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Welcome! This tutorial assumes that you’ve already done everything in “Get R Ready” tutorial. If this is not
the case, do that first.

Today we are working on basic data management commands and becoming familiar with the R interface.
Sadly, no graphs today. But today should show you the power of statistical software relative to Excel, and
prepare you to make graphics next class.

A. Open RStudio

RStudio is an interface for using R.

1. Open up RStudio.

2. What you need to know about what you see

a. Console: This is the window where you input R commands. You can input them one by one, or
you can write a R program, which is what we will do.

b. Terminal: This window is a terminal window. On a Mac, it should be a unix interface; on a PC it
is a DOS interface. I don’t anticipate using this window, but you could use it to find the location
of files and execute system commands.

c. Environment: Ignore
d. History: This reports a history of your R commands. Hopefully you won’t need to refer to this

window since you won’t be programming interactively.
e. Connections: Ignore
f. Files: Ignore
g. Plots: Your plots will appear here. But not this class!
h. Packages: This lists packages you have installed (they sit on your hard drive). This is probably

empty, but will fill up as the class goes on.
i. Help: Help for commands. Alternatively, you can type help("command") at the console prompt.
j. Viewer: Ignore

B. Hello world program

The very first program people usually write in any language is a very simple one that prints “hello world” to
the screen.

You should always write R code (or any code) in a program. Never program interactively! “Interactively”
means typing things in one command at a time at the prompt, rather than running a whole program.
Interactive programming is a way to lose track of what you’re doing and make output that is not replicable
even by you.

Writing code is a major advantage over using Excel or similar programs, since all your steps are clear for you
or others to follow. When you program interactively, you lose this advantage.

To write a R program, open RStudio, and choose File -> New File -> RScript.

You should see a new window open up.
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In this new window, begin by writing a comment that says what your program does and when you worked on
it. This is good practice, even though it may seem silly for this program.

When you write these comments, use a “#” sign in front of each line, so R will know that this is a comment
and not code to evaluate.

My comments look like this
#
# this is my program to say "hello world"
#
# hiworld.r
#
# january 7, 2019

###### A. print hello world

After your comments, write the R command
print("Hello World!")

Save this file with a name you’ll remember in a location you’ll remember. Mine is saved as
H:/pppa_data_viz/2018/assignments/lecture01_helloworld.R (If you type the file name, R will au-
tomatically add the .R extension to the name). This extension, .R,means it is an R program. Without the
proper extension, the program will not work.

Now we want to run this program.

There are two ways to run this file (also known as a script)

1. While in the editor window, go to the Code menu -> Run Region -> Run All (or click the “run” bottom
at the top of the window).

2. At the prompt in the console window, type the full name of your file and use the option “echo=TRUE”
so that R will show all the individual commands that you’re using.

source('H:/pppa_data_viz/2018/assignments/lecture01_helloworld.R', echo=TRUE)

Either way, you should see something like the below in the Console window:
print("Hello World!")

## [1] "Hello World!"

That’s success! Now you’re ready to work on a more complicated program with real data.

C. Loading Data

We begin by loading data into a dataframe. A dataframe is basic data structure we’ll use most of the time in
this course. Think of it like an excel table with rows and columns.

Start a new R program that you’ll use for this class and for your homework. For the homework, you
should turn in annotated code (that’s a R Script with comments) that includes the class commands and the
homework.

Use one .R file for the rest of this tutorial (and make one for each subsequent tutorial). I encourage you to
do a few steps, run the whole program, and see how it goes. Fix any errors and then add new commands to
the .R file. Do not program interactively (enter commands at the prompt; good for testing, but very bad for
real work)! This is a way to (a) not remember or understand what you did and (b) get the ordering logic in a
program wrong.
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We’ll begin by loading a dataset where each observation is a county in the Washington metropolitan area (or
in Virginia, independent city) in a year, 1910 to 2010. These data come from the Decennial Census, and you
can find source info in this paper of mine.

In R, we usually read .csv (comma separated values) files, and I have prepared files in this format for today.

Download the data for this class from here. We begin by loading the file called “was_msas_1910_2010_20190107.csv”.
If you’re curious what a .csv file looks like, you can open it in Excel.

