G/B/U

Prev. Lecture

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

R

Lecture 2: When You Need Graphs and How We See Graphs and Merging

January 27, 2020

dmin	G/B/U	Prev. Lecture	Few	R
		Overview		

Course Administration

Good, Bad and Ugly

Lecture 1 Addendum

Few, Chapters 3 and 5

Merging

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Course Administration

- 1. Any trouble submitting tutorials? questions?
- 2. Questions/issues with readings?
- 3. Make sure you're signed up for Piazza email me if you are not
- 4. Be sure to check online listing for good/bad/ugly
- 5. Addition to syllabus: WSJ's Luis Melgar on March 30
- 6. One-page proposal is due next week
- 7. Anything else?

・ロト・「聞・ 《聞・ 《聞・ 《日・

Next Week's Good Bad and Ugly

inde	rs, send link	Wed. by noon.
	Finder	Commenter
1	Lindsay R	Tereese S
2	Kim W	Danielle C
3	Anna W	David N
	inde 1 2 3	inders, send link Finder 1 Lindsay R 2 Kim W 3 Anna W

Email me ASAP if you're not on the google sheet.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

R

- 1. Data are bad
- 2. Graphics are rotten
- 3. Graphics are irrelevant

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Tufte's Three Routes to a Bad Graph

1. Data are bad

- 2. Graphics are rotten
- 3. Graphics are irrelevant

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Inappropriate Data to Make This Point

Heart Disease Strikes Back Across the U.S., Even in Healthy Places

Middle-aged people are increasingly dying from heart disease in cities across the country—including exercisemad Colorado

Inappropriate Data to Make This Point

Heart Disease Strikes Back Across the U.S., Even in Healthy Places

Middle-aged people are increasingly dying from heart disease in cities across the country—including exercisemad Colorado

Metro areas with the largest rate increases

 1. Lexington, Ky.
 27.9

 2. Atlantic City, N.J.
 25.7

 3. Corpus Christi, Texas
 25.7

 4. Lincoln, Neb.
 25.1

 5. Fort Collins, Colo.
 24.4

%	6. Beaumont, Texas	24.
	7. Fort Wayne, Ind.	23.
	8. Greeley, Colo.	23.
	9. Colo. Springs, Colo.	23.
	10. Kennewick, Wash.	22.

Source is Jan. 14, 2020 article here

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Few: Visual Perception and Graphical Communication

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

R

When Should You Use Tables vs. Graphs?

• Tables are for when

- you care about the actual numbers
- you have **very** few numbers

When Should You Use Tables vs. Graphs?

- Tables are for when
 - you care about the actual numbers
 - you have very few numbers
- Graphs are for when
 - you care about trends or general tendencies
 - you have more numbers than a table can support
 - the exact values are not critical
 - you wish to highlight a particular relationship

Starting with the Table

Job Satisfaction By Income, Education, and Age

	College	Degrees	No College Degrees		
Income	Under 50	50 & over	Under 50	50 & over	
Up to \$50,000	643	793	590	724	
Over \$50,000	735	928	863	662	

Few, Chapter 3, Figure 3.13

R

Version One of a Set of Numbers

R

Version One of a Set of Numbers

What do you think the point of this picture is?

Few, Chapter 3, Figure 3.15

R

Version Two of the Same Set of Numbers

G/B/U

Prev. Lecture

Few

R

Version Two of the Same Set of Numbers

And the point of this picture?

Few, Chapter 3, Figure 3.14 oge

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

R

Few Chapter 5: Drawing Attention

- 1. working memory
- 2. preattentive processing
 - form
 - color
 - spatial position
- 3. applying to design
- 4. gestalt principles of visual perception

Admin			
	- 1-		

G/B/U

Prev. Lecture

Few

R

Working Memory

We don't have much of it

G/B/U

Prev. Lecture

Few

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

R

Working Memory

We don't have much of it

- people can remember 3 to 4 visual encodings for a chart
- therefore, more than about 4 colors as identification are distracting
- good visuals can stick in long-term memory

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

R

Preattentive Processing

Why is this so important? Find the 5s.

G/B/U

Prev. Lecture

Few

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

R

Preattentive Processing

Why is this so important? Find the 5s.

48921652097520589

And now find the 5s.

G/B/U

Prev. Lecture

Few

R

Preattentive Processing

Form Color Spatial Position

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○

R

Form

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□▶

But Beware of 2-D Size

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this – maybe you're drawing building sizes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

R

But Beware of 2-D Size

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this – maybe you're drawing building sizes

How much bigger is the small circle than the larger one?

But Beware of 2-D Size

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this – maybe you're drawing building sizes

How much bigger is the small circle than the larger one? 16x

Admin	G/B/U	Prev. Lecture	Few

Color

R

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

1. Hue

- What you think of as "color"
- Blue, Green, etc
- 2. Intensity
 - make it less intense: add a little gray

G/B/U

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

R

Color

1. Hue

- What you think of as "color"
- Blue, Green, etc
- 2. Intensity
 - make it less intense: add a little gray

Contrasting hues stand out. Intense colors stand out.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Do We Perceive Them Quantitatively?

Туре	Attribute
Form	Length
	Width
	Orientation
	Size
	Shape
	Enclosure
Color	Hue
	Intensity
Position	2-D Position

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Do We Perceive Them Quantitatively?

