B19001e9 227519
9 B19001e10 202610
10 B19001e11 411089
11 B19001e12 532979
12 B19001e13 713353
13 B19001e14 526071
14 B19001e15 361313
15 B19001e16 412551
16 B19001e17 428524

C.3. Make a graph, finally

We are now ready to make a bar graph! However, because we are just asking R to plot a value in the data
already – not to add up observations, we need to make this clear. We can do this in one of two ways.

13

The first way is to use geom_col() which knows that it should put the data in the y variable, and not count
the observations.
since we are using values in the data (not asking r to sum up something), we use geom_col()
b3.1 <- ggplot() +

geom_col(data = metro.long, aes(x = invar, y = B19001))
b3.1

0e+00

2e+05

4e+05

6e+05

B19001e10B19001e11B19001e12B19001e13B19001e14B19001e15B19001e16B19001e17B19001e2B19001e3B19001e4B19001e5B19001e6B19001e7B19001e8B19001e9

invar

B
19

00
1

14

Alternatively, we can still use geom_bar(), but let R know that we want to use the actual data with a
command inside geom_bar(): stat = "identity".
can also do this with geom_bar
b3.2 <- ggplot() +

geom_bar(data = metro.long, aes(x = invar, y = B19001), stat = "identity")
b3.2

0e+00

2e+05

4e+05

6e+05

B19001e10B19001e11B19001e12B19001e13B19001e14B19001e15B19001e16B19001e17B19001e2B19001e3B19001e4B19001e5B19001e6B19001e7B19001e8B19001e9

invar

B
19

00
1

C.4. Fixing legend

The labels above look terrible! R uses the values of invar since it doesn’t know what these values mean. We
can fix this by making a factor variable with decent labels. We do this by combining ifelse() commands
with the as.factor() command as below.
metro.long$B19001_lab <- as.factor(

ifelse(metro.long$invar == "B19001e2", "< 10k",
ifelse(metro.long$invar == "B19001e3", "10 to 15k",
ifelse(metro.long$invar == "B19001e4", "15 to 20k",
ifelse(metro.long$invar == "B19001e5", "20 to 25k",
ifelse(metro.long$invar == "B19001e6", "25 to 30k",
ifelse(metro.long$invar == "B19001e7", "30 to 35k",
ifelse(metro.long$invar == "B19001e8", "35 to 40k",
ifelse(metro.long$invar == "B19001e9", "40 to 45k",
ifelse(metro.long$invar == "B19001e10", "45 to 50k",
ifelse(metro.long$invar == "B19001e11", "50 to 60k",
ifelse(metro.long$invar == "B19001e12", "60 to 75k",

15

ifelse(metro.long$invar == "B19001e13", "75 to 100k",
ifelse(metro.long$invar == "B19001e14", "100 to 125k",
ifelse(metro.long$invar == "B19001e15", "125 to 150k",
ifelse(metro.long$invar == "B19001e16", "150 to 200k",
ifelse(metro.long$invar == "B19001e17", "> 200k","bad")))))))))))))))))

metro.long

invar B19001 B19001_lab
1 B19001e2 307670 < 10k
2 B19001e3 209124 10 to 15k
3 B19001e4 207501 15 to 20k
4 B19001e5 213894 20 to 25k
5 B19001e6 214987 25 to 30k
6 B19001e7 222597 30 to 35k
7 B19001e8 214435 35 to 40k
8 B19001e9 227519 40 to 45k
9 B19001e10 202610 45 to 50k
10 B19001e11 411089 50 to 60k
11 B19001e12 532979 60 to 75k
12 B19001e13 713353 75 to 100k
13 B19001e14 526071 100 to 125k
14 B19001e15 361313 125 to 150k
15 B19001e16 412551 150 to 200k
16 B19001e17 428524 > 200k

