

Welcome to Data Visualization Using R

January 13, 2020

R

Take This Class So You Won't Make This Graphic

From Trachtenberg's 2018 magazine.

Or This One

EQUALITY INDEX OF BLACK AMERICA, 2016-2017

	REVISED 2016	2017
EQUALITY INDEX	72.2%	72.3%
Economics	56.2%	56.5%
Health	79.4%	80.0%
Education	77.4%	78.2%
Social Justice	60.9%	57.4%
Civic Engagement	100.6%	100.6%

"U.S. Metros Ranked on Black-White Income Inequality," Next City, May 2, 2017

Instead, Aspire to This

See Tufte for citation.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

R

To Create Memories

- Journalists frequently start articles with anecdotes because they are
 - relateable
 - memorable
 - compelling (?)

R

To Create Memories

- Journalists frequently start articles with anecdotes because they are
 - relateable
 - memorable
 - compelling (?)
- Raw data is none of these things
- Goal of this course is to create graphics that are
 - compelling
 - clear
 - memorable
 - succinct

Ex

Tufte

R

R Tools

Overview

Course Administration

Some R Examples

Tufte, Grandfather of Visualization

Getting Started with R

R Programming

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Course Administration

- 1. Syllabus
 - Policy brief handout
 - Fully composed chart handout
 - Good/bad/ugly assignments handout
- 2. Bring a name tent to class
- 3. Questions/issues with readings?
- 4. Make sure you're signed up for Piazza

- 5. Introductions
 - name and degree
 - why this course?
 - what you do now
 - what you'd like to do when you're done

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Admin R Ex

Tufte

R Examples

R

R Tools

(ロ) (型) (E) (E) (E) (O)()

From a Project about the Long-Run Impacts of DC's 1968 Civil Disturbance

DC Gains Population Through 1950

◆□▶ ◆□▶ ◆三≯ ◆三≯ ◆□▶ ◆□▶

Population Loses Start with Desegregation

Continue After Civil Disturbance

◆□▶ ◆□▶ ◆三≯ ◆三≯ ◆□▶ ◆□▶

Population Turns Up After 2000

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

By Square Footage, 7th Street is Most Impacted

Roughly Half of Square Footage Damaged to Some Degree

(日) (四) (王) (王) (王)

Assessed Value of Most Improvements Drops, 1967 to 1970

Damaged Properties Lose Improvements, A Few Rebuild

1999: Damaged Properties Have Smaller Structures

2005: Damaged Properties Show Some Catch-up

2010: Damaged Properties Approaching Undamaged Ones

2018: Near Convergence of Damaged Properties

Tufte

R

R Tools

From a project about whether and why infrastructure costs are increasing

Spending Per Mile has Tripled Since 1960s

Spending Per Mile has Tripled Since 1960s

・ロト ・日 ・ ・ ・ ・ ・ 日 ・ ・ のへで

Spending Per Mile has Tripled Since 1960s

Interstate Spending Per Mile, Indexed to 100 in 1961

Materials Prices are Roughly Flat Over the Period

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Wages Are Flat, Too \rightarrow Input Prices Cannot Explain Increase

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Admin R Ex

Ex

Tufte

Tufte

R

R Tools

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

R

R Tools

Edward Tufte

- A quantitative political scientist
- Writing in the mid-1970s
- Became interested in visualization by working with pioneering statistician John Tukey
- Remember that this is the pre-Excel era, in which data graphics are difficult to make

R Tools

R

Why Do We Read This?

- Among the first to take the field as a whole seriously
- Greatest popularizer of a now-accepted set of conventions
- Highlights that visualizations only began
 - 1765 with Joseph Priestley
 - 1786 with William Playfair

R Tools

Priestly's Sensation

pecimens of a Chart of Biography.

Joseph Priestley (1733-1804) [Public domain via Wikipedia]

R Tools

The World's First Bar Chart

10	20	30	10	50 0	10 7	0 1	50 9	0 1	00 1	10	3	30	-	150	1	70	-		00	00	-	0 /	260	#84	L	300,000	
+	-								-																	Names	of Places
																										1	
																						1				Je	ver Se.
	E																						1			In	land
															1									din a		n	land
																										Inte	of Man
																										Ori	mland
																							1.1			M	pia
-									14/4						-											ner	ugal
÷																										He	land
-													-	1												Am	adon
		1	1.0												-			5								Ou	ernfey
iz,	-					1			10																	Ger	many
-	-	_																								Denn	ark and
	and the	-	-																							Fla	nden
-	-	-	descos	-	-	-	-	-	-	-	-	-	-	-									1			West	Induce
-	-	-	-						-		1	1016														Am	erica
		-	dantas	and and	-	5462	-	Netz	-		100	05785	-	-	Materia a	120001	ald the	Cardina .	-							Ru	laa
-	-	-	-	-	C.C.C.	-	-	12.78	1545	-	ate	-	-	-	dagat.	AND IS	-									6 /	eland.

