
Tutorial 9: Scatter Plots and Cleveland Dot Plots

Leah Brooks

March 30, 2020

This week we are learning about two types of charts you can create with geom_point(): scatter plots and
Cleveland dot plots, also known as lollipop charts.1

Scatter plots are very useful for seeing the relationship between two variables. They are ideal for initial
exploratory data analysis. They are usually not the best – without substantial editing – for final data
presentation to a non-technical audience.

Cleveland dot plots are a way of summarizing data from a scatter plot. To arrive at data suitable for a
Cleveland dot plot, we will revisit some techniques we’ve learned in previous classes: summarize() and
pivot_longer(), along with group_by().

A. Clear environment and load packages

Sometimes it is helpful to get rid of everything in your R environment – all the past dataframes and plots
and commands. This is particularly useful when you’ve made a lot of dataframes and your memory is getting
clogged, or when you’ve made some odd error and want to start fresh. To clear the R environment, type the
below. I usually put it at the beginning of my R programs to be sure that I am working on the most recently
loaded dataframe.
rm(list=ls())

Let’s also load packages. This tutorial has no new packages.
library(ggplot2)
library(scales)
library(dplyr)

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)

1This is our ninth tutorial, posted for Lecture 10.
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B. Load and check out data

For this class we’re using new data: tax records from Arlington County.

B.1. Load data

In principle, you could find the Arlington data here. You’d use the download button at the bottom left to
download the data as a .csv. Then load the data using read.csv(). BUT – see the next paragraph.

Jill had a lot of trouble with this file last year. The link crashed her Acrobat and she only downloaded 2,785
rows (what you see on the first screen). When Jill downloaded this year, she got 66,385 observations. I’ve
downloaded it three times and the number of observations has increased each time.

So we can all use the same dataset, please download it from here.

Now read these data using ‘read.csv’.
arl.p <- read.csv("H:/pppa_data_viz/2019/tutorial_data/lecture11/2019-04-19_arlington_2019_assessment_data.csv")
dim(arl.p)

## [1] 65791 46

I have formatC(r dim(arl.p)[[1]], big.mark = ",") observations – hopefully you do, too.

B.2. Explore a little bit

Each observation in this data frame is a property in Arlington County, VA. Broadly speaking, this is the
information the county collects on each individual property. Counties in the US (in a few cases, other
jurisdictions) are in charge of land ownership records and property taxation.

As these data are new to us (and as Arlington doesn’t seem to provide a key – though if you find one, let me
know!), let’s explore these data a bit before moving on.

I use str(), names(), table() and summary() to look at values in this dataframe. I encourage you to use
these commands to look at variables other than those I’ve listed below.
names(arl.p)

## [1] "IvwPropertyAssessmentHistoryKey" "ProvalLrsnId"
## [3] "RealEstatePropertyCode" "MasterRealEstatePropertyCode"
## [5] "ReasPropertyStatusCode" "PropertyClassTypeCode"
## [7] "PropertyClassTypeDsc" "PropertyStreetNbrNameText"
## [9] "PropertyStreetNbr" "PropertyStreetNbrSuffixCode"
## [11] "PropertyStreetDirectionPrefixCode" "PropertyStreetName"
## [13] "PropertyStreetTypeCode" "PropertyStreetDirectionSuffixCode"
## [15] "PropertyUnitNbr" "PropertyCityName"
## [17] "PropertyZipCode" "ZoningDescListText"
## [19] "TradeName" "PropertyYearBuilt"
## [21] "GrossFloorAreaSquareFeetQty" "EffectiveAgeYearDate"
## [23] "NumberOfUnitsCnt" "StoryHeightCnt"
## [25] "ValuationYearDate" "CommercialPropertyTypeDsc"
## [27] "CondoModelName" "CondoStyleName"
## [29] "FinishedStorageAreaSquareFeetQty" "StorageAreaSquareFeetQty"
## [31] "UnitNbr" "PropertyKey"
## [33] "ReasPropertyOwnerKey" "ArlingtonStreetKey"
## [35] "PropertyExpiredInd" "CommercialInd"
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## [37] "DistrictNbr" "TaxExemptionTypeDsc"
## [39] "CondominiumProjectName" "TaxBalanceAmt"
## [41] "AssessedYearDate" "TotalAssessedAmt"
## [43] "AssessmentDate" "AssessmentChangeReasonTypeDsc"
## [45] "ImprovementValueAmt" "LandValueAmt"
str(arl.p)