16

Here’s the graph with these new labels. Note the change in x variable.
looking at the new labels
b4.1 <- ggplot() +

geom_col(data = metro.long, aes(x = B19001_lab, y = B19001))
b4.1

0e+00

2e+05

4e+05

6e+05

< 10k> 200k10 to 15k100 to 125k125 to 150k15 to 20k150 to 200k20 to 25k25 to 30k30 to 35k35 to 40k40 to 45k45 to 50k50 to 60k60 to 75k75 to 100k

B19001_lab

B
19

00
1

17

But it’s pretty hard to read this way. Make the bars horizontal using coord_flip() and they are much easier
to read:
flip the axes
b4.2 <- ggplot() +

geom_col(data = metro.long, aes(x = B19001_lab, y = B19001)) +
coord_flip()

b4.2

< 10k

> 200k

10 to 15k

100 to 125k

125 to 150k

15 to 20k

150 to 200k

20 to 25k

25 to 30k

30 to 35k

35 to 40k

40 to 45k

45 to 50k

50 to 60k

60 to 75k

75 to 100k

0e+00 2e+05 4e+05 6e+05

B19001

B
19

00
1_

la
b

However, this chart is still kind of nutty, because the bars are not in the right order. It’s “right” in some
sense, but unbearable to read. So we use the levels() command to re-order the factor.
wait! bars in wack-a-doodle order
is.factor(metro.long$B19001_lab)

[1] TRUE
levels(metro.long$B19001_lab)

[1] "< 10k" "> 200k" "10 to 15k" "100 to 125k" "125 to 150k"
[6] "15 to 20k" "150 to 200k" "20 to 25k" "25 to 30k" "30 to 35k"
[11] "35 to 40k" "40 to 45k" "45 to 50k" "50 to 60k" "60 to 75k"
[16] "75 to 100k"
metro.long$B19001_lab <- factor(metro.long$B19001_lab, levels = c("< 10k",

"10 to 15k",
"15 to 20k",
"20 to 25k",
"25 to 30k",

18

"30 to 35k",
"35 to 40k",
"40 to 45k",
"45 to 50k",
"50 to 60k",
"60 to 75k",
"75 to 100k",
"100 to 125k",
"125 to 150k",
"150 to 200k",
"> 200k"))

19

Making the graph with the fixed order, things look a lot more pleasant:
fixed order
b4.3 <- ggplot() +

geom_col(data = metro.long, aes(x = metro.long$B19001_lab, y = B19001)) +
coord_flip()

b4.3

< 10k

10 to 15k

15 to 20k

20 to 25k

25 to 30k

30 to 35k

35 to 40k

40 to 45k

45 to 50k

50 to 60k

60 to 75k

75 to 100k

100 to 125k

125 to 150k

150 to 200k

> 200k

0e+00 2e+05 4e+05 6e+05

B19001

m
et

ro
.lo

ng
$B

19
00

1_
la

b

20

Of course, the graph still has scientific notation, which is entirely illegible. Using the scales library, we can
add scale_y_continuous(labels = comma) to fix this. You might be thinking that you want to fix the x
axis, not the y one – why do we name the y axis? Because the y axis is the “true” axis for these data, or the
one with which the variable is linked in the aes() command.
get rid of scientific notation
require(scales)
b4.4 <- ggplot() +

geom_col(data = metro.long, aes(x = B19001_lab, y = B19001)) +
coord_flip() +
scale_y_continuous(labels = comma) +
labs(title = "Household Income Distribution",

y = "number of households",
x = "income category")

b4.4

< 10k

10 to 15k

15 to 20k

20 to 25k

25 to 30k

30 to 35k

35 to 40k

40 to 45k

45 to 50k

50 to 60k

60 to 75k

75 to 100k

100 to 125k

125 to 150k

150 to 200k

> 200k

0 200,000 400,000 600,000

number of households

in
co

m
e

ca
te

go
ry

Household Income Distribution

It is sometimes also of interest to graph shares, rather than levels as we’ve done above. When you are looking
at just one jurisdiction or unit, the shares and levels are visually equivalent. However, when you want to
make cross-unit comparisons, it is frequently the share that is of interest.