Here’s a simple example of a .csv file:

var1, var2, var3

a, b, c

d, e, f

g, h, i

The first row in this file has the variable names: var1, var2, and var3. Each subsequent row in this example is
an observation, which means one unit – perhaps a person, or a state. Each row reports the realization of
each of the three variables (var1, var2, var3) for that observation.

For example, if the observations were states, variables could be population, housing units and median income.
Each row would be a state, and population, housing units and median income would be the columns.

In a comma separated values dataset, all variables (var1, var2, var3) are separated by commas.

Note where you save the data! You need to know the full path of the directory where it is saved, and the
name under which you saved it.

To load the file, we use the read.csv command. The input to this command is the location of the file, and you
create (with the <- command) a new dataframe which I am calling was.counties, but you can call whatever
you’d like.

Make a comment that you are loading .csv data, and bring it in. I write
# load csv data
was.counties <- read.csv("h:/pppa_data_viz/2019/tutorial_data/was_msas_1910_2010_20190107.csv")

Note that R uses a forward slash to denote directories, even though Windows usually uses a blackslash.

This command creates a dataframe (R’s version of a dataset) that contains the input csv file.

This is a specific example of general R syntax. The assignment function <- assigns the thing on the right
(here, the csv file) to the thing on the object on the left (here, the dataframe).

D. What’s in these data?

The rest of this class teaches you techniques for looking at and summarizing data. You might think, “why
can’t I just do this in Excel?” Some of what you’re learning today may seem easier in Excel. . . until you get
a very large dataset that you can’t use easily (or at all) in Excel. We are going to learn techniques that are
robust to almost any sample size. We’re practicing with a small dataset to begin so you can see all the data
and better understand what’s going on.

Now that you’ve loaded these data, let’s take a look at them. How big are these data? R’s dim() command
reports the dimension of a dataframe:
# how big is it?
print("this is how many rows x columns the dataset has")

## [1] "this is how many rows x columns the dataset has"
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dim(was.counties)

## [1] 246 5

The output in the console window tells us that this dataframe has 246 rows and 5 columns (or variables).

Rows and columns are the building blocks of dataframes. Starting by understanding whether the number of
rows and columns you have is reasonable is always a good place to begin. There are about 20 jurisdictions in
the Washington area, and the data set has 11 years, so this seems like a reasonable number of rows.

Next, let’s explore which variables are in this dataframe. We query the variable names with the names()
command:
# what variables does it have?
print("these are the names of the variables")

## [1] "these are the names of the variables"
names(was.counties)

## [1] "statefips" "countyfips" "cv1" "year" "cv28"

We learn that this dataframe has five variables. States and counties are identified by FIPS (federal information
processing) codes, which you can find at this website (and many others). State FIPS codes are always two
digits, and county codes are always three digits.

Each observation in the was.counties dataframe has a state FIPS and a county FIPS code. Beware that
county FIPS codes are not unique across states. In other words, two states may have a county 003. To
uniquely identify a county, you need both the state and county FIPS codes.

The remaining undefined variables here are cv1, which is population, and cv28, which is the number of
housing units.

Apart from the name of the variable, it is also helpful to know whether a variable is numeric (numbers only),
or a string (there are many kinds of strings in R, and we’ll hold on discussing this till a future class). You
can do mathematical operations with numeric variables, but not with strings.

Use str() (for structure) to find the types of variables in this dataframe:
# what kinds of variables are these?
print("these are the types of variables")

## [1] "these are the types of variables"
str(was.counties)

## 'data.frame': 246 obs. of 5 variables:
## $ statefips : int 11 24 24 24 24 24 51 51 51 51 ...
## $ countyfips: int 1 9 17 21 31 33 13 43 47 59 ...
## $ cv1 : int 331069 10325 16386 52673 32089 36147 10231 7468 13472 20536 ...
## $ year : int 1910 1910 1910 1910 1910 1910 1910 1910 1910 1910 ...
## $ cv28 : int NA NA NA NA NA NA NA NA NA NA ...

This reports that there are five variables. All variables are of type “int” for integer, meaning they are all
numeric with no decimals.