## 'data.frame': 65791 obs. of 46 variables:
## $ IvwPropertyAssessmentHistoryKey : int 74 111 148 185 222 260 334 371 408 445 ...
## $ ProvalLrsnId : int 134 136 137 139 140 141 143 144 145 147 ...
## $ RealEstatePropertyCode : int 1001007 1001009 1001010 1001012 1001013 1001014 1001016 1001017 1001018 1001020 ...
## $ MasterRealEstatePropertyCode : Factor w/ 37988 levels "","01001001",..: 3 5 6 8 9 10 12 13 14 16 ...
## $ ReasPropertyStatusCode : Factor w/ 2 levels "A","T": 1 1 1 1 1 1 1 1 1 1 ...
## $ PropertyClassTypeCode : int 511 511 511 511 511 511 511 511 511 511 ...
## $ PropertyClassTypeDsc : Factor w/ 58 levels "100-Off Bldg-VacLand-no s.plan",..: 37 37 37 37 37 37 37 37 37 37 ...
## $ PropertyStreetNbrNameText : Factor w/ 63816 levels "","1 N FENWICK ST",..: 31569 57412 57396 35910 36024 36070 36150 36195 36232 36270 ...
## $ PropertyStreetNbr : int 3007 6547 6541 3518 3526 3530 3538 3544 3550 3562 ...
## $ PropertyStreetNbrSuffixCode : Factor w/ 15 levels "","A","B","BK",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ PropertyStreetDirectionPrefixCode: Factor w/ 3 levels "","N","S": 2 1 1 2 2 2 2 2 2 2 ...
## $ PropertyStreetName : Factor w/ 302 levels "","10th","10TH",..: 244 293 293 256 256 256 256 256 256 256 ...
## $ PropertyStreetTypeCode : Factor w/ 14 levels "","AVE","BLVD",..: 13 3 3 13 13 13 13 13 13 13 ...
## $ PropertyStreetDirectionSuffixCode: Factor w/ 3 levels "","N","S": 1 1 1 1 1 1 1 1 1 1 ...
## $ PropertyUnitNbr : Factor w/ 6329 levels "","# 1","# 102",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ PropertyCityName : Factor w/ 13 levels "","ARILNGTON",..: 6 6 6 6 6 6 6 6 6 6 ...
## $ PropertyZipCode : int 22213 22213 22213 22213 22213 22213 22213 22213 22213 22213 ...
## $ ZoningDescListText : Factor w/ 155 levels "","Accessory Dwell",..: 44 44 44 44 44 44 44 44 44 44 ...
## $ TradeName : Factor w/ 1788 levels "","#129 CRYSTAL GATEWAY 3",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ PropertyYearBuilt : int 2012 1950 1950 2008 1950 1950 1950 1950 1950 2013 ...
## $ GrossFloorAreaSquareFeetQty : int NA NA NA NA NA NA NA NA NA NA ...
## $ EffectiveAgeYearDate : int NA NA NA NA NA NA NA NA NA NA ...
## $ NumberOfUnitsCnt : int NA NA NA NA NA NA NA NA NA NA ...
## $ StoryHeightCnt : int NA NA NA NA NA NA NA NA NA NA ...
## $ ValuationYearDate : int NA NA NA NA NA NA NA NA NA NA ...
## $ CommercialPropertyTypeDsc : Factor w/ 5 levels "","Apartment",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ CondoModelName : Factor w/ 2370 levels "","(Penthse A) 2 Bd/2 Bth (1,510)",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ CondoStyleName : Factor w/ 31 levels "","19","20","Co-op",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ FinishedStorageAreaSquareFeetQty : int NA NA NA NA NA NA NA NA NA NA ...
## $ StorageAreaSquareFeetQty : int NA NA NA NA NA NA NA NA NA NA ...
## $ UnitNbr : Factor w/ 6716 levels "","00000","00001",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ PropertyKey : int 2 3 4 5 6 7 9 10 11 12 ...
## $ ReasPropertyOwnerKey : int 20362 55397 57081 26494 36100 40877 11120 37425 17377 619 ...
## $ ArlingtonStreetKey : int 179 222 222 185 185 185 185 185 185 185 ...
## $ PropertyExpiredInd : Factor w/ 1 level "False": 1 1 1 1 1 1 1 1 1 1 ...
## $ CommercialInd : Factor w/ 2 levels "False","True": 1 1 1 1 1 1 1 1 1 1 ...
## $ DistrictNbr : Factor w/ 11 levels "0C","0G","0M",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ TaxExemptionTypeDsc : Factor w/ 16 levels "","0 - WMATA - NVTC",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ CondominiumProjectName : Factor w/ 199 levels "","1423 RHODES STEET CONDOMINIUM",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ TaxBalanceAmt : num NA NA NA -6749 NA ...
## $ AssessedYearDate : int 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 ...
## $ TotalAssessedAmt : int 1941900 1053200 1039500 1406500 760400 1189400 788400 808200 795300 1588800 ...
## $ AssessmentDate : Factor w/ 6 levels "1/1/2019 12:00:00 AM",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ AssessmentChangeReasonTypeDsc : Factor w/ 3 levels "01- Annual","16- Tax to Exempt",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ ImprovementValueAmt : int 1151000 400900 380000 709800 87500 482900 105900 136300 123400 902000 ...
## $ LandValueAmt : int 790900 652300 659500 696700 672900 706500 682500 671900 671900 686800 ...
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table(arl.p$NumberOfUnitsCnt)