To graph shares, first calculate them. We begin by finding the denominator: how many households are there in
the metro area? We use the mutate() command, which adds a row to a dataframe based on within-dataframe
calculations. Here we tell mutate to make a new variable B19001_tot, which is the sum of the column B19001.
As always, we print the dataframe to check this calculation.
find total number of households
metro.long <- mutate(.data = metro.long, B19001_tot = sum(B19001))
metro.long

21

invar B19001 B19001_lab B19001_tot
1 B19001e2 307670 < 10k 5406217
2 B19001e3 209124 10 to 15k 5406217
3 B19001e4 207501 15 to 20k 5406217
4 B19001e5 213894 20 to 25k 5406217
5 B19001e6 214987 25 to 30k 5406217
6 B19001e7 222597 30 to 35k 5406217
7 B19001e8 214435 35 to 40k 5406217
8 B19001e9 227519 40 to 45k 5406217
9 B19001e10 202610 45 to 50k 5406217
10 B19001e11 411089 50 to 60k 5406217
11 B19001e12 532979 60 to 75k 5406217
12 B19001e13 713353 75 to 100k 5406217
13 B19001e14 526071 100 to 125k 5406217
14 B19001e15 361313 125 to 150k 5406217
15 B19001e16 412551 150 to 200k 5406217
16 B19001e17 428524 > 200k 5406217

Now we have everything we need to calculate the ratio: divide number of households in this income group by
the total number of households:
calculate share
metro.long$B19001_shr <- metro.long$B19001 / metro.long$B19001_tot

22

With this share in hand, we re-do the chart
make the chart
b4.5 <- ggplot() +

geom_col(data = metro.long, aes(x = B19001_lab, y = B19001_shr)) +
coord_flip() +
labs(title = "Household Income Distribution",

y = "number of households",
x = "income category")

b4.5

< 10k

10 to 15k

15 to 20k

20 to 25k

25 to 30k

30 to 35k

35 to 40k

40 to 45k

45 to 50k

50 to 60k

60 to 75k

75 to 100k

100 to 125k

125 to 150k

150 to 200k

> 200k

0.00 0.05 0.10

number of households

in
co

m
e

ca
te

go
ry

Household Income Distribution

C.5. Make data long for grouped bars

Now we are going to make grouped bar charts, which are bar charts that replicate the same set of bars across
units. Our “units” are states. We’ll focus on the education variable B15002. To make a grouped bar chart,
we need a long dataframe at the state level. So instead of one observation for each education level, as we
would have had above, now we’ll have three: one for DC, one for MD and one for VA.

This coding is very similar to what we did above, except that we need to group the dataframe below we
summarize. I use the same grep command to get a list of all variables that begin with B15002 into the list
edvars. We also use the summarize_at() command to summarize a bunch of similarly-named varaibles – so
we don’t have to name them all like above. Here we tell R the tbl we are using (a variant on a dataframe,
and we use the grouped dataframe), the variables we want to summarize (the education ones in edvars) and
the function we want to use (sum).

The resulting dataframe should have three observations. We check the output by printing metro.ed to the
screen.

23

grouped bars by state
edvars <- grep("B15002", names(block.groups))
edvars

[1] 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
[18] 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
[35] 997
block.groups.g <- group_by(block.groups, block.groups$STATE)

Warning: `as_dictionary()` is soft-deprecated as of rlang 0.3.0.
Please use `as_data_pronoun()` instead
This warning is displayed once per session.

Warning: `new_overscope()` is soft-deprecated as of rlang 0.2.0.
Please use `new_data_mask()` instead
This warning is displayed once per session.

