
Tutorial 8: Line Charts
Leah Brooks

March 27, 2019

Today’s tutorial focuses on line charts. In addition, I offer you some better code to put a ggplot() call into
a function. We review summarizing, use of factor variables, making data long (from wide) and summarizing
data. In addition, you do some of your own data cleaning to prepare a file to load.

From her review of the tutorial, Jill warns that this one was tougher on RStudio, so be ready to restart as
needed.

A. Load packages

Let’s begin by loading packages. The only addition from what we’ve used before is scales, which helps put
commas into numbers so they are legible, among other things.
library(dplyr)

##
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
##
filter, lag

The following objects are masked from 'package:base':
##
intersect, setdiff, setequal, union
library(ggplot2)

Warning: package 'ggplot2' was built under R version 3.4.4
library(scales) # for making numbers with commas
library(tidyr)

Warning: package 'tidyr' was built under R version 3.4.4

B. Simple line graph

We are going to begin with a “simple”" line graph. It looks simple, but it took a lot of work to look good!

B.1. Look at the final product

Here are the slides with this graph (sequential) that I used in my presentation.

1

DC Gains Population Through 1950

Population Loses Start with Desegregation

2

Continue A�er Civil Disturbance

Population Turns Up A�er 2000

B.2 Load and prepare data

Let’s begin by downloading data from here. These are county-level data on population 1910 to 2010 (among
other variables).

Use read.csv to grab these data as we’ve done before.
load data
counties <- read.csv("h:/pppa_data_viz/2019/tutorial_data/lecture08/counties_1910to2010_20180116.csv")

3

www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2019/subpages/handouts/tutorials/tutorial08/counties_1910to2010_20180116.csv

Now just limit the data to DC. You could do this in the ggplot call itself. However, in this case when we are
only planning to use DC, this gives us a smaller dataset to work with and that speeds processing. This will
also make the coding easier, since we won’t have to subset in each graph.

Take a look at the data after we subset to DC. Does it have the right number of observations?
get just dc
dct <- counties[which(counties$statefips == 11),]
dim(dct)

[1] 11 68
dct[,c("year","statefips","countyfips","cv1")]

year statefips countyfips cv1
285 1910 11 1 331069
3244 1920 11 1 437571
6314 1930 11 1 486869
9418 1940 11 1 663091
12520 1950 11 1 802178
15626 1960 11 1 763956
18764 1970 11 1 756510
21899 1980 11 1 638333
25039 1990 11 1 606900
28182 2000 11 1 572059
31326 2010 11 1 601723

4

B.3. Make the simplest line graph

Now that you know many ggplot commands, it will not be a shock to hear that you make a line graph using
geom_line(). As for all ggplot graphs, you should specify a dataframe and x and y variables. Below we
make the simplest possible line graph.
b3 <- ggplot() +

geom_line(data = dct, aes(x = year, y = cv1))
b3

4e+05

5e+05

6e+05

7e+05

8e+05

1925 1950 1975 2000

year

cv
1

B.4. Make some improvements

The line graph above is great for getting a sense of the data. It’s not so good for communicating. The axis
labels don’t line up with the years in the data, the vertical axis labels are hard to read, and we don’t need
the grey background.

We fix the horizontal axis to put 20-year labels with scale_x_continuous(limits= c(1910, 2010), breaks
= c(seq(1910,2010,20))). This tells R to start in 1910, and stop in 2010. It also tells R to make breaks on
the axis at 1910 and every 20 years until 2010. We fix the vertical axis with scale_y_continuous(labels
= comma, limits = c(0, 825000), breaks = c(seq(0,800000,200000))). This tells R to use commas
in the numbers, to start at 0 and end at 825,000, and to make value labels every 200,000.

It will also work better if the main line is a little thicker; we adjust this with the geom_line() option of
size = 1.5.