##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## 8 35 1 3 4 5 2 2 10 4 6 8 3 3 5 5
## 16 17 18 19 20 21 22 23 25 26 27 28 29 30 31 32
## 4 2 8 3 5 5 5 3 1 3 2 2 1 4 3 4
## 33 34 36 37 38 40 41 42 44 45 46 47 48 49 51 56
## 4 1 2 4 3 4 5 3 1 1 1 1 2 2 2 1
## 57 62 63 64 65 66 67 68 70 74 75 77 78 79 81 82
## 1 1 2 3 1 1 1 1 1 3 2 2 1 1 1 2
## 83 84 85 87 88 90 91 92 93 94 95 97 99 100 101 102
## 1 2 1 1 2 3 1 1 3 1 1 1 1 5 1 1
## 104 105 108 109 110 111 112 114 115 116 119 120 122 125 126 128
## 2 1 2 3 3 1 1 2 1 2 2 1 1 1 1 3
## 132 134 135 138 142 143 144 146 147 148 151 152 153 154 155 161
## 1 4 1 1 1 1 1 1 1 1 1 3 1 1 1 1
## 162 163 168 170 172 173 178 181 183 184 186 187 188 189 191 193
## 2 1 1 1 1 1 1 3 2 2 1 1 3 1 1 1
## 194 197 198 199 200 204 205 208 210 212 214 217 218 219 220 221
## 1 1 2 1 1 2 2 1 1 2 2 1 2 1 2 2
## 224 225 227 228 229 231 234 235 237 238 241 244 247 249 250 252
## 1 1 1 1 1 1 1 1 2 1 1 3 1 3 2 1
## 253 254 255 257 258 261 262 265 266 267 269 270 272 273 274 280
## 1 1 1 2 1 2 2 2 1 2 1 1 1 1 1 2
## 299 300 302 303 308 314 317 318 321 325 326 330 336 337 342 344
## 2 2 1 1 1 1 1 1 1 2 1 2 1 1 1 1
## 345 348 350 360 361 363 365 366 369 377 378 383 385 400 406 407
## 1 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1
## 410 411 412 435 437 440 442 452 453 454 458 464 474 476 483 491
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 499 500 504 509 534 539 564 571 575 577 580 597 647 686 699 714
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 717 834 900 1075 1295
## 1 1 3 1 1
table(arl.p$PropertyYearBuilt)