Warning: The `parent` argument of `new_data_mask()` is deprecated.
The parent of the data mask is determined from either:
##
* The `env` argument of `eval_tidy()`
* Quosure environments when applicable
This warning is displayed once per session.

Warning: `overscope_clean()` is soft-deprecated as of rlang 0.2.0.
This warning is displayed once per session.
metro.ed <- summarize_at(.tbl = block.groups.g, .vars = edvars, .funs = sum)
metro.ed

A tibble: 3 x 36
`block.groups$STA~ B15002e1 B15002e2 B15002e3 B15002e4 B15002e5 B15002e6
<int> <int> <int> <int> <int> <int> <int>
1 11 417432 195790 2612 1816 2423 3419
2 24 3875282 1823873 17692 12847 25671 32255
3 51 5356571 2572117 29698 17867 35196 66512
... with 29 more variables: B15002e7 <int>, B15002e8 <int>,
B15002e9 <int>, B15002e10 <int>, B15002e11 <int>, B15002e12 <int>,
B15002e13 <int>, B15002e14 <int>, B15002e15 <int>, B15002e16 <int>,
B15002e17 <int>, B15002e18 <int>, B15002e19 <int>, B15002e20 <int>,
B15002e21 <int>, B15002e22 <int>, B15002e23 <int>, B15002e24 <int>,
B15002e25 <int>, B15002e26 <int>, B15002e27 <int>, B15002e28 <int>,
B15002e29 <int>, B15002e30 <int>, B15002e31 <int>, B15002e32 <int>,
B15002e33 <int>, B15002e34 <int>, B15002e35 <int>

There are way too many education categories to graph, so we combine them into three types: less than high
school, more than high school, but less than a BA, and a BA or more. I use a R function called rowSums()
to add up multiple rows. For this command, you name the columns you want to add in c(). Note that we
need to add values for men plus values for women.
make education categories
metro.ed$ed.ls.hs <- rowSums(metro.ed[,c("B15002e3","B15002e4",

"B15002e5","B15002e6","B15002e7",
"B15002e8","B15002e9","B15002e10",
"B15002e11",
"B15002e20","B15002e21","B15002e22",
"B15002e23","B15002e24","B15002e25",

24

"B15002e26","B15002e27","B15002e28")])
metro.ed$ed.lt.col <- rowSums(metro.ed[,c("B15002e12","B15002e13","B15002e14",

"B15002e29","B15002e30","B15002e31")])
metro.ed$ed.gt.col <- rowSums(metro.ed[,c("B15002e15","B15002e16","B15002e17","B15002e18",

"B15002e32","B15002e33","B15002e34","B15002e35")])

Now we have a wide dataframe with the three variables of interest and the state number, as well as a lot of
other variables we don’t need. You can check on this by seeing what’s in metro.ed with the names()command.
names(metro.ed)

[1] "block.groups$STATE" "B15002e1" "B15002e2"
[4] "B15002e3" "B15002e4" "B15002e5"
[7] "B15002e6" "B15002e7" "B15002e8"
[10] "B15002e9" "B15002e10" "B15002e11"
[13] "B15002e12" "B15002e13" "B15002e14"
[16] "B15002e15" "B15002e16" "B15002e17"
[19] "B15002e18" "B15002e19" "B15002e20"
[22] "B15002e21" "B15002e22" "B15002e23"
[25] "B15002e24" "B15002e25" "B15002e26"
[28] "B15002e27" "B15002e28" "B15002e29"
[31] "B15002e30" "B15002e31" "B15002e32"
[34] "B15002e33" "B15002e34" "B15002e35"
[37] "ed.ls.hs" "ed.lt.col" "ed.gt.col"

To make this wide dataframe, first we re-name one variable that has a strange name that will cause trouble
(first line below). We then keep only the state variable and the three education variables to make things
easier when we use gather(). (If you don’t drop variables you’re not interested in, they are repeated in all
long observations, which seems likely to cause confusion.)