5

done <-
ggplot() +
geom_line(data = dct, mapping = aes(x=year, y=cv1), size=1.5) +
scale_y_continuous(labels = comma, limits = c(0, 825000), breaks = c(seq(0,800000,200000))) +
scale_x_continuous(limits= c(1910, 2010), breaks = c(seq(1910,2010,20))) +
labs(x="", y="") +
theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
panel.background = element_blank(),
panel.grid.major.y = element_line(color="gray"),
legend.position = "none",
axis.line.x = element_line(color = "black"),
axis.ticks.x = element_blank(),
axis.ticks.y = element_blank(),
axis.text = element_text(size = 25),
axis.title = element_text(size = 20),
plot.title = element_text(size=25))

done

0

200,000

400,000

600,000

800,000

1910 1930 1950 1970 1990 2010

B.5 A few more improvements

I’d call the above plot functional, but the point of this graph is to point out specific historical moments
that explain the shape of the plot To do that we add text and lines to the plot. We add text with
geom_text(),where we just put in the data directly. We add lines with geom_segment(). Getting the right
x and y coordinates for these lines took me a very long time.

6

We also add dots on the line via geom_point(). This alerts readers to the fact (sort of) that the data are
only actually at the points. The other parts of the graph are really just filled in.
done2 <-

ggplot(dct) +
geom_line(dct, mapping = aes(x=year, y=cv1), size=1.5) +
geom_point(dct, mapping = aes(x=year, y=cv1), size=5) +
scale_y_continuous(labels = comma, limits = c(0, 825000), breaks = c(seq(0,800000,200000))) +
scale_x_continuous(limits= c(1910, 2010), breaks = c(seq(1910,2010,20))) +
#scale_shape_manual(values = c(16, 21)) +
labs(x="", y="") +
theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
panel.background = element_blank(),
panel.grid.major.y = element_line(color="gray"),
legend.position = "none",
axis.line.x = element_line(color = "black"),
axis.ticks.x = element_blank(),
axis.ticks.y = element_blank(),
axis.text = element_text(size = 25),
axis.title = element_text(size = 20),
plot.title = element_text(size=25)) +

geom_segment(x=1995, y=0, xend=1995, yend=220000, color="black") +
geom_segment(x=1995, y=360000, xend=1995, yend=825000, color="#045a8d") +
geom_segment(x=1968, y=0, xend=1968, yend=450000, color = "#2b8cbe") +
geom_segment(x=1968, y=550000, xend=1968, yend=825000, color = "#2b8cbe") +
geom_segment(x=1954, y=0, xend=1954, yend=460000, color = "#74a9cf") +
geom_segment(x=1954, y=610000, xend=1954, yend=825000, color = "#74a9cf") +
geom_text(x=1955, y=575000, label="1954:", color = "#74a9cf", size=7, hjust=1) +
geom_text(x=1955, y=535000, label="School", color = "#74a9cf", size=7, hjust=1) +
geom_text(x=1955, y=495000, label="Desegregation", color = "#74a9cf", size=7, hjust=1) +
geom_text(x=1967, y=525000, label="1968:", color = "#2b8cbe", size=7, hjust=0) +
geom_text(x=1967, y=475000, label="Civil Disturbance", color = "#2b8cbe", size=7, hjust=0) +
geom_text(x=1994, y=325000, label="1995:", color="#045a8d", size=7, hjust=0) +
geom_text(x=1994, y=285000, label="Control Board", color="#045a8d", size=7, hjust=0) +
geom_text(x=1994, y=245000, label="Takes Power", color="#045a8d", size=7, hjust=0)

done2

7

1954:1954:1954:1954:1954:1954:1954:1954:1954:1954:1954:
SchoolSchoolSchoolSchoolSchoolSchoolSchoolSchoolSchoolSchoolSchool

DesegregationDesegregationDesegregationDesegregationDesegregationDesegregationDesegregationDesegregationDesegregationDesegregationDesegregation 1968:1968:1968:1968:1968:1968:1968:1968:1968:1968:1968:
Civil DisturbanceCivil DisturbanceCivil DisturbanceCivil DisturbanceCivil DisturbanceCivil DisturbanceCivil DisturbanceCivil DisturbanceCivil DisturbanceCivil DisturbanceCivil Disturbance

1995:1995:1995:1995:1995:1995:1995:1995:1995:1995:1995:
Control BoardControl BoardControl BoardControl BoardControl BoardControl BoardControl BoardControl BoardControl BoardControl BoardControl Board
Takes PowerTakes PowerTakes PowerTakes PowerTakes PowerTakes PowerTakes PowerTakes PowerTakes PowerTakes PowerTakes Power

0

200,000

400,000

600,000

800,000

1910 1930 1950 1970 1990 2010

C. Showing multiple counties

The section above graphs just DC. In this section, we graph multiple counties and make them distinguishable.