To get an overall sense of the magnitude of these variables, use summary(), which reports summary statistics
on each variable:
# look at values
print("these are the values they take on")

## [1] "these are the values they take on"

4

https://census.missouri.edu/geocodes/


summary(was.counties)

## statefips countyfips cv1 year
## Min. :11.00 Min. : 1.0 Min. : 5199 Min. :1910
## 1st Qu.:24.00 1st Qu.: 31.0 1st Qu.: 13350 1st Qu.:1940
## Median :51.00 Median : 61.0 Median : 24218 Median :1960
## Mean :43.31 Mean :178.3 Mean : 119984 Mean :1962
## 3rd Qu.:51.00 3rd Qu.:179.0 3rd Qu.: 93974 3rd Qu.:1990
## Max. :54.00 Max. :685.0 Max. :1081726 Max. :2010
## NA's :6
## cv28
## Min. : 1739
## 1st Qu.: 5832
## Median : 13438
## Mean : 58393
## 3rd Qu.: 57275
## Max. :407998
## NA's :86

Here we learn that the statefips variable seems to take on only limited values (11,24,51,43), which makes
sense: there are four states (counting DC) in the greater Washington metropolitan area. The population
variable (cv1) has six observations with no value (NA), and the housing variable 86.

While an average is a reasonable way to look at population, it makes less sense for a categorical variable like
statefips (“categorical” means the variable takes on a number of discrete categories; there is no state 11.5,
for example).

To look at the distribution of categorical variables, it is helpful to make a frequency table, which is easy in R
using table(), combined with a reference to a specific variable. To refer to one specific variable, use the
syntax ‘dataframe$varname’.

Combining these two concepts, we get
# look at non-numeric variables
print("for non-numeric variables")

## [1] "for non-numeric variables"
table(was.counties$statefips)

##
## 11 24 51 54
## 11 55 169 11

We see that there are four unique values for statefips. State 11 (DC) has 11 observations (one for each
decade). State 24 (Maryland) has 55 observations, or 5 for each year. State 51 (Virginia) has 169 observations;
it has a very complicated institutional set-up with many small jurisdictions. State 54 is West Virginia, and
has one county that appears 11 times.

Note that we could also have done summary(was.counties$cv1) to just get descriptive statistics for popula-
tion only.

E. Dataframe Structure

To work with dataframes, it is exceedingly helpful to know how to refer to rows and columns. The next
set of commands gives examples. Generally, you can refer to the rows and columns in a dataframe using
dataframe.name[rows,columns]. This convention of rows -comma- columns is standard in R.
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You can use this format to print rows to the screen. Here I print the first five:
# print some rows to the screen
print("first five rows")

## [1] "first five rows"
was.counties[1:5,]

## statefips countyfips cv1 year cv28
## 1 11 1 331069 1910 NA
## 2 24 9 10325 1910 NA
## 3 24 17 16386 1910 NA
## 4 24 21 52673 1910 NA
## 5 24 31 32089 1910 NA

This shows only the first five rows. You could print rows 20 to 30 by replacing 1:5 with 20:30.

You can also print just some columns:
# print some columns to the screen
print("first two columns")

## [1] "first two columns"
was.counties[1:10,1:2]

## statefips countyfips
## 1 11 1
## 2 24 9
## 3 24 17
## 4 24 21
## 5 24 31
## 6 24 33
## 7 51 13
## 8 51 43
## 9 51 47
## 10 51 59

This prints rows 1 to 10 and columns 1 and 2. To print all rows, with columns 1 and 2, you would write
was.counties[,1:2] (but this prints 200 rows and takes up too much space for this tutorial!).

Above, I used the column order to pick out columns. Frequently this is not helpful as you may not know
the column ordering, or the column ordering many change. You can also use the column name directly, as I
do below. Rather than the column name, I tell R to take the columns named statefips, countyfips, and
year. I use the notation c() to list a vector (list of things) that R should take.
# print columns by name
print("first five rows and three columns")

## [1] "first five rows and three columns"
was.counties[1:5,c("statefips","countyfips","year")]

## statefips countyfips year
## 1 11 1 1910
## 2 24 9 1910
## 3 24 17 1910
## 4 24 21 1910
## 5 24 31 1910
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This is particularly helpful as your data gets bigger and you want to check your work.