William Playfair [Public domain via Wikipedia]

An Argument for Better Visualization

Tufte

All series have the same

R Tools

- mean of X
- variance of X
- mean of Y
- variance of Y
- $\operatorname{corr}(X, Y)$
- β̂

• R²

	I	1	I	1	II	1	V
х	Y	x	Y	x	Y	х	Y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

R

R

An Argument for Better Visualization

All series have the same

R Tools

- mean of X
- variance of X
- mean of Y
- variance of Y
- $\operatorname{corr}(X, Y)$
- β̂ • R²

Which one is a vertical line?

	I	1	I	I	II]	ĪV
х	Y	X	Y	x	Y	х	Y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

An Argument for Better Visualization

Tufte

All series have the same

- mean of X
- variance of X
- mean of Y
- variance of Y
- $\operatorname{corr}(X, Y)$
- β̂ • R²

Which one is a vertical line? Which one is an upside-down U?

	I	1	I]	III	1	IV
х	Y	x	Y	x	Y	Х	Y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	474	5.0	5.73	8.0	6.89

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

R

R Tools

R

An Argument for Better Visualization

Because good visualizations tell the most compelling story

R Tools

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

R

Tufte's Types of Graphs

- 1. Data maps
- 2. Time series
- 3. Space-time narrative designs
- 4. Relational graphs the holy grail

R

R Tools

Data Maps

- Describe the location of numbers
- This can be revealing or obfuscating
- We will make these in this class
- A product of the mid-1800s

R

John Snow on the Location of Cholera in London, c. 1850

・ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < の< の

R

R Tools

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Time Series

- Time on the horizontal axis
- Something else on the vertical axis
- One of the first types of data graphics

R Tools

Train, Paris to Lyon

See Tufte for citation.

<□▶ <週▶ < ≧▶ < ≧▶ = ● ● ○ ○ ○ ○ ○

R Tools

R

Space-Time Narrative Designs

- Move over space and time at the same time
- A time series plus

R

R Tools

Space-Time Narrative Example

Which dimensions?

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

R

R Tools

Space-Time Narrative Example

Which dimensions?

- 1. army size
- 2. army location, N/S
- 3. army location, E/W

- 4. direction of movement
- 5. temperature
- 6. by date

R

R Tools

Relational Graphics

- One variable on the vertical, another on the horizontal
- A conceptual advance in graphics
- A more sophisticated way of thinking

R Tools

Relational Graphics Example

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Tufte's Main Causes of Distortion in Graphics

1. Data are bad

- should be per capita and are not
- data are not consistent over time
- don't adjust for inflation
- 2. Graphics are rotten
 - size doesn't match the numbers.
 - colors and styles are misleading
 - graphic fails to highlight key point

- 3. Graphics are irrelevant
 - too much extraneous stuff

R Tools

R

Ex. of 2: Size and Number Don't Match

R Tools

R

Ex. of 3: Graphics are Irrelevant

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

R Tools

Tufte's Six Rules of Graphic Integrity, 1 to 3 of 6

- 1. The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities represented.
- 2. Clear. detailed. and thorough labeling should be used to defeat graphical distortion and ambiguity. Write out explanations of the data on the graphic itself. Label important events in the data.
- 3. Show data variation, not design variation.

R Tools

R

Tufte's Six Rules of Graphic Integrity, 4 to 6

- 4. In time-series displays of money, deflated and standardized units of monetary measurement are nearly always better than nominal units.
- 5. The number of information-carrying (variable) dimensions depicted should not exceed the number of dimensions in the data.
- 6. Graphics must not quote data out of context.

Admin R Ex

Tufte

R

R Tools

R

Admin R Ex

R

R Tools

What is R?

