
Tutorial 6: Functions

Leah Brooks

February 24, 2020

Mid-way through the semester, we take a break from data visualization to teach you how to create your own
functions in R.

Most of the commands you use in R are functions themselves, so you already know how to use a function
(even if you didn’t realize it). Today you will learn how to make your very own R function.

Make sure to write today’s tutorial in an R script, rather than R Markdown. In addition, put
rm(list=ls())

at the beginning of your code. If strange things are happening in your code, consider running it from the
beginning, and the above command will clear everything in R’s memory. I tell you write a R script so that
you can more easily keep track of what functions are defined where and apply to what.

As to when to use a function, in the immortal words of Hadley Wickham, “You should consider writing a
function whenever you’ve copied and pasted a block of code more than twice (i.e. you now have three copies
of the same code)” (see this here).

The ability to create functions is one of the most powerful tools that statistical programming gives you. Good
programming relies heavily on functions. Cut and paste is prone to errors. Furthermore, while cut and paste
always seems easiest when you need to do things once, my experience with programming suggests that your
first graph is never your last graph. When you need to make modifications, particularly ones that are the
same across a set of graphs, you will be happy you chose to make a function.

This class gives you an initial introduction to functions. If you’d like to deeper, I recommend Hadley
Wickman’s Advanced R notes.

A. What is a function?

In this section, we define what a function is and explain its parts.

The example below shows the bones of any basic function. The first part function.name is the name of the
function. You can choose any name you’d like for the function.
function.name <- function(arg1, arg2){

stuff your function does
}

Beware, however, that if you use the name of an existing function in R, such as plot, when you call plot,
you will get your new function, instead of R’s usual ‘plot’. Bottom line: stay away from existing names if at
all possible. You can ask R whether it has any functions of a given name by typing
? sum

starting httpd help server ... done

1

http://uc-r.github.io/functions
http://adv-r.had.co.nz/Functions.html

When you type the above, a help window pops up – this means there is an existing function named sum. So
don’t use sum! What about dogs?
? dogs

No documentation for 'dogs' in specified packages and libraries:
you could try '??dogs'

R tells us it can’t find any functions called dogs, and you are good to go.

Every function also needs the word function – this is the same across all functions, and tells R that you are
making a function. You cannot change this word.

The variables arg1 and arg2 are the inputs to the new function. They define what you can put into the
function.

Once you’ve given R values for arg1 and arg2, R undertakes the commands inside the curly brackets. These
commands are known as the “function body.”

B. A first function

B.1. A very first function

Let’s begin with a very simple function that takes one value to the power of the other. As we construct it,
this function has arguments x and y. Whatever value you give R for x, it will take it to the power y. We call
this new function summer.

Before I define it, I check to see if a function by this name already exists.
? summer

No documentation for 'summer' in specified packages and libraries:
you could try '??summer'

No function exists by this name. This check is not required, but it is good practice, since you can create
trouble by naming your function with a name that already exists as a R function.

Now let’s define the function:
summer <- function(x,y){

x^y
}

In the summer function, the arguments are x and y. The body is xy.

Having defined the function, we’d now like to call it. The most clear way of calling a function is to associate
each argument with its value, as in
summer(x=1,y=2)

[1] 1

This call should look familiar. You’ve been using functions all semester. Now you’re writing one of your own.

The summer function returns a value of 1. Note that

12 = 1

, so all is good. as it should.

Alternatively, you can make the same call by writing

2

summer(1,2)

[1] 1

This works, but is bad practice. Code like this is hard to decipher and debug.

Now try
summer(x = 2, y = 1)

[1] 2

Note that this does not yield the same outcome. Homework question 1 asks you why.

Finally, the call below does not work at all. We’ve specified nothing for y, and all arguments are mandatory
unless a default value is specified (which we’ll learn how to do in a bit).
summer(x = 1,)

B.2. A Slightly More Complicated Function

The example in B.1. was so simple that you might wonder why we bother with functions. Let us start
working toward something slightly more complicated.