##
## 0 1000 1742 1750 1832 1836 1840 1845 1848 1850 1860 1862 1865 1866 1867 1870
## 9 129 1 1 1 2 1 1 1 3 4 1 1 1 1 2
## 1875 1876 1880 1881 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1898 1899
## 1 1 14 1 1 2 1 6 1 1 1 2 2 2 2 1
## 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
## 117 5 5 1 99 42 6 11 12 21 131 13 19 30 21 90
## 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
## 13 17 37 43 483 37 82 97 270 446 109 93 124 189 444 52
## 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
## 103 80 152 508 354 728 1093 1933 4789 1449 743 208 1764 481 626 1790
## 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
## 1182 638 2223 1329 1111 731 745 2493 662 370 691 754 637 664 359 268
## 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
## 644 1643 801 205 154 279 101 103 132 456 580 96 415 128 213 729
## 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
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## 697 707 503 1060 546 418 1033 852 242 838 163 271 727 186 350 610
## 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
## 352 129 324 173 464 270 378 848 362 2038 1533 915 722 431 321 203
## 2012 2013 2014 2015 2016 2017 2018 2019
## 238 365 216 316 277 315 308 4
summary(arl.p$PropertyYearBuilt)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0 1944 1956 1963 1987 2019 3392
summary(arl.p$TaxBalanceAmt)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -40509.1 -3917.3 -2227.3 -2691.3 -556.8 1797.8 64390

From this I learn that there are many variables in this dataframe, that most structures have few units (from
NumberOfUnitsCnt), but a few have quite a few, that the median structure in Arlington was built in 1956
(PropertyYearBuilt), and that most properties are current on their taxes (I take TaxBalanceAmt to be the
amount outstanding on property taxes; NA means the property is current).

C. Basic scatters and drawing attention

We now turn to some basic scatter plots to show the relationship between two variables. We’ll rely on
geom_point(), which is similar to the ggplot commands we’ve used so far. We then move to two methods
for calling out particular areas or conditions of interest.

C.1. Basic scatters

We begin by looking at the correlation between the assessed value of land and the assessed value of the
improvements on that land (the structure(s)). The assessed value is the value that the county assessor gives
to the property for purposes of taxation. It is distinct from the market value, which is the value for which a
property sells on the open market.

Generally, economists anticipate that higher value land should have higher valued structures. We can see
whether the data are consistent with this hypothesis using a scatter plot.

We start by simply plotting these two measures, specifying the dataframe and the x (land value) and y
(improvement value) amounts.
c0 <-

ggplot() +
geom_point(data = arl.p,

mapping = aes(x = LandValueAmt, y = ImprovementValueAmt)) +
labs(title = "first pass: land value vs improvement value")

c0
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This plot is illegible! The large values at the high end of the distribution make the part of the distribution
where the majority of observations lie invisible. In addition, the numbers on the plot are in scientific notation,
which is hard to read. We can fix the problem of outliers in two ways.

We’ll begin by just omitting the outliers. This isn’t good statistical practice if the outliers are true data, but
if we are predominantly concerned about the relationship for most observations (and we’re clear about what
we’re doing) this is ok.
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You can modify the sample multiple different ways. You can create a new dataframe that is limited by some
conditions, and just call that dataframe. You can subset the dataframe directly in the ggplot command,
or you can use limits = c(min(xxx), max(xxx)) inside of the scale_x_continuous() command. Here I
subset the dataframe inside the ggplot command.
# (1) omit outliers, add commas
c0 <-

ggplot() +
geom_point(data = arl.p[which(arl.p$TotalAssessedAmt < 5000000),],

mapping = aes(x = LandValueAmt, y = ImprovementValueAmt)) +
scale_x_continuous(label=comma) +
scale_y_continuous(label=comma) +
labs(title = "land value vs improvment value: omitting outliers")
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land value vs improvment value: omitting outliers

7



Another way to “squish” a distribution is by taking logs. The log function spreads out the small numbers
and relatively shrinks the big numbers.