F. Sorting

It is frequently helpful to sort when looking at data. The most frequent sort command in R is order(). These
sorting commands illuminate how you can call particular rows and how to you refer to a specific variables in
a dataframe, as we learned above.

We’ll begin by sorting by the number of housing units. The order command goes inside the row part of the
brackets, since we are sorting rows. Note that we have to refer to the variable by the full name inside the
square brackets. We created a new dataframe – was.counties2 – that is identical to the old dataframe, but
is sorted. We then print the first five rows.

This exercise points out another strength relative to programming in Excel. It is easy to have multiple
dataframes at the same time – you just need to keep track of them!
# sort by housing units
print("sort by number of housing units, print first 5 obs")

## [1] "sort by number of housing units, print first 5 obs"
was.counties2 <- was.counties[order(was.counties$cv28),]
was.counties2[1:5,]

## statefips countyfips cv1 year cv28
## 94 51 157 6112 1950 1739
## 118 51 157 5368 1960 1865
## 173 51 685 6524 1980 1931
## 142 51 157 5199 1970 2024
## 88 51 43 7074 1950 2097

The data are sorted smallest to largest, so we learn that the jurisdiction with the fewest housing units in
the DC metro area is Virginia’s county 157 (Rappahanock County). (FYI: we could have also replaced
was.counties with the new, sorted, version. Whether or not you do this depends on your goal with the data
analysis.)

We can also sort from biggest to smallest by putting a - sign in front of the variable. Again, we print the
first five, now the largest:
# sort by housing units descending
print("sort by number of housing units descending, print first 5 obs")

## [1] "sort by number of housing units descending, print first 5 obs"
was.counties <- was.counties[order(-was.counties$cv28),]
was.counties[1:5,]

## statefips countyfips cv1 year cv28
## 232 51 59 1081726 2010 407998
## 227 24 31 971777 2010 375905
## 208 51 59 969749 2000 359411
## 203 24 31 873341 2000 334632
## 228 24 33 863420 2010 328182

We learn that Virginia’s county 59 has about 400,000 housing units in 2010, and is the jurisidiction with the
most housing units.

It is also possible to sort by two variables. Suppose we’d like to know the number of housing units sorted by
year:
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# sort by year and descending housing units
print("sort by year and descending housing units")

## [1] "sort by year and descending housing units"
was.counties <- was.counties[order(was.counties$year,-was.counties$cv28),]
was.counties[1:5,]

## statefips countyfips cv1 year cv28
## 1 11 1 331069 1910 NA
## 2 24 9 10325 1910 NA
## 3 24 17 16386 1910 NA
## 4 24 21 52673 1910 NA
## 5 24 31 32089 1910 NA

We learn that in 1910, we do not observe housing units. As this is a little sad, let’s look at the first year that
does have housing units, which is 1950. We use which() to select rows from the dataframe – you can tell that
we are selecting rows here because the which() command is in the rows half of the brackets (“[ ]”). R prints
only rows where the condition was.counties$year == 1950 is true. Note that R uses a double equals sign
(was.counties$year == 1950) when evaluating a condition to true or false.
# what about housing in 1950?
print("look at housing in 1950")

## [1] "look at housing in 1950"
was.counties[which(was.counties$year == 1950),]

## statefips countyfips cv1 year cv28
## 81 11 1 802178 1950 229738
## 86 24 33 194182 1950 54394
## 85 24 31 164401 1950 47199
## 87 51 13 135449 1950 41051
## 90 51 59 98557 1950 26558
## 98 51 510 61787 1950 18753
## 84 24 21 62287 1950 17220
## 83 24 17 23415 1950 6355
## 92 51 107 21147 1950 5988
## 91 51 61 21248 1950 5964
## 93 51 153 22612 1950 5755
## 82 24 9 12100 1950 5072
## 104 54 37 17184 1950 4884
## 97 51 187 14801 1950 4198
## 89 51 47 13242 1950 3717
## 96 51 179 11902 1950 3372
## 95 51 177 11920 1950 3343
## 101 51 630 12158 1950 3328
## 100 51 610 7535 1950 2193
## 88 51 43 7074 1950 2097
## 94 51 157 6112 1950 1739
## 99 51 600 NA 1950 NA
## 102 51 683 NA 1950 NA
## 103 51 685 NA 1950 NA
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G. Subsetting

It is also frequently useful to work with a smaller dataset. (Perhaps not with this current dataset, but the
principle we’ll learn here will be useful in the future.) There are MANY ways to do this in R. Here we review
two methods. The first is “Base R,” and the second uses a package (more on this below).