Suppose you’d like to know the marginal tax rate for a specific income. Maybe you’d like to automatically
print a chart title that says what the marginal tax rate of the mean income is, for example (so you can update
the picture without looking up the marginl tax rate each time).

The marginal tax rate is the tax you pay on your last dollar of earnings. In the US system, rates are
progressive, so that higher incomes pay higher tax rates. In other words, your first $x of income is taxed at
rate a. Income greater than x, but less that y is taxed at rated b, where b < a. The rate associated with your
“tax bracket” is your marginal tax rate.

A starting point for this kind of work is a function that delivers a marginal tax rate based on an input income.
We do this below, with a thanks to Bankrate for helpful marginal tax rates (for single people; page also has
married, if you’re curious).
single.marg.tax.rate <- function(income){
mr <-

ifelse(income < 9325,0.10,
ifelse(income < 37950, 0.15,

ifelse(income < 91500, 0.25,
ifelse(income < 191650, 0.28,

ifelse(income < 416700, 0.33,
ifelse(income < 418400, 0.35, 0.396))))))

print(paste0("marginal tax rate for income ",income, " is ", mr))
}

This function takes the argument income and finds the bracket into which that income fits. It then outputs
the tax rate and income in a print statement.

Give it a try!

Here’s my first attempt:
single.marg.tax.rate(income = 10000)

[1] "marginal tax rate for income 10000 is 0.15"

This seems to find the right marginal tax rate, according to the Bankrate page.

3

https://www.bankrate.com/finance/taxes/tax-brackets.aspx

Does it work for other incomes?
single.marg.tax.rate(income = 50000)

[1] "marginal tax rate for income 50000 is 0.25"
single.marg.tax.rate(income = 500000)

[1] "marginal tax rate for income 5e+05 is 0.396"

B.3. A function in a separate file

Sometimes you build a function that you would like to use in multiple programs. If you’d like to do this, you
can put your R function in its own .R file.

For example, I put a variant of the summer function we created above in a separate new R file, and saved it
as summer2_func.R (don’t use dots in the file name, except for the .R extension). My file looks like
summer2 <- function(x,y,z){
x^y + z

}

I can now call this function and get a result:
source("H:/pppa_data_viz/2018/tutorials/lecture12/summer2_func.R")
summer2(x = 5, y = 3, z = 1)

[1] 126

C. Other Function Argument Basics

In this section, we discuss more features of function arguments: how they work, how you name them, and
setting defaults.

C.1. More on function arguments

Suppose that we would like to run the function summmer2, but we don’t want to add anything to xy (what
the z variable does).

Let’s try to run it two ways:
summer2(x = 5, y = 3, z = 0)

[1] 125

This one runs, and properly gives us 53 + 0 = 45.

Now let’s try
summer2(x = 5, y = 3)

This one should give an error message. Why? R is trying to evaluation xˆy + z, but can’t find a value for z –
so it breaks.

To make sure you understand why R is breaking, look at the following example:

4

summer3 <- function(x,y,z){
x^y

}

summer3(x = 5, y = 3)

[1] 125

This does not generate an error. The homework asks you why, even without a value for z.

Note that you can also put R objects into a function call. Let’s let natl.mn.income be $53,719, which is the
2014 US mean income. We’ll then use this object in the summer function call.
natl.mn.inc <- 53719
summer(x = natl.mn.inc,y = 1)

[1] 53719

C.2. Defaults

One way to avoid the error we have in section C.1. from calling summer2(5,3) would be to set a default
value for z. Let us set the default value for z as 0.
summer4 <- function(x, y, z = 0){
x^y + z

}

summer4(x = 5, y = 3)

[1] 125

Now if you don’t specify a value for z, R assumes that it is zero. If you do specify a value, that value replaces
zero.

C.3. Calling the right type of variable

You should also be careful that the type of input argument you give to the function matches how the function
will use that argument.

The text below yields an error:
summer(x = "fred", y = "ted")

Explain why in homework question 3.