We want to take the log of two variables. You could write a log command twice, but you can also be a more
efficient programmer in case you decide to come back and make more logged variables. To program efficiently,
don’t use a loop – and in fact, I’m reasonbly confident you cannot use a loop for this problem because of
difficulties getting R to recognize a variable name made from a loop variable.

Thankfully, there is a quick, elegant solution (that took me over an hour to figure out). Create two new
columns based on the log of two existing columns, using paste0 to create the new names.
# (2) take logs
tolog <- c("LandValueAmt","ImprovementValueAmt")
arl.p[paste0("ln.",tolog)] <- log(arl.p[tolog])

For large dataframes, this type of processing is also faster than loops.
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Now create the logged version of the graph using these new variables (alternatively, you could have logged
them in the ggplot command).
cln <-

ggplot() +
geom_point(data = arl.p,

mapping = aes(x = ln.LandValueAmt, y = ln.ImprovementValueAmt)) +
labs(title = "with logs")

cln
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This is clearly better than the first one in the sense of seeing all the data. Of course, logged values are also
more difficult to understand!

One way to deal with this issue of logged variables is to label the axis of the logged variables with the levels,
rather than the logged values. My graph below does this. It shows the relationship between neighborhood
population density and neighborhood median income for the exurban jurisdictions of the greater Washington
area.
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C.2. Call out particular areas

If you’re using a scatterplot for presentation purposes, you’re frequently interested in calling out an area or
group. In this section we’ll call out properties with delinquent taxes to see if they systematically differ from
properties at large. I’ll continue using the logged values here, since I found that graph easier to intepret.

We begin by making a marker for tax delinquency, using the TaxBalanceAmt variable. Using summary(), I
see that NAs are non-delinquent, so I make those 0, and set all others to 1. I check my results with table().
# lets call out those delinquent on their taxes
summary(arl.p$TaxBalanceAmt)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -40509.1 -3917.3 -2227.3 -2691.3 -556.8 1797.8 64390
arl.p$tax.late <- ifelse(is.na(arl.p$TaxBalanceAmt) == TRUE,0,1)
table(arl.p$tax.late)

##
## 0 1
## 64390 1401

Now I repeat the previous chart, but with a second layer of red points for the late tax observations. It’s
important to put this call second, as R stacks points, beginning with the first layer. If this tax delinquent
layer were first, it would be invisible since it would be covered by the following layer. I use color = "red"
inside the aes() command to show the delinquent points.
latetax <-

ggplot() +
geom_point(data = arl.p, aes(x = ln.LandValueAmt, y = ln.ImprovementValueAmt)) +
geom_point(data = arl.p[which(arl.p$TotalAssessedAmt < 5000000),],

mapping = aes(x = ln.LandValueAmt, y = ln.ImprovementValueAmt)) +
geom_point(data = arl.p[which(arl.p$TotalAssessedAmt < 5000000 & arl.p$tax.late == 1),],

mapping = aes(x = ln.LandValueAmt, y = ln.ImprovementValueAmt),
color = "red") +

labs(title = "logged land value vs logged improvment value: no tax payment")
latetax
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This figure shows that delinquent assessments are much more likely for lower-valued properties. Smaller dots
might make this relationship more clear visually.

C.3. Small multiples

Another way to call attention to comparisons in a distribution is to use small multiples. Below I use
facet_grid() to compare the relationship between land and improvement value for residential and non-
residential property. Below I make a graph with two rows; you can also make columns, or a grid with multiple
rows and columns.

I don’t think this is the best use of small multiples, but I did want to show you what they do.

I use the CommercialInd variable, which takes on the values of TRUE and FALSE for this step.
# residential vs commercial
table(arl.p$CommercialInd)

##
## False True
## 63302 2489
h1 <-

ggplot(data = arl.p,
mapping = aes(x = ln.LandValueAmt, y = ln.ImprovementValueAmt)) +

geom_point() +
facet_grid(rows = vars(CommercialInd)) +
labs(title = "logged land vs logged improvement value: by residential/commercial") #+

# scale_x_continuous(label=comma, limits=c(min(0),
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# max(2000000))) +
# scale_y_continuous(label=comma, limits=c(min(0),
# max(2000000)))
h1
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logged land vs logged improvement value: by residential/commercial

I ask you to think about what these graphs tell us in the homework.