1. Base R

Your R program arrives with a number of built-in commands. We first review how to subset with these “Base
R” commands.

This relies on the same logic of limiting rows and columns as we did before. To make a dataframe without
1910, we tell R to take all rows where the variable year is not equal (!=) to 1910. We check the new dataframe
(was.counties.no1910) using dim().

Note that we are creating a new dataframe called was.counties.no1910. This dataframe exists in addition
to the was.counties dataframe. The ability to have multiple dataframes is a key strength of R relative to
Excel or Stata.
# make a dataframe without 1910
print("make a dataset w/o 1910")

## [1] "make a dataset w/o 1910"
was.counties.no1910 <- was.counties[was.counties$year != 1910,]
dim(was.counties.no1910)

## [1] 226 5

Recall that the original had 246 rows. Does this seem reasonable?

We can use any variable to subset. Below we omit Washington, DC from the dataframe, again using the not
equals command:
# make a dataframe without washington dc
print("make a dataframe w/o washington dc")

## [1] "make a dataframe w/o washington dc"
was.counties.no.dc <- was.counties[was.counties$statefips != "11",]
dim(was.counties.no.dc)

## [1] 235 5

Subsetting is not just limited to rows. To remove a column, I can tell R to not include any column where the
column name is cv28: !(names(was.counties) %in% ("cv28")). The ! command means “not.” The other
part – names(was.counties) %in% ("cv28") – means “where the name of the column in was.counties is
cv28.” By using %in%, I could potentially expand the list to include more variables by doing, for example,
%in% c("cv1","cv28"). We use c to let R know that this is a set of values.
# make a dataframe without housing (cv28)
print("make a dataframe w/o housing variable")

## [1] "make a dataframe w/o housing variable"
was.counties.no.cv28 <- was.counties[, !(names(was.counties) %in% ("cv28"))]
dim(was.counties.no.cv28)

## [1] 246 4

Note that the number of rows is still 246, but the number of columns is now 4, rather than 5.
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2. Using subset and filter from dplyr package

Alternatively, you can achieve the same outcome using commands from a user-written package. A package
means a set of commands written by someone to plug into R. The first time you use a new package you need
to install it, as in
install.packages("dplyr")

You should do this now, but will not need to do it again. Then, having installed the package, in any program
where you want to use the package, you need to let R know that you want to use it:
library(dplyr)

## Warning: package 'dplyr' was built under R version 3.4.4

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

If you want to use a package in a program, you should put this library command at the top of your R script
to make R load the package immediately when you start running the program. We will use two commands
from the dplyr package (for now – it contains many other useful commands): filter and subset.

We start with the filter command, which is a way of creating a subset of a dataframe based on characteristics
of observations. The filter command takes two inputs. The first is the data frame and the second is the
subsetting condition: filter(.data = dataframe, *condition*)

As before, we can keep only counties (rows) where the year is 1910. Note that when we use these dplyr
commands, we name the dataframe at the beginning, and then don’t have to call variables by their full name
with an $.
# keeps only rows where the condition evaluates to TRUE
print("use dlplyr to make a dataset that is just 1910")

## [1] "use dlplyr to make a dataset that is just 1910"
was.counties.no1910.d <- filter(.data = was.counties, year == 1910)
dim(was.counties.no1910.d)

## [1] 20 5

We can also keep all states that are not DC, again using ! as not.
# keep everything but washington DC
print("filter: keep not DC")

## [1] "filter: keep not DC"
was.counties.no.dc.d <- filter(.data = was.counties, statefips != "11")
dim(was.counties.no.dc.d)