C.1 Keep just a few counties

Here we subset the counties data to just keep DC (state 11), Maryland’s Montgomery and Prince George’s
counites (state 24, counties 31 and 33), and Virginia’s Arlington, Alexandria and Fairfax jurisdictions (state
51, counties 13, 510 and 59).

We also make the year variable numeric for ease of plotting. And then to save space, we get rid of the counties
dataframe with rm(counties). You can use rm() for any objects that you no longet want.
dcm <- counties[which(counties$statefips == 11 |

counties$statefips == 24 & counties$countyfips %in% c(31,33) |
counties$statefips == 51 & counties$countyfips %in% c(13,510,59)),]

dcm$nyear <- as.numeric(dcm$year)
rm(counties)

Finally, to identify a county in ggplot, we need both the state and county variables together. I use “paste0”
to concatenate the state and county variables.
make a state+county variable
dcm$stc <- paste0(dcm$statefips,dcm$countyfips)

8

C.2. Plot all counties

To plot multiple counties at one time, we use the group() command and tell R that the groups are by the
stc variable. For legibility, I add commas in the y-axis values.
all counties
ac <- ggplot() +

geom_line(data = dcm, aes(x=year, y=cv1, group = stc)) +
scale_y_continuous(labels = comma)

ac

0

300,000

600,000

900,000

1925 1950 1975 2000

year

cv
1

9

Of course, without a legend or identifying features, this graph is very hard to interpret. We add color =
statefips so that we can see which states are where on the graph.
color by state
ac <- ggplot() +

geom_line(data = dcm, aes(x=year, y=cv1, group = stc, color = statefips)) +
scale_y_continuous(labels = comma)

ac

0

300,000

600,000

900,000

1925 1950 1975 2000

year

cv
1

20

30

40

50

statefips

10

This graph is an improvement, but it has the very unfortunate feature that it presents the state code as if it
were a continuous variable. I use as.factor() around the state variable to let R kow it is categorical.
color by state, itemized legend
ac <- ggplot() +

geom_line(data = dcm, aes(x=year, y=cv1, group = as.factor(stc), color = as.factor(statefips))) +
scale_y_continuous(labels = comma)

ac

0

300,000

600,000

900,000

1925 1950 1975 2000

year

cv
1

as.factor(statefips)

11

24

51

There are still at least a few issues with this graph. For basic legibility, we should made the state codes
numbers. You can do this by making a state factor variable and assigning it a level. We do not do this here,
but you can see it in previous tutorial.

D. Capital Bikeshare data

This section does a little more prep work to get to a line graph. Specifically, we

• practice with functions
• showing quoting problem of last class
• work with date variables
• summarize data

First, download the 2019/01 Capital bikeshare data from here. Use read.csv() to load these data.
cabi.201901 <- read.csv("H:/pppa_data_viz/2019/tutorial_data/lecture08/201902-capitalbikeshare-tripdata/201902-capitalbikeshare-tripdata.csv")

head(cabi.201901)

11

https://s3.amazonaws.com/capitalbikeshare-data/index.html

Duration Start.date End.date Start.station.number
1 206 2019-02-01 00:00:20 2019-02-01 00:03:47 31509
2 297 2019-02-01 00:04:40 2019-02-01 00:09:38 31203
3 165 2019-02-01 00:06:34 2019-02-01 00:09:20 31303
4 176 2019-02-01 00:06:49 2019-02-01 00:09:45 31400
5 105 2019-02-01 00:10:41 2019-02-01 00:12:27 31270
6 757 2019-02-01 00:12:37 2019-02-01 00:25:14 31503
Start.station End.station.number
1 New Jersey Ave & R St NW 31636
2 14th & Rhode Island Ave NW 31519
3 Tenleytown / Wisconsin Ave & Albemarle St NW 31308
4 Georgia & New Hampshire Ave NW 31401
5 8th & D St NW 31256
6 Florida Ave & R St NW 31126
End.station Bike.number Member.type
1 New Jersey Ave & N St NW/Dunbar HS W21713 Member
2 1st & O St NW E00013 Member
3 39th & Veazey St NW W21703 Member
4 14th St & Spring Rd NW W21699 Member
5 10th & E St NW W21710 Member
6 11th & Girard St NW W22157 Member

E. Prepare bikeshare data

To get these data ready for a line chart, we need to get the time variable into a useful format. You can store
dates as text, but then they don’t have the useful properties of numbers – one of which is lining up properly
along the x axis.