D. A limited scatter: year built and value

We now edge toward looking at a Cleveland dot plot by considering the relationship between the year a
structure was built (PropertyYearBuilt) and its value (TotalAssessedAmt).

This is a ggplot geom_point() as before, but recall that the year takes on discrete (as in an integer), rather
than continuous, values.
# distribution of assessed value by year built
c1 <-

ggplot() +
geom_point(data = arl.p,

mapping = aes(x = TotalAssessedAmt, y = PropertyYearBuilt))
c1

## Warning: Removed 3392 rows containing missing values (geom_point).
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This chart immediately points out some data problems. There are no structures in Arlington from the year
1000. Let’s limit to years 1850 and onward for a better looking chart.
# distribution without some crazy years
c2 <-

ggplot() +
geom_point(data = arl.p[which(arl.p$PropertyYearBuilt >1850),],

mapping = aes(x = TotalAssessedAmt, y = PropertyYearBuilt))
c2
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This fix highlights the need to limit the amount of assessed values we consider; for purposes of graphing I set
this maximum at 2,000,000, using the limits() option in scale_x_continuous().
# distribution without some crazy assessed values
c4 <-

ggplot() +
geom_point(data = arl.p[which(arl.p$PropertyYearBuilt >1900),],

mapping = aes(x = TotalAssessedAmt, y = PropertyYearBuilt)) +
scale_x_continuous(label=comma, limits=c(min(0),

max(2000000)))
c4

## Warning: Removed 1312 rows containing missing values (geom_point).
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Regardless of these fixes, these charts suffer from having so many dots that it’s hard to understand what’s
going on. This is where you need to mix statistics and graphics. We’ll calculate the median assessed value in
each year and then limit the plot to this information.

We begin with the combination of group_by() and summarize() that we’ve used before to get a dataframe
that has one observation by PropertyYearBuilt.
# find the points
arl.p.byy <- group_by(.data = arl.p, PropertyYearBuilt)
byyear <- summarize(.data = arl.p.byy,

med.assed.val = median(TotalAssessedAmt),
med.imp.val = median(ImprovementValueAmt),
med.land.val = median(LandValueAmt))

head(byyear)

## # A tibble: 6 x 4
## PropertyYearBuilt med.assed.val med.imp.val med.land.val
## <int> <dbl> <dbl> <dbl>
## 1 0 681400 598200 70700
## 2 1000 437800 263300 352800
## 3 1742 642800 30800 612000
## 4 1750 693200 147800 545400
## 5 1832 958800 327500 631300
## 6 1836 1122500 199050 923450

With these data in hand, we turn to the plot:
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# plot them
e1 <-

ggplot() +
geom_point(data = byyear[which(byyear$PropertyYearBuilt >= 1900),],

mapping = aes(x = med.assed.val,
y = PropertyYearBuilt)) +

labs(title = "first pass, one value by year")
e1
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first pass, one value by year

This is easier to understand, but doesn’t do a good job highlighting the horizontal distance, which is the
key value in this chart. In fact, the default horizontal distance doesn’t even start at 0, which makes the
comparison across years misleading.

A lollipop graph – a version of the Cleveland dot plot – does a better job. In general, I would recommend
this for fewer observations that we have here, though this might look fine in a large format. We also use
geom_segment(), which takes xend and yend in addition to x and y. This draws a segment from (x,xend)
to (y,yend). In our case, we want a straight line, so y and yend are the same. The segment starts at x=0
and ends at the median assessed value for that year.
# lollipop version
e1 <-

ggplot() +
geom_point(data = byyear[which(byyear$PropertyYearBuilt >= 1900),],

mapping = aes(x = med.assed.val,
y = PropertyYearBuilt)) +

geom_segment(data = byyear[which(byyear$PropertyYearBuilt >= 1900),],
mapping = aes(x = 0, xend = med.assed.val,
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y = PropertyYearBuilt, yend = PropertyYearBuilt))
labs(title = "first pass, one value by year")

## $title
## [1] "first pass, one value by year"
##
## attr(,"class")
## [1] "labels"
e1
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E. More Cleveland dot plots

Now we move to a more serious consideration of the power of dot plots, with many thanks to this excellent
tutorial.