## [1] 235 5

However, unlike with base R, we can’t use the same command to drop columns in a dataframe. Instead,
we use the select command to choose columns. The select command takes the inputs select(.data =
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dataframe, *columns*), where dataframe is the input dataframe and columns are the columns to keep (no
minus sign in front) or drop (put a minus sign in front, as below).
# make a dataframe w/o housing variable
# can't do this with filter!
# try select
print("can't use filter to drop columns. use select")

## [1] "can't use filter to drop columns. use select"
was.counties.no.cv28.d <- select(.data = was.counties, -c("cv28"))
head(was.counties.no.cv28.d)

## statefips countyfips cv1 year
## 1 11 1 331069 1910
## 2 24 9 10325 1910
## 3 24 17 16386 1910
## 4 24 21 52673 1910
## 5 24 31 32089 1910
## 6 24 33 36147 1910

H. Create new variables and dataframes

In this step, we create a new variable and new dataframes of summary statistics.

1. Create a new variable

Creating a new variable in R is reasonably straightforward. Use the <- to denote the output, and use the
dataframe$var notation to describe variables.

For example, to divide one variable by another, do the below.
# people per housing unit
print("make new variable with people per housing unit in each county")

## [1] "make new variable with people per housing unit in each county"
was.counties$ppl.per.hu <- was.counties$cv1 / was.counties$cv28
summary(was.counties$ppl.per.hu)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1.909 2.566 2.762 2.852 3.272 3.975 86

Here I create the number of people per housing units, and then I use summary() to check the value. When
programming, it is always a good idea to build in sanity checks as things can and do go wrong.

2. Summarizing data to screen

The most familiar summary statistic is the mean. R can easily calculate the mean of a variable with mean().
If there are any missing values in a variable and you don’t tell R to omit these missing value observations, R
will report a missing value for the mean. That is why the first mean command below reports NA, while the
second gives a value. The na.rm = TRUE means “yes, omit missing values in calculations.”
# brute force
print("find a mean")
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## [1] "find a mean"
mean(was.counties$cv1)

## [1] NA
mean(was.counties$cv1, na.rm = TRUE)

## [1] 119983.7

Does this value seem reasonable for the mean jurisdiction population over the entire period?

It is also sometimes helpful to put the mean into its own variable (maybe you’ll want to put it in a title or
some such). You can do this as we do below, creating a newvar.
# putting value into its own variable
print("put mean value into a variable")

## [1] "put mean value into a variable"
newvar <- mean(was.counties$cv1, na.rm = TRUE)
newvar

## [1] 119983.7

This newvar is a 1x1 dataframe.

There are many different statistical functions in R – so many that you’re better off googling “statistical
functions in R” to think about this. Most of them work just like the mean() function that we just explored.

3. Summarizing variables to a dataframe

We now move on to creating dataframes of summary values. Suppose we’d like to know the mean population
by year. We can do this using the commands group_by and summarize, which are part of dplyr.

As your program should already have library(dplyr) at the top, you don’t need to do anything else to load
this package now.

The group_by command tells R by which variables you’d like to group your data. The group_by function
takes inputs group_by(.data = dataframe, [variables to group by, separated by commas]). Once
you’ve told R how your data are grouped, you can then turn to summarize to make summary statistics by the
groups you’ve defined. Below we define a new variable cv1.yr to be the mean population across all counties
in each year. The command group_by doesn’t change the look of your data – it just changes its functionality
in susequent commands.

The summarize command is very powerful. When data are grouped, it calculates any function(s) you want by
group. The syntax for summarize is summarize(.data = dataframe, function1, any more functions).

This is a good point to note that all commands in this package can be used with American spelling
(“summarize”) or British spelling (“summarise”). I will use the American spelling throughout the course, but
you may find the British spelling when you look for help online.
# summarize by year
print("find average by year")

## [1] "find average by year"
was.counties.grp.yr <- group_by(.data = was.counties, year)
was.by.year <- summarize(.data = was.counties.grp.yr, cv1.yr=mean(cv1))
was.by.year
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## # A tibble: 11 x 2
## year cv1.yr
## <int> <dbl>
## 1 1910 32892.
## 2 1920 39282.
## 3 1930 44222.
## 4 1940 59891.
## 5 1950 NA
## 6 1960 NA
## 7 1970 143834.
## 8 1980 142777
## 9 1990 173222.
## 10 2000 201560.
## 11 2010 234843