- A programming language
- Developed by statisticians from New Zealand
- Open source, and therefore free
- Based on "S," developed by Bell Labs

R

R Tools

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Strengths of R

- Free
- Open-source, so packages by all kinds of users are available
- There are frequently many ways to do the same task
- Very good graphics
- Very flexible
- Can have many datasets in memory at once
- Can analyze large datasets
- Can do maps and spatial analysis
- Big user community and lots of online help

fte

R

R Tools

Weaknesses of R

- Not always enterprise-ready: packages break and there is no central help
- There are frequently many ways to do the same task
- Syntax can be challenging

Tuft

R

R Tools

Today's Goals

- When you leave today, you will be able to
 - run a R script
 - create a R dataframe
 - do basic operations with a R dataframe
- Download the R tutorial for this class now.
- You'll continue work at home on your own and turn in a problem set next lecture

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Admin R I

R Ex

Tufte

R

R Tools

R Tools

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Today

- A. Hello World
- B. A R dataframe
- C. Packages
- D. Subsetting
- E. Functions
- F. Summarizing

・ロト ・母ト ・ヨト ・ヨト ・ヨー うへで

A. Hello World

the very first computer program prints "Hello World"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

so we start with this

```
print("hello world!")
```

A. Hello World

the very first computer program prints "Hello World"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

so we start with this

print("hello world!")

[1] "hello world!"

A. Hello World v.2

```
make an object that holds the value "hello world"
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

print that object

```
mr.object <- "hello world"
mr.object</pre>
```

[1] "hello world"
B. A R dataframe

- a dataframe is the basic building block of data analysis in R
- R has other types of data structures, but this will the be most useful to you

- dataframe consists of columns
- each column can be
 - numeric: 1,2,3.556,-2.6
 - or
 - character: "hello", "dogs are good", ""
- refer to rows and columns

Sample dataframe

```
new.dataframe <-
    data.frame(class = c(1,2,3),
        subject = c("basics","merging","graphs"),
        students = c(19,19,18))
new.dataframe</pre>
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

##		class	subject	students
##	1	1	basics	19
##	2	2	merging	19
##	3	3	graphs	18

Referring to parts of the dataframe

new.dataframe[ROWS,COLUMNS]

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Referring to parts of the dataframe

new.dataframe[ROWS,COLUMNS]

Just one column, all rows

new.dataframe[,c("students")]

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 亘 - のへで

[1] 19 19 18

Referring to parts of the dataframe

new.dataframe[ROWS,COLUMNS]

Just one column, all rows

```
new.dataframe[,c("students")]
```

[1] 19 19 18

Just two rows, all columns

new.dataframe[1:2,]

##		class	subject	students
##	1	1	basics	19
##	2	2	merging	19

Refer to just one column with dollar sign

you can also refer to one specific variable as

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

new.dataframe\$students

C. Packages

- there is "Base R," which is a set of basic commands
- and user-written packages that add functionality
- some packages are maintained by teams, frequently updated, and do many things

- some are one-function add-ins
- most famous are those by Hadley Wickham
- today we'll use his "dplyr" packcage

Installing packages

install a package once

install.packages("dplyr", dependencies = TRUE)

Installing packages

install a package once

```
install.packages("dplyr", dependencies = TRUE)
```

 call a package at the beginning of any program in which you'd like to use the package

library(dplyr)

Warning: package 'dplyr' was built under R version 3.6.2
##

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
##

filter, lag

D. Subsetting

sometimes you want to work with something smaller than the whole dataframe

- create a new dataframe that has only part of the big one
- here we keep just students 1 and 2

```
df.smaller <- new.dataframe[1:2,]
df.smaller</pre>
```

##		class	subject	students
##	1	1	basics	19
##	2	2	merging	19

Subset by attributes

take only classes with 19 students
df19 < new.dataframe[which(new.dataframe\$students == 19),]
df19</pre>

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

##		class	subject	students
##	1	1	basics	19
##	2	2	merging	19

E. Functions

- R has 1000s of functions
- functions take data and do something to it
- general format is

new.output <- function(inputs)</pre>

where inputs can be a dataframe or something else

The Mean Function

suppose we want to know the average number of studentsuse the mean function

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

mean(x = new.dataframe\$students)

```
## [1] 18.66667
```

The Mean Function

suppose we want to know the average number of studentsuse the mean function

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 亘 - のへで

mean(x = new.dataframe\$students)

```
## [1] 18.66667
```

or

```
new.mean <- mean(x = new.dataframe$students)
new.mean</pre>
```

```
## [1] 18.66667
```

F. Summarizing

frequently, you'd like to know something at a level of aggrgation not in your dataset

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- in our case, maybe average attendance
- make a new dataframe with this information
- use dplyr library

Making a new dataset that is a function of the old one

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 亘 - のへで

1 18.66667

```
more complicated example in tutorial
```

R

R Tools

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Next Lecture

- Turn in PS 1, which is at the end of the tutorial
- Read Few Chapters 3 and 5
- Look at "Graph Choice Chart"