D. What the function outputs

Sometimes you’d like a function to just calculate something and print the result to the screen. Other times,
it’s helpful to have a function return something to you that you can use in the rest of the code. For example,
suppose we’d like to use the marginal tax rate that the function single.marginal.tax.rate creates.

Can I work with this new marginal tax rate in the rest of the code?
single.marg.tax.rate(income = 500000)

5

taxes.paid <- (500000 - 418401)*mr

This second command gives an eror. Why is this? Didn’t we just create mr in this function? Why doesn’t
this object now exist?

This brings up a key element of functions. Everything that you create in the function is “local” to the function
unless you specifically tell R you want to take it out of the function. To tell R to take something out of the
function, you need to “return” the value. “Returning” the value means taking something that exists just in
the function and making it exist in the rest of the code as well. We will learn how to do this in this section.

As an aside, when you write mr in plain R code, R will print the value of mr. When you write mr inside a
function, R doesn’t print the value of mr to the console. To see the value of mr, you need to write print(mr).
I also illustrate this point in the code below.

Running our original function again, we see that just running it in plain code delivers the marginal tax rate
to the console.
single.marg.tax.rate(income = 500000)

[1] "marginal tax rate for income 5e+05 is 0.396"

Making the function deliver something to a new object prints nothing, but gives no error.
out <- single.marg.tax.rate(income = 500000)

[1] "marginal tax rate for income 5e+05 is 0.396"

Let’s look at the new object:
out

[1] "marginal tax rate for income 5e+05 is 0.396"

It’s a text string! Which is the last thing the function did.

If we want the marginal tax rate as a number, we need to modify the function. Let’s make a new function
called single.marg.tax.rate.v2.
single.marg.tax.rate.v2 <- function(income){
mr <-

ifelse(income < 9325,0.10,
ifelse(income < 37950, 0.15,

ifelse(income < 91500, 0.25,
ifelse(income < 191650, 0.28,

ifelse(income < 416700, 0.33,
ifelse(income < 418400, 0.35, 0.396))))))

print(paste0("marginal tax rate for income ",income, " is ", mr))
mr

}

Let’s now run the function, and also put its output into out2.
single.marg.tax.rate.v2(income = 500000)

[1] "marginal tax rate for income 5e+05 is 0.396"

[1] 0.396
out2 <- single.marg.tax.rate.v2(income = 500000)

[1] "marginal tax rate for income 5e+05 is 0.396"

6

out2

[1] 0.396

This output is now a number, since listing mr is the last thing the function did. We can now use out2 in our
main program. Below I calculate the taxes paid, for someone earning $500,000, on income above $418,401.
(This person does not pay the marginal tax rate of 39.6 on all of their income – just income above $418,401.
For income between $416,701 and $418,401, the person pays a rate of 35 percent. Below that – from about
$200,000 to $400,000 they pay 33 percent.)
taxes.paid <- (500000 - 418401)*out2
taxes.paid

[1] 32313.2

E. Functions for graphs and maps

To illustrate the value of functions, let’s automate some repetitive operations. A good practice when building
a function is to write out one instance of what you’d like to do in plain code. Then work on the function that
automates it. You can write the function directly, but this is best for when you are quite comfortable with
functions.

Begin by loading the csv with crashes in DC, found here. Download the spreadsheet, read it into R, and find
out what variables this dataframe has.
crashes <- read.csv("H:/pppa_data_viz/2020/tutorial_data/tutorial06/20200226_Crashes_in_DC.csv")
names(crashes)