Looking at this new dataframe, we have one observation per year (correct!), with a population mean that is
increasing over time (seems reasonable). Unfortunately, we have some missing values. We can correct by
using the same na.rm=TRUE as above:
# summarize by year w/o missings
print("find average by year w/o missing values")

## [1] "find average by year w/o missing values"
was.by.year <- summarize(.data = was.counties.grp.yr, cv1.yr=mean(cv1, na.rm = TRUE))
was.by.year

## # A tibble: 11 x 2
## year cv1.yr
## <int> <dbl>
## 1 1910 32892.
## 2 1920 39282.
## 3 1930 44222.
## 4 1940 59891.
## 5 1950 81966.
## 6 1960 110812.
## 7 1970 143834.
## 8 1980 142777
## 9 1990 173222.
## 10 2000 201560.
## 11 2010 234843

An improvement!

This set-up is flexible. We can calculate not just the mean population, but also the total population by
adding an additional function (sum()).
# summarize two variables by year
print("find two things by year")

## [1] "find two things by year"
was.by.year <- summarize(.data = was.counties.grp.yr,cv1.yr=mean(cv1, na.rm = TRUE),

cv.yr.total = sum(cv1, na.rm = TRUE))
was.by.year

## # A tibble: 11 x 3
## year cv1.yr cv.yr.total
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## <int> <dbl> <int>
## 1 1910 32892. 657845
## 2 1920 39282. 785643
## 3 1930 44222. 884441
## 4 1940 59891. 1197826
## 5 1950 81966. 1721291
## 6 1960 110812. 2327056
## 7 1970 143834. 3164346
## 8 1980 142777 3426648
## 9 1990 173222. 4157327
## 10 2000 201560. 4837428
## 11 2010 234843 5636232

Additionally, we can add a second variable to group_by. Instead of summaries by year, we can report data
by state and year. Notice how we first define a new “grouped” dataframe.
# summarize by state and year
print("find info by state and year")

## [1] "find info by state and year"
was.counties.grp.st <- group_by(.data = was.counties,year,statefips)
was.by.state.yr <- summarize(.data = was.counties.grp.st,

cv.st.total = sum(cv1, na.rm = TRUE))
was.by.state.yr

## # A tibble: 44 x 3
## # Groups: year [11]
## year statefips cv.st.total
## <int> <int> <int>
## 1 1910 11 331069
## 2 1910 24 147620
## 3 1910 51 163267
## 4 1910 54 15889
## 5 1920 11 437571
## 6 1920 24 158258
## 7 1920 51 174085
## 8 1920 54 15729
## 9 1930 11 486869
## 10 1930 24 189435
## # ... with 34 more rows

Now, rather than 11 observations, we have 44. Does that make sense?

I. Problem Set 1

Now you are ready to work on your own.

For this and all subsequent problem sets you need to turn in one pdf that includes

• R script for the tutorial and these questions (the .R program file)
• R output (from console window; ok to paste into a separate file)
• written output that directly answers the questions (not just the code that finds the numbers)

Turn in all work to the class google folder here. This folder has a sub-folder for problem sets, which in turn
has a sub-folder for problem set 1. Turn in today’s problem set there. Save as [last name]_PS1.pdf
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https://drive.google.com/drive/folders/1zsnNZamQCYr9AOzFsIdn9XEMIVHE1vND?usp=sharing


You are welcome and encouraged to work with others on the homework. However, each of you must turn in
your own homework, in your own words. All duplicate versions of a homework receive a grade of zero.

1. Why do we do table(was.counties$statefips) and summary(was.counties$cv1) and not vice-
versa?

2. Why does the first summary in part H.3. yield 11 observations, but the second 44?

3. Find the average population in DC for the entire period 1910-2010

4. Find state-level (or the part of the state we observe) average population over the entire period. Describe
the results in a sentence or two.

5. For each of the four states, are there more or fewer jurisdictions in this dataset now than in 1910?
(Hint: sum(!is.na(variable.name)) tells you the total number of non-missing observations.)

6. What is the most populous jurisdiction in the DC area in 2010?

You may find it helpful to refer to this cheat sheet for this and future classes.
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