We also need to shrink the size of these data through summary statistics since 150,000 is too many to plot.

E.1. Make date variables

Let’s begin with calculating date variables. Date variables are a special kind of variable. They store time and
date as the number of days since January 1, 1970. To convert the string variables Start.date and End.date,
we use the as.POSIXct command.

You tell R what parts of the string correspond to which parts of the date.
cabi.201901$time.start <- as.POSIXct(strptime(cabi.201901$Start.date, "%Y-%m-%d %H:%M:%S"))
cabi.201901$time.stop <- as.POSIXct(strptime(cabi.201901$End.date, "%Y-%m-%d %H:%M:%S"))

E.2. Use date variables for duration calculation

Now that we have two date variables, we can make our own measure of duration and check the bikeshare’s
measure.
my duration calculation
cabi.201901$my.duration <- cabi.201901$time.stop - cabi.201901$time.start

comparing my results to built-in results
summary(cabi.201901$my.duration)

12

https://www.rdocumentation.org/packages/base/versions/3.5.3/topics/as.POSIX*

Length Class Mode
158130 difftime numeric
summary(cabi.201901$Duration)

Min. 1st Qu. Median Mean 3rd Qu. Max.
60.0 349.0 577.0 895.9 957.0 86100.0
summary(as.numeric(cabi.201901$my.duration))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.817 9.633 14.939 15.967 1435.000
summary(as.numeric(cabi.201901$Duration))

Min. 1st Qu. Median Mean 3rd Qu. Max.
60.0 349.0 577.0 895.9 957.0 86100.0

This looks similar, but our calculated duration measure is in minutes and the bikeshare’s measure is in
seconds. I could divide cabi$Duration by 60 to see if they are the same. I can also look at the correlation
between the two measures using cor(). I find that the correlation between the two measures is 1. This makes
we suspect that the bikeshare people calcualted the duration in the exact way we did.
look at the correlation -- looks like 1
cor(x = as.numeric(cabi.201901$my.duration),

y = as.numeric(cabi.201901$Duration),
method = c("pearson"))

[1] 1

F. Plotting bikeshare data

The trick to successfully plotting these data is to reduce their dimensionality. The dataframe has about
150,000 observations – way too many to show on any plot.

F.1. Make hour level summary stats

Our first pass at reducing the dimensionality is find hourly averages. First I extract the hour component from
the date variable using the date notation. We then check the output using both summary() and table().
get the hour out of the date variable
cabi.201901$start.hour <- as.numeric(format(cabi.201901$time.start, "%H"))
summary(cabi.201901$start.hour)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 9.00 14.00 13.63 17.00 23.00
table(cabi.201901$start.hour)

##
0 1 2 3 4 5 6 7 8 9 10 11
949 539 383 162 284 1369 3931 9314 15908 9409 6123 6818
12 13 14 15 16 17 18 19 20 21 22 23
8025 8304 8311 9728 12994 18785 13846 8570 5713 4082 2904 1679

13

F.2. Find total number of rides and average duration by hour

We use group_by() and summarize() to find hourly traveling information, calculating both the number of
rides (no_rides) and the average duration of those rides (mean_dur).
summarize to hourly data
cabi.201901 <- group_by(cabi.201901, start.hour)
cabisum <- summarize(.data = cabi.201901, no_rides = n(), mean_dur = mean(Duration))
dim(cabisum)

[1] 24 3

14

F.3. Plot of number of rides and mean duration

Now we’ll plot the results. First, let’s make sure we can get one variable to plot. Then we’ll work on getting
both variables wto plot using a function.

First we plot the number of rides by hour. Our first one goes smoothly:
get it to work outside of a function
c3 <- ggplot() +

geom_line(data = cabisum, mapping = aes(x = start.hour, y = no_rides)) +
labs(title = "Total number of rides by hour")

c3

0

5000

10000

15000

0 5 10 15 20

start.hour

no
_r

id
es

Total number of rides by hour

We’d prefer not to copy and paste this code multiple times for reasons we discussed in class. Instead, make
a function. Many of you asked how to iterate through a variable with ggplot() in a function. The below
shows you how. This document explains the “why.”