E.1. Just one point

We need a smaller set of categories to make a reasonable looking chart, so we will look at the
PropertyClassTypeDsc variable (words for the PropertyClassTypeCode variable) and limit our analysis to
codes with more than 200 properties. These codes describe the type of property – single family, townhome,
commercial, etc.

We start by finding the median assessed value by property class using group_by() and summarize().
# find the points
arl.p.bypc <- group_by(.data = arl.p, PropertyClassTypeDsc)
bypc <- summarize(.data = arl.p.bypc,

med.assed.val = median(TotalAssessedAmt),
med.imp.val = median(ImprovementValueAmt),
med.land.val = median(LandValueAmt),
obs = n())
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If you look at the bypc dataframe, you’ll see that there are many property types with few observations (small
obs). For legibility – and to concentrate on the bulk of the distribution, we graph types with more than 200
properties. We use geom_point() as a starting point.
# plot them if there are > 200 obs
e1 <-

ggplot() +
geom_point(data = bypc[which(bypc$obs > 200),],

mapping = aes(x = med.assed.val,
y = PropertyClassTypeDsc)) +

labs(title = "first pass, one value by type")
e1
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This is not very helpful because the points are not in order. We can order points many ways; here I use
reorder() when I call the y variable. The syntax for this command is reorder(graph variable, ordering
variable).
# lets get them in order!
e1 <-

ggplot() +
geom_point(data = bypc[which(bypc$obs > 200),],

mapping = aes(x = med.assed.val,
y = reorder(PropertyClassTypeDsc, med.assed.val))) +

labs(title = "first pass, ordered")
e1
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E.2. Two points

The real power of this dot plot is in making comparisons between two measures, as in the Wall Street Journal
graphic we discussed in class. However, we’ve just calculated one statistic for each property type; to revise
the chart, we’ll need to calculate more than one. Below I use the quantile() command to find the 25th and
75th percentiles of the assessed value distribution by year. This command has at least two required parts:
the variable from which to find the distribution, and the point in the distribution for which you’re looking.
# let find the 25th and 75th percentiles
# two points
arl.p.bypc <- group_by(.data = arl.p, PropertyClassTypeDsc)
bypc <- summarize(.data = arl.p.bypc,

p50.assed.val = median(TotalAssessedAmt),
p25.assed.val = quantile(TotalAssessedAmt, 0.25),
p75.assed.val = quantile(TotalAssessedAmt, 0.75),
obs = n())

To use the best of R’s tricks for graphing, we need to make these data long. As we have in previous tutorials,
we’ll use pivot_longer() to do this. Look in the previous tutorials for a more in-depth explanation of this
command, or see the cheat sheet here.
# keep in mind that -obs- now refers to the # of the entire category
bypc.long <- pivot_longer(data = bypc,

cols = c("p50.assed.val","p25.assed.val","p75.assed.val"),
names_to = "stat.name",
values_to = "stat.value")
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# pull out the statistic
bypc.long$pnum <- substring(bypc.long$stat.name,2,3)
head(bypc.long)

## # A tibble: 6 x 5
## PropertyClassTypeDsc obs stat.name stat.value pnum
## <fct> <int> <chr> <dbl> <chr>
## 1 100-Off Bldg-VacLand-no s.plan 10 p50.assed.val 722100 50
## 2 100-Off Bldg-VacLand-no s.plan 10 p25.assed.val 122375 25
## 3 100-Off Bldg-VacLand-no s.plan 10 p75.assed.val 1046050 75
## 4 101-Off Bldg-VacLand-site plan 56 p50.assed.val 1943300 50
## 5 101-Off Bldg-VacLand-site plan 56 p25.assed.val 272125 25
## 6 101-Off Bldg-VacLand-site plan 56 p75.assed.val 6073950 75
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One way we’ve used to make comparisons across a pair at multiple levels or categories is a paired or grouped
bar. Let’s start with that for comparison. Recall that we need the stat = "identity" option because our
data already have the total information (they don’t need to be added across observations) and that we use
position = "dodge" to make the paired bars. The aes() option fill = is for our statistic type. We limit
the sample to property types with more than 200 properties and to the 75th and 25th percentiles (no median,
so bypc.long$pnum != "50").
# use the comparison to bar charts
badbar <-