Finally, we use gather to make a long dataset. Compare the long and wide formats so you understand what’s
going on.
now make it long
names(metro.ed)[names(metro.ed) == "block.groups$STATE"] <- "state"
names(metro.ed)

[1] "state" "B15002e1" "B15002e2" "B15002e3" "B15002e4"
[6] "B15002e5" "B15002e6" "B15002e7" "B15002e8" "B15002e9"
[11] "B15002e10" "B15002e11" "B15002e12" "B15002e13" "B15002e14"
[16] "B15002e15" "B15002e16" "B15002e17" "B15002e18" "B15002e19"
[21] "B15002e20" "B15002e21" "B15002e22" "B15002e23" "B15002e24"
[26] "B15002e25" "B15002e26" "B15002e27" "B15002e28" "B15002e29"
[31] "B15002e30" "B15002e31" "B15002e32" "B15002e33" "B15002e34"
[36] "B15002e35" "ed.ls.hs" "ed.lt.col" "ed.gt.col"
metro.ed <- metro.ed[,c("state","ed.ls.hs","ed.lt.col","ed.gt.col")]
names(metro.ed)

[1] "state" "ed.ls.hs" "ed.lt.col" "ed.gt.col"
metro.long <- gather(data = metro.ed,

key = "ed.type",
value = "ed.num.ppl",
c("ed.ls.hs","ed.lt.col","ed.gt.col"))

metro.long

A tibble: 9 x 3

25

state ed.type ed.num.ppl
<int> <chr> <dbl>
1 11 ed.ls.hs 131610.
2 24 ed.ls.hs 1454263.
3 51 ed.ls.hs 2051403.
4 11 ed.lt.col 72073.
5 24 ed.lt.col 1012698.
6 51 ed.lt.col 1447591.
7 11 ed.gt.col 213749.
8 24 ed.gt.col 1408321.
9 51 ed.gt.col 1857577.

26

C.6. Grouped bars!

We are finally ready to make grouped bars. To understand what the grouping does, let’s first use these data
without any grouping. This graph shows the total number of people in all states in each education grouping.
grouped bars by education -- but w/o grouping
b6.1 <- ggplot() +

geom_col(data = metro.long, aes(x = ed.type, y = ed.num.ppl)) +
scale_y_continuous(labels = comma) +
labs(title = "Education Type by State in Metro Area",

y = "number of households",
x = "education type")

b6.1

0

1,000,000

2,000,000

3,000,000

ed.gt.col ed.ls.hs ed.lt.col

education type

nu
m

be
r

of
 h

ou
se

ho
ld

s

Education Type by State in Metro Area

27

To make these into grouped bars, we start by changing the x variable to state. To have grouped, rather
than stacked, bars, we use position = position_dodge(). We’ll keep refining this picture for a bit.
grouped bars by education shares and state
b6.2 <- ggplot() +

geom_bar(data = metro.long,
aes(x = state, y = ed.num.ppl, fill = ed.type),
position = position_dodge(),
stat = "identity") +

scale_y_continuous(labels = comma) +
labs(title = "Education Type by State in Metro Area",

y = "number of households",
x = "education type")

b6.2

0

500,000

1,000,000

1,500,000

2,000,000

10 20 30 40 50

education type

nu
m

be
r

of
 h

ou
se

ho
ld

s

ed.type

ed.gt.col

ed.ls.hs

ed.lt.col

Education Type by State in Metro Area

28

First, the x axis is uninterpretable and uneven. To fix, we make state a factor:
grouped bars by education shares and state -- state as factor
b6.3 <- ggplot() +

geom_bar(data = metro.long,
aes(x = as.factor(state), y = ed.num.ppl, fill = ed.type),
position = position_dodge(),
stat = "identity") +

scale_y_continuous(labels = comma) +
labs(title = "Education Type by State in Metro Area",

y = "number of households",
x = "education type")