[1] "ï..X" "Y"
[3] "OBJECTID" "CRIMEID"
[5] "CCN" "REPORTDATE"
[7] "ROUTEID" "MEASURE"
[9] "OFFSET" "STREETSEGID"
[11] "ROADWAYSEGID" "FROMDATE"
[13] "TODATE" "MARID"
[15] "ADDRESS" "LATITUDE"
[17] "LONGITUDE" "XCOORD"
[19] "YCOORD" "WARD"
[21] "EVENTID" "MAR_ADDRESS"
[23] "MAR_SCORE" "MAJORINJURIES_BICYCLIST"
[25] "MINORINJURIES_BICYCLIST" "UNKNOWNINJURIES_BICYCLIST"
[27] "FATAL_BICYCLIST" "MAJORINJURIES_DRIVER"
[29] "MINORINJURIES_DRIVER" "UNKNOWNINJURIES_DRIVER"
[31] "FATAL_DRIVER" "MAJORINJURIES_PEDESTRIAN"
[33] "MINORINJURIES_PEDESTRIAN" "UNKNOWNINJURIES_PEDESTRIAN"
[35] "FATAL_PEDESTRIAN" "TOTAL_VEHICLES"
[37] "TOTAL_BICYCLES" "TOTAL_PEDESTRIANS"
[39] "PEDESTRIANSIMPAIRED" "BICYCLISTSIMPAIRED"
[41] "DRIVERSIMPAIRED" "TOTAL_TAXIS"
[43] "TOTAL_GOVERNMENT" "SPEEDING_INVOLVED"
[45] "NEARESTINTROUTEID" "NEARESTINTSTREETNAME"
[47] "OFFINTERSECTION" "INTAPPROACHDIRECTION"
[49] "LOCATIONERROR" "LASTUPDATEDATE"
[51] "MPDLATITUDE" "MPDLONGITUDE"
[53] "MPDGEOX" "MPDGEOY"

7

http://opendata.dc.gov/datasets/crashes-in-dc

[55] "BLOCKKEY" "SUBBLOCKKEY"
[57] "FATALPASSENGER" "MAJORINJURIESPASSENGER"
[59] "MINORINJURIESPASSENGER" "UNKNOWNINJURIESPASSENGER"

Your file may differ slightly from mine if it has been updated since February 26, 2020. My version says it was
last modified December 10, 2019.

Suppose we first want to get a sense of how many crashes with bicycles there are. To do this, I can look at
the distribution of this variable with summary() and make a histogram with ggplot. Let’s do both.
library(ggplot2)
summary(crashes$TOTAL_BICYCLES)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.01722 0.00000 2.00000
ggplot() +

geom_histogram(data = crashes,
mapping = aes(TOTAL_BICYCLES),
stat="count") +

labs(title = "Histogram of total bicycles",
x = "total bicycles")

Warning: Ignoring unknown parameters: binwidth, bins, pad

0

20000

40000

60000

0 1 2
total bicycles

co
un

t

Histogram of total bicycles

But this is a new dataset, and we’d like to explore a bunch of variables. How can we do this efficiently for a
variety of variables? Let’s write a function that reports on the distribution of the variable and then makes a
histogram.

8

The argument of the function below is var, which I intend to be the variable name. Unfortunately, we can’t
refer to the input as crashes$var, since R will go look for a variable in crashes named var and get mad
when it can’t find it. To get around this, I do a few things

• When I call the function, I put the variable name in quotes. This makes this text that R can evaluate,
rather than an object it will try to look for

• Inside the function, I make the character string “crashes$[variable name]” and assign it to vname
• To use either var or vname, I need to tell R to evaluate these strings. I can do this by saying

to R eval(parse(text=vname)) or eval(parse(text=var)). This tells R to parse a text string
(parse(text=)); not entirely sure why this part is needed, but it’s definitely needed) and then evaluate
it (eval()). The evaluating means read the text string as an R object.

If you want to get a sense of why the last part is important, try running the function below without the
eval() and parse() bits, and note the error messages.

For the current function, I create it as below.
checkit <- function(var){
vname <- paste0("crashes$",var)
print(summary(eval(parse(text=vname))))
ggplot() +

geom_histogram(data = crashes,
mapping = aes(eval(parse(text=var))),
stat="count")

}

I call it by giving it a variable name in quotes:
checkit(var = "TOTAL_BICYCLES")

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.01722 0.00000 2.00000

Warning: Ignoring unknown parameters: binwidth, bins, pad

9

0

20000

40000

60000

0 1 2
eval(parse(text = var))

co
un

t

This is good, but it fails to illuminate the power of functions. What we did above we could do just as well in
a loop – so why bother with a function? A function is great if you’d like to change more than one element at
a time – which is all a loop will allow you to do.