ggplot() +
geom_bar(data = bypc.long[which(bypc.long$pnum != "50" & bypc.long$obs > 200),],

mapping = aes(x = reorder(PropertyClassTypeDsc, stat.value),
y = stat.value, fill = stat.name),

stat = "identity",
position = "dodge") +

coord_flip()
badbar
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This picture is not a disaster – but it’s cluttered and doesn’t always make the best visual comparison between
the relevant two bar lengths. Instead, let’s use a dot plot. We’ll start by just plotting both the 25th and 75th
percentiles (and omitting the category “215”, which is commercial buildings, which has a high 75th percentile
and makes the graph look odd).
# two colors
twoc <-

ggplot() +
geom_point(data = bypc.long[which(bypc.long$pnum != "50"

& bypc.long$obs > 200
& bypc.long$PropertyClassTypeDsc != "215-Gen Comm - other"),],

aes(x = stat.value, y = reorder(PropertyClassTypeDsc, stat.value), color = stat.name))
twoc
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Now let’s do some fixes to make this more clear. We’ll add a line to emphasize the horizontal comparison
we want readers to make, and we put all the data info into the ggplot() call since it is the same for
both the geom_point() and the geom_line() commands. The geom_line() command uses aes(group =
PropertyClassTypeDsc) to let R know that the line should be by the y variable. We put the geom_line()
before geom_point() so that the points cover the line and it looks neater.
# two colors, make it look decent
twoc <-

ggplot(data = bypc.long[which(bypc.long$pnum != "50"
& bypc.long$obs > 200
& bypc.long$PropertyClassTypeDsc != "215-Gen Comm - other"),],

mapping = aes(x = stat.value,
y = reorder(PropertyClassTypeDsc, stat.value))) +

geom_line(aes(group = PropertyClassTypeDsc)) +
geom_point(aes(color = stat.name))

twoc
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This graph has all the basics. Let’s do a little more clean-up on the overall look by getting commas in the
scales and fixing the background with the theme() command.
## make it presentable
twocd <-

ggplot(data = bypc.long[which(bypc.long$pnum != "50"
& bypc.long$obs > 200
& bypc.long$PropertyClassTypeDsc != "215-Gen Comm - other"),],

aes(x = stat.value, y = reorder(PropertyClassTypeDsc, stat.value))) +
geom_line(aes(group = PropertyClassTypeDsc)) +
geom_point(aes(color = stat.name)) +
scale_x_continuous(label=comma) +
labs(y = "structure assessed value") +
theme_minimal() +
theme(axis.title = element_blank(),

panel.grid.major.x = element_blank(),
panel.grid.minor = element_blank(),
legend.position = "none",
plot.title = element_text(size = 20, margin = margin(b = 10)))

twocd
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We could still do some fixes here. One key fix is labeling the 75th and 25th percentiles somewhere on the
graph.

Some other concerns: Why these two colors? I think two shades of the same color might be more intuitive.
I’d make the joining line less dark and distracting. I’d also look into the suspiciously high 75th percentile
value (higher than for single family homes!) for garden apartments.
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F. Homework

Q1

Use a density plot to evaluate whether residential or commercial structures have a greater variance in
assessed value. To do this, I encourage you to use the facet_grid() we learned this class in combination with
geom_density(). To discriminate between residential and commerical structures, use arl.p$CommercialInd.

Q2

Re-do the graph in E.3., but for years 1900 to 2010 (but only every 10 years, so the picture is legible). Add a
legend for the 25th and 75th percentiles by color.

In case this seems overwhelming, here is the order of operations I followed:

• group the data
• summarize to the year level
• keep only decade years

– alternatively, create a decade variabel and summarize by that
• keep only years >= 1900
• make the dataframe long
• plot it

Q3

Make a nice-looking scatter from a different dataset.
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