15

https://dplyr.tidyverse.org/articles/programming.html

The bottom line is that ggplot() uses non-standard evaluation, so it takes in text in a different way than
base R commands. Thus, to replace text in a ggplot command, you need to input it with quo() and get rid
of the quo() with !! before the new text.
write a simple function for two variables
see examples here
https://dplyr.tidyverse.org/articles/programming.html
c3func <- function(varin,vardescp){

c3 <- ggplot() +
geom_line(data = cabisum, mapping = aes(x = start.hour, y = !! varin)) +
labs(title = vardescp)

print(c3)
}

c3a <- c3func(varin = quo(no_rides), "Total number of rides by hour of the day")

0

5000

10000

15000

0 5 10 15 20

start.hour

no
_r

id
es

Total number of rides by hour of the day

c3a <- c3func(varin = quo(mean_dur), "Average duration of ride by hour of the day")

16

750

1000

1250

1500

0 5 10 15 20

start.hour

m
ea

n_
du

r
Average duration of ride by hour of the day

G. Stacked lines, useful for money

The final type of line graph we’re trying today is stacked lines, which can sometimes be very helpful to convey
change over time along with the relative importance of categories.

G.1. Load data

Since this is a policy class, we’ll use budget data for this topic. We are introducing a new dataset: US federal
budget statistics. You can find the data from the Office of Management and Budget here. Download the zip
file from the top of the page and unzip it.

I am not prepping these data for you, since I want to make sure you learn how to put raw data into R. You
will find that there are many small issues that cause trouble – this is not atypical, and I want to be sure you
know how to handle them.

Unzip the file you downloaded, and you’ll see a bunch of files in this new folder. They follow the naming
convention on the page from which you downloaded. Open up Tables 1.3 (hist01z3.xls; for homework) and
2.3 (hist02z3.xls; for now) in Excel.

From Table 2.3, we want the year and columns B, C, D, G, H and I. Create a new excel document with just
this information, and make one row at top with names that you’ll understand. Keep just through 2017, and
make sure that you don’t have any junk at the bottom of the table. Save this file as csv (file, save as, choose
“csv” option for file type). If there are numeric variables that take the value *'', make them.”, which is code
for missing.

17

https://www.whitehouse.gov/omb/historical-tables/

Load the csv file you just saved.
makeup of receipts
hist02z3 <- read.csv("H:/pppa_data_viz/2018/tutorials/lecture05/omb_data/hist02z3.csv")
names(hist02z3)

[1] "year" "income.taxes" "corp.taxes" "social.ins"
[5] "excise" "other" "total"

Begin by making sure that what you’ve imported into R is what you expect.

We’ll start with the year variable, using tables().
make sure year is always ok
table(hist02z3$year)

##
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 TQ
1 1 1 1 1 1 1 1 1 1 1

Notice that there are some odd things here. A few observations with no year at all, and one observation
where year is “TQ”. Let’s fix this.

We use subset the data to get rid of the strange years and then create a numeric variable using the same
method as in part B. We use summary() to make sure this cleaned up variable takes on reasonable values.
hist02z3 <- hist02z3[which(hist02z3$year != ""),]
hist02z3 <- hist02z3[which(hist02z3$year != "TQ"),]
hist02z3$nyear <- as.numeric(levels(hist02z3$year))[hist02z3$year]

Warning: NAs introduced by coercion
summary(hist02z3$nyear)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1934 1955 1976 1976 1996 2017

Good – the year variable now seems to have just numeric years.

G.2. Make data long

To make a stacked line (or really, any multiple line), the data needs to be long, not wide. As a refresher, wide
data look like this, with one observation per unit:
wide <- data.frame(state = c("6","36","48"), female_pop = c("10","12","14"), male_pop = c("11","13","12"))
wide

state female_pop male_pop
1 6 10 11
2 36 12 13

18

3 48 14 12

Long data look like this, with one observation per unit and type:
long <- data.frame(state = c("6","36","48","6","36","48"),

pop = c("10","12","14","11","13","12"),
sex = c("female","female","female","male","male","male"))

long

state pop sex
1 6 10 female
2 36 12 female
3 48 14 female
4 6 11 male
5 36 13 male
6 48 12 male

Note how this dataset requires a variable that tells you which type of population the row contains.