In our next iteration, let’s add a second element to change – title text to make the graph more reasonable.
checkit <- function(var,namer1){
vname <- paste0("crashes$",var)
print(summary(eval(parse(text=vname))))
ggplot() +

geom_histogram(data = crashes,
mapping = aes(eval(parse(text=var))),
stat="count") +

labs(title = paste0("Histogram of ",namer1),
x = namer1)

}

Re-running with this new function, we find
checkit(var = "TOTAL_BICYCLES", namer1 = "Bicycles Involved in Crash")

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.01722 0.00000 2.00000

Warning: Ignoring unknown parameters: binwidth, bins, pad

10

0

20000

40000

60000

0 1 2
Bicycles Involved in Crash

co
un

t
Histogram of Bicycles Involved in Crash

And now it is perfectly easy to do a bunch more variables to get a sense of what these data look like:
checkit(var = "DRIVERSIMPAIRED", namer1 = "Drivers Impaired by Crash")
checkit(var = "SPEEDING_INVOLVED", namer1 = "Whether Speeding Was Involved")
checkit(var = "TOTAL_TAXIS", namer1 = "Number of Taxis Involved")
checkit(var = "WARD", namer1 = "Ward")
checkit(var = "TOTAL_GOVERNMENT", namer1 = "don't know")

These commands produce a lot of output:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.01662 0.00000 2.00000

Warning: Ignoring unknown parameters: binwidth, bins, pad

11

0

20000

40000

60000

0 1 2
Drivers Impaired by Crash

co
un

t
Histogram of Drivers Impaired by Crash

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.01645 0.00000 2.00000

Warning: Ignoring unknown parameters: binwidth, bins, pad

12

0

20000

40000

60000

0 1 2
Whether Speeding Was Involved

co
un

t
Histogram of Whether Speeding Was Involved

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.08209 0.00000 4.00000

Warning: Ignoring unknown parameters: binwidth, bins, pad

13

0

20000

40000

60000

0 1 2 3 4
Number of Taxis Involved

co
un

t
Histogram of Number of Taxis Involved

Null Ward 1 Ward 2 Ward 3 Ward 4 Ward 5 Ward 6 Ward 7 Ward 8
415 5697 14957 3843 5320 9343 9460 7794 6640

Warning: Ignoring unknown parameters: binwidth, bins, pad

14

0

5000

10000

15000

Null Ward 1 Ward 2 Ward 3 Ward 4 Ward 5 Ward 6 Ward 7 Ward 8
Ward

co
un

t
Histogram of Ward

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 0.0000 0.1085 0.0000 3.0000

Warning: Ignoring unknown parameters: binwidth, bins, pad

15

0

20000

40000

0 1 2 3
don't know

co
un

t
Histogram of don't know

Finally, I create a few more variables – I was interested if there was a time pattern in crashes, so I extract the
date portion of the FROMDATE variable using substr (as we’ve done previously) and create a R date variable
using as.Date().

I am optimistic this is the right variable and that it’s formatted properly for this because I’ve taken a quick
look at the two major date variables in the original dataset that come as text:
crashes[1:10,c("FROMDATE","TODATE")]

FROMDATE TODATE
1 2012-04-17T04:00:00.000Z NA
2 2012-04-11T04:00:00.000Z NA
3 2014-01-13T05:00:00.000Z NA
4 2012-04-09T04:00:00.000Z NA
5 2012-04-19T04:00:00.000Z NA
6 2012-04-12T04:00:00.000Z NA
7 2012-04-19T04:00:00.000Z NA
8 2012-04-11T04:00:00.000Z NA
9 2012-04-13T04:00:00.000Z NA
10 2012-04-17T04:00:00.000Z NA

A date variable is a special kind of variable that allows us to find the month or the day of the week of that
date. Month you could imagine finding on your own, but the day of the week is tricky.