Туре	Attribute	Quantitatively Perceived?
Form	Length	Yes
	Width	Yes, but limited
	Orientation	No
	Size	Yes, but limited
	Shape	Νο
	Enclosure	No
Color	Hue	No
	Intensity	Yes, but limited
Position	2-D Position	Yes

Context Matters

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○

G/B/U

Prev. Lecture

Few

Context Matters

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

R

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

Calling Attention

R

Gestalt Principles of Visual Perception

- Proximity
- Similarity
- Enclosure
- Closure
- Continuity

These all generate meaning, whether you intend it or not!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

R

Applying These Principles

- first a set of slides that do a so-so job
- second a set of slides that do a better (but improvable) job

Baseline Increase of \$7.3 Million per Mile

R

Measures of Government Quality Unrelated to Spending Increase

additional spending per mile, 1970 onward, \$2016 millions

6

R

Measures of Labor Strength Unrelated to Spending Increase

Baseline

Has State Env. Protection Act

Land Use Cases per 10k People

Bond Score

Num of Local Governments

Right to Work Law

Share Unionized

Share Voting Dem. Pres. Candidate

2 4 additional spending per mile, \$2016 millions

	Baseline				
Land Use Law	Land Use	e Cases pe	r 10k Peop	le	
	Has Stat	e Env. Prot	ection Act		
Fragmentation	Num of L	ocal Gover	nments		
Gov't Quality	Bond Sc	ore			
Labor Strength	Share Ur	nionized			
	Right to	Work Law			
	Share Vo	oting Dem.	Pres. Cand	idate	
(0 2	2	4	6	
A	dditional spend	ling per mile, \$	2016 millions		
				• • • • • • • • • • • • • • • • • • •	

Admin	G/B/U	Prev. Lecture	Few	R
		R		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Today

- A. What is Merging?
- B. How to Merge 1:1
- C. How to Merge Many to 1

(日) (部) (注) (注) (注)

D. Cautions with merging

A. Merging

suppose you have information in more than one dataframe

・ロト ・母ト ・ヨト ・ヨト ・ヨー うへで

- you want to combine these pieces of information
- ▶ this is an **enormous** advantage of statistical software

Examples of When You Need to Merge

Ex. 1:

- you have a dataset on crimes, with addresses
- you want to add the neighborhood median income

・ロト ・日ト ・ヨト ・ヨト ・ヨー うへで

 \blacktriangleright \rightarrow merge by neighborhood id!

Examples of When You Need to Merge

Ex. 1:

- > you have a dataset on crimes, with addresses
- you want to add the neighborhood median income

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 \blacktriangleright \rightarrow merge by neighborhood id!

Ex. 2:

- you have a dataset of student performance
- you want to add information on teacher
- \blacktriangleright \rightarrow merge by teacher id!

Merging Command Overview

```
merge(x = data.frame.1,
    y = data.frame.2,
    by = "varname",
    all = TRUE)
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Merging Command Overview

```
merge(x = data.frame.1,
    y = data.frame.2,
    by = "varname",
    all = TRUE)
```

Now a very simple example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Sample dataframe 1

・ロト ・日 ・ モト ・モト ・ モー ・ つへで

##		class	subject
##	1	1	basics
##	2	2	basics
##	3	3	graphs

Sample dataframe 2

・ロト ・日 ・ モト ・モト ・ モー ・ つへで

##		class	attendance
##	1	1	33
##	2	2	45
##	3	3	26

B. Merge 1:1

df3 <- merge(x = df1, y = df2, by = "class", all = TRUE)

How many rows should this have?

B. Merge 1:1

df3 <- merge(x = df1, y = df2, by = "class", all = TRUE)

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

How many rows should this have?

df3

##		class	subject	attendance
##	1	1	basics	33
##	2	2	basics	45
##	3	3	graphs	26

C. Merge m:1

this is a merge that has unique values in one dataset

・ロト ・日 ・ モト ・モト ・ モー ・ つへで

- ▶ and repeat values in another
- ▶ for us, repeat values are in subject

Dataset to merge in

```
## subject difficulty
## 1 basics easy
## 2 graphs hard
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Merging in

df5 <- merge(x = df3, y = df4, by = "subject", all = TRUE)

How many rows should this have?

Merging in

df5 <- merge(x = df3, y = df4, by = "subject", all = TRUE)

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

How many rows should this have?

df5

##		subject	class	attendance	difficulty
##	1	basics	1	33	easy
##	2	basics	2	45	easy
##	3	graphs	3	26	hard

D. Problems with Merging

▶ you want to merge 1:1 but one dataframe has repeat values

D. Problems with Merging

- you want to merge 1:1 but one dataframe has repeat values
- ▶ you want to merge 1:1 but the merge doesn't work as expected (see tutorial)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

bad merges cause big problems

G/B/U

Prev. Lecture

Fe

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

R

Try Today's Tutorial

- Make a .R script for whole tutorial
- Plus questions at end
- Go forth!

Admin			
	- 1-		

G/B/U

R

Next Lecture

- Turn in PS 2
- Read Few Chapter 9 and Chapter 10, pages 210-217 (on bars)
- Read Chang, Chapter 3
- Read two linked examples from WSJ
- Turn in policy brief proposal