Neither data format is “right.” If you were doing a regression and wanted to control for male and female
population, you’d need the wide format. However, to make a line graph with multiple lines in R, you need a
long dataset. We begin by re-naming our variables of interest to make the shift to a long dataframe easier.
first rename stuff so the reshape command works
hist02z3$r1 <- as.numeric(hist02z3$income.taxes)
hist02z3$r2 <- as.numeric(hist02z3$corp.taxes)
hist02z3$r3 <- as.numeric(levels(hist02z3$social.ins))[hist02z3$social.ins]

Warning: NAs introduced by coercion
hist02z3$r4 <- as.numeric(hist02z3$excise)
hist02z3$r5 <- as.numeric(hist02z3$other)
hist02z3$r6 <- as.numeric(hist02z3$total)

Let’s be sure the values of these variables are all numeric. We do this with a loop. Loops are generally not
preferred in R because whatever you do in a loop is usually better done with a command like lapply(),
which we’ll review in a future class.

However, for completeness, here’s a loop example. The basic idea of a loop is that you repeat a set of code
multiple times, modifying the code by the loop index each time.

Here’s a loop that just prints something to the screen.
for(i in seq(1,3,1)){

print(paste0("Hi Mr. Number ",i))
}

[1] "Hi Mr. Number 1"
[1] "Hi Mr. Number 2"
[1] "Hi Mr. Number 3"

Let’s make a little more complicated loop that checks if the variables are numeric.
check numeric
nums <- seq(1,6,1)
nums

[1] 1 2 3 4 5 6
for(i in nums){

cv <- paste("hist02z3$r",i,sep="")
ok <- is.numeric(cv)

19

print(paste0("variable ",cv, " is numeric: ", ok))
}

[1] "variable hist02z3$r1 is numeric: FALSE"
[1] "variable hist02z3$r2 is numeric: FALSE"
[1] "variable hist02z3$r3 is numeric: FALSE"
[1] "variable hist02z3$r4 is numeric: FALSE"
[1] "variable hist02z3$r5 is numeric: FALSE"
[1] "variable hist02z3$r6 is numeric: FALSE"

Now we use tidyr’s gather() as we have already done once before, to make a long dataframe.
make this wide dataset long
r.long <- gather(data = hist02z3,

key = rtype,
value = revenue,
r1:r6)

r.long[1:15,]

year income.taxes corp.taxes social.ins excise other total nyear rtype
1 1934 0.7 0.6 . 2.2 1.3 4.8 1934 r1
2 1935 0.7 0.8 . 2.0 1.5 5.1 1935 r1
3 1936 0.8 0.9 0.1 2.0 1.1 4.9 1936 r1
4 1937 1.2 1.2 0.7 2.1 0.9 6.1 1937 r1
5 1938 1.4 1.4 1.7 2.1 0.9 7.5 1938 r1
6 1939 1.1 1.2 1.8 2.1 0.7 7.0 1939 r1
7 1940 0.9 1.2 1.8 2.0 0.7 6.7 1940 r1
8 1941 1.1 1.8 1.7 2.2 0.7 7.5 1941 r1
9 1942 2.2 3.2 1.7 2.3 0.5 9.9 1942 r1
10 1943 3.5 5.2 1.6 2.2 0.4 13.0 1943 r1
11 1944 9.2 6.9 1.6 2.2 0.5 20.5 1944 r1
12 1945 8.1 7.1 1.5 2.8 0.5 19.9 1945 r1
13 1946 7.1 5.2 1.4 3.1 0.5 17.2 1946 r1
14 1947 7.5 3.6 1.4 3.0 0.6 16.1 1947 r1
15 1948 7.4 3.7 1.4 2.8 0.6 15.8 1948 r1
revenue
1 0.7
2 0.7
3 0.8
4 1.2
5 1.4
6 1.1
7 0.9
8 1.1
9 2.2
10 3.5
11 9.2
12 8.1
13 7.1
14 7.5
15 7.4

Notice that gather has kept all the original variables. This may be confusing because the same data repeats
across observations, making it unclear what uniquely identifies the data. So let’s modify the dataframe to
keep only the time-varying data that we just made long as as not to get confused.