Here’s how I create these new variables (remember that we already did a very similar task in Tutorial 3).
crashes$dayof <- as.Date(substr(crashes$FROMDATE,1,10))
crashes$day.of.week <- weekdays(crashes$dayof)
table(crashes$day.of.week)

16

##
Friday Monday Saturday Sunday Thursday Tuesday Wednesday
10537 8204 8879 7106 9685 9482 9574
crashes$month <- months(crashes$dayof)
table(crashes$month)

##
April August December February January July June March
7131 3497 2687 2374 2562 5269 6773 6038
May November October September
7853 6691 8230 4362

It’s hard to interpret whether these numbers are ok from a table. Luckily, we have a function that can make
a picture for us. We’ll apply our function to these new variables.
checkit(var = "day.of.week", namer1 = "day of the week")
checkit(var = "month", namer1 = "month")

And the output is

Length Class Mode
63469 character character

Warning: Ignoring unknown parameters: binwidth, bins, pad

0

2500

5000

7500

10000

Friday Monday Saturday Sunday Thursday Tuesday Wednesday NA
day of the week

co
un

t

Histogram of day of the week

Length Class Mode
63469 character character

Warning: Ignoring unknown parameters: binwidth, bins, pad

17

0

2000

4000

6000

8000

April AugustDecemberFebruaryJanuary July June March May NovemberOctoberSeptember NA
month

co
un

t
Histogram of month

Things look ok! (Last year, the data had an alarming spike in January; DC seems to have cleaned this up.)

F. Functions and ggplot

After all this build-up, I now need to tell you that not all parts of ggplot() work as one might hope in a
function. After I explain this, I show you a non-terrible work-around.

F.1. Why ggplot is different

It seems that this kind of function should work, where we tell R some input variables:
graphit <- function(var,namer1){

ggplot() +
geom_histogram(data = crashes,

mapping = aes(x= var),
stat="count") +

labs(title = paste0("Histogram of ",namer1),
x = namer1)

}

But when you test it, it does not:
graphit(var = WARD,

namer1 = "Ward")

18

This is because of the non-standard way in which all tidyverse packages evaluate R code. For more on that,
see this document.

F.2. Fixes

However, there is a happy fix that allows you to “plug in” variables in text into the function. Instead of
aes(), use aes_string().

Here is a very general example of the type of function you can write. Note that the input variables must be
in quotes.
testplot <-

function(datum = meansdf,
xvar = "condition",
yvar = "means",
fillvar = "condition"){

p <- ggplot(data = datum,
mapping = aes_string(x = xvar, y= yvar, fill = fillvar)) +

geom_bar(position="dodge", stat="identity")
}

(This example is taken from Stack Overflow.)

G. Homework

1. In section B.1., why do
summer(x = 1, y = 2)
summer(x = 2, y = 1)

not yield the same output? Write in math what each one does.

2. In section C.1., why does the call summer3(x = 5, y = 3) return a value when summer2(x = 5, y =
3) does not?

3. In C.2., why does summer(x = "fred", y = "ted") yield an error?

4. Fix the function in part E to remove the graph background.

5. Make a function that automates a graphics operation of interest to you, using a dataset not from this
tutorial.

19

https://www.onceupondata.com/2018/07/06/ggplot-tidyeval/
https://stackoverflow.com/questions/5106782/use-of-ggplot-within-another-function-in-r

	A. What is a function?
	B. A first function
	B.1. A very first function
	B.2. A Slightly More Complicated Function
	B.3. A function in a separate file

	C. Other Function Argument Basics
	C.1. More on function arguments
	C.2. Defaults
	C.3. Calling the right type of variable

	D. What the function outputs
	E. Functions for graphs and maps
	F. Functions and ggplot
	F.1. Why ggplot is different
	F.2. Fixes

	G. Homework