b6.3

0

500,000

1,000,000

1,500,000

2,000,000

11 24 51

education type

nu
m

be
r

of
 h

ou
se

ho
ld

s

ed.type

ed.gt.col

ed.ls.hs

ed.lt.col

Education Type by State in Metro Area

29

It is sometimes preferable to do such a graph as “small multiples,” which we can do with facet_wrap() as
below:
small multiples
b6.4 <- ggplot() +

geom_bar(data = metro.long,
aes(x = ed.type, y = ed.num.ppl, fill = ed.type),
stat = "identity") +

facet_wrap(vars(state))+
scale_y_continuous(labels = comma) +
labs(title = "Education Type by State in Metro Area",

y = "number of households",
x = "education type")

b6.4

11 24 51

ed.gt.coled.ls.hsed.lt.col ed.gt.coled.ls.hs ed.lt.col ed.gt.coled.ls.hsed.lt.col

0

500,000

1,000,000

1,500,000

2,000,000

education type

nu
m

be
r

of
 h

ou
se

ho
ld

s

ed.type

ed.gt.col

ed.ls.hs

ed.lt.col

Education Type by State in Metro Area

In your homeowrk, you’ll undertake a set of fixes to make this graph look decent:

• make shares to compare across states
• label states
• clear up education labeling
• get rid of useless background

30

C.7. Stacked bars

Finally, we consider stacked bars. These should be used with caution, but can be very useful in the appropriate
circumstances.

Here is a basic stacked bar by education type, filled in by state.
stacked by education type
b7.1 <- ggplot() +

geom_col(data = metro.long, aes(x = ed.type, y = ed.num.ppl, fill = state)) +
scale_y_continuous(labels = comma) +
labs(title = "Education Type by State in Metro Area",

y = "number of households",
x = "education type")

b7.1

0

1,000,000

2,000,000

3,000,000

ed.gt.col ed.ls.hs ed.lt.col

education type

nu
m

be
r

of
 h

ou
se

ho
ld

s

20

30

40

50

state

Education Type by State in Metro Area

31

This isn’t a very natural way to look at the data – usually we want to make cross-state comparisons and we
can do that by making the state factor variable the x variable (with labels) and filling by education type
(which we also make a factor with labels).
make state a factor with names
metro.long$statef <- factor(metro.long$state,

levels = c(11, 24, 51),
labels = c("DC", "MD", "VA"))

make an education level factor with names
metro.long$ed.type.f <- factor(metro.long$ed.type,

levels = c("ed.ls.hs","ed.lt.col","ed.gt.col"),
labels = c("< high school", "some college", "BA or higher"))

stacked by state by education shares and state
b7.2 <- ggplot() +

geom_bar(data = metro.long, aes(x = statef, y = ed.num.ppl, fill = ed.type.f), stat = "identity") +
scale_y_continuous(labels = comma) +
labs(title = "Education Type by State in Metro Area",

y = "number of households",
x = "education type",
fill = "legend title")

b7.2

0

2,000,000

4,000,000

DC MD VA

education type

nu
m

be
r

of
 h

ou
se

ho
ld

s

legend title

< high school

some college

BA or higher

Education Type by State in Metro Area

32

D. Homework

1. Do the graph clean-up listed in C.6.

2. Make a simple bar chart (no grouping) without a legend box (put labels on the graph if needed) from a
new dataset (not one we used in class already).

3. Re-do the creation of a state-level long dataset from C.6. with another variable from the block.groups
dataframe and make a grouped bar chart to show it.

33

	A. What to start with
	B. Basic Bar Chart
	B.1. Input data
	B.2. Regular bar chart
	B.3. Colors within bars

	C. Bigger data
	C.1. Load data
	C.2. Set up data
	C.3. Make a graph, finally
	C.4. Fixing legend
	C.5. Make data long for grouped bars
	C.6. Grouped bars!
	C.7. Stacked bars

	D. Homework