20

keep only relevant columns so we dont get confused
r.long <- r.long[,c("nyear","rtype","revenue")]

Now we create a character variable to record the type of tax revenue for each variable. This not required, but
we do it so we can follow what’s going on and use the names of the tax later on. Here we use the ifelse()
command described in previous tutorials.
make a type of receipts variable
r.long$rname <- ifelse(r.long$rtype == "r1","income taxes",

ifelse(r.long$rtype == "r2", "corp. taxes",
ifelse(r.long$rtype == "r3", "social ins.",

ifelse(r.long$rtype == "r4", "excise",
ifelse(r.long$rtype == "r5", "other",

ifelse(r.long$rtype == "r6", "total","."))))))

21

G.3. Graphs

Let’s start with total tax revenue over time. As in the previous section, we need to note group=1, and recall
that total is r.long$rtype == 6.
line chart of total receipts
g4.1 <-

ggplot() +
geom_line(r.long[which(r.long$rtype=="r6"),],

mapping = aes(x=nyear, y=revenue, group=1))
g4.1

5

10

15

20

1950 1975 2000

nyear

re
ve

nu
e

22

Now we’ll modify the chart to have all the categories but the total. I do this by subetting r.long into all
record types that are not 6 (rtype != 6). In addition, I tell R that the group by which we want to make the
graph is a variable called rname, which R should treat as a factor. You could equally well use rtype, except
that the labels on the chart would be numbers rather than names. We also tell r to color the lines by rname
(color=factor(rname)).
line chart of total receipts by type
g4.2 <-

ggplot() +
geom_line(r.long[which(r.long$rtype != "r6"),],

mapping = aes(x=nyear, y=revenue, group=factor(rname), color=factor(rname)))
g4.2

Warning: Removed 2 rows containing missing values (geom_path).

0.0

2.5

5.0

7.5

10.0

1950 1975 2000

nyear

re
ve

nu
e

factor(rname)

corp. taxes

excise

income taxes

other

social ins.

23

This graph is very hard to read. Too many lines, and we don’t get a sense of the total, which may be a key
point. An alternative is a stacked line. Stacked likes highlight the total amount, and give readers some sense
of the relative share of different categories.
stacked chart of total receipts by type
without factor() this doesnt work
g4.3 <- ggplot() +

geom_area(r.long[which(r.long$rtype != "r6"),],
mapping = aes(x=nyear, y=revenue, group=factor(rname), fill=factor(rname)),
position="stack") +

labs(x="", y="share of GDP")
g4.3

Warning: Removed 2 rows containing missing values (position_stack).

0

5

10

15

20

1950 1975 2000

sh
ar

e
of

 G
D

P

factor(rname)

corp. taxes

excise

income taxes

other

social ins.

H. Homework

1. Modify your code to make the three step-by-step versions of my chart of DC population over time.

2. Using the bikeshare data, re-do the by-hour pictures to be minute-by-minute. Add some annotations to
your graph to point out salient features.

3. More stacked areas

Now you try to load your own budget data!

Use Table 1.3 (his01z3.xls), from which we want the year and columns E, F, G and columns I, J and K.

24

Create a new excel document with just this information, and make one row at top with names that you’ll
understand. Keep just through 2017, and make sure that you don’t have any junk at the bottom of the table.
Save this file as csv (file, save as, choose “csv” option for file type).

Load it into R and make a stacked area graph of receipts, outlays and deficits over time.

Having done this myself, here are a few suggestions

• make long data, as we did above
• make year numeric, as we did for the social insurance revenue above
• get rid of commas in the data. My command to do this, for one variable, is

hist01z3$b1 <- as.numeric(gsub(",", "", hist01z3$cd.receipts, fixed = TRUE))

25

	A. Load packages
	B. Simple line graph
	B.1. Look at the final product
	B.2 Load and prepare data
	B.3. Make the simplest line graph
	B.4. Make some improvements
	B.5 A few more improvements

	C. Showing multiple counties
	C.1 Keep just a few counties
	C.2. Plot all counties

	D. Capital Bikeshare data
	E. Prepare bikeshare data
	E.1. Make date variables
	E.2. Use date variables for duration calculation

	F. Plotting bikeshare data
	F.1. Make hour level summary stats
	F.2. Find total number of rides and average duration by hour
	F.3. Plot of number of rides and mean duration

	G. Stacked lines, useful for money
	G.1. Load data
	G.2. Make data long
	G.3. Graphs

	H. Homework

