Tutorial 9: Scatter Plots and Cleveland Dot Plots

Leah Brooks

March 30, 2020

This week we are learning about two types of charts you can create with geom_point (): scatter plots and
Cleveland dot plots, also known as lollipop charts.’

Scatter plots are very useful for seeing the relationship between two variables. They are ideal for initial
exploratory data analysis. They are usually not the best — without substantial editing — for final data
presentation to a non-technical audience.

Cleveland dot plots are a way of summarizing data from a scatter plot. To arrive at data suitable for a
Cleveland dot plot, we will revisit some techniques we’ve learned in previous classes: summarize() and
pivot_longer (), along with group_by().

A. Clear environment and load packages

Sometimes it is helpful to get rid of everything in your R environment — all the past dataframes and plots
and commands. This is particularly useful when you’ve made a lot of dataframes and your memory is getting
clogged, or when you’ve made some odd error and want to start fresh. To clear the R environment, type the
below. I usually put it at the beginning of my R programs to be sure that I am working on the most recently
loaded dataframe.

rm(list=1s())

Let’s also load packages. This tutorial has no new packages.

library(ggplot2)
library(scales)
library(dplyr)

##
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

##

#it filter, lag

The following objects are masked from 'package:base':
#i#

intersect, setdiff, setequal, union
library(tidyr)

1This is our ninth tutorial, posted for Lecture 10.

B. Load and check out data

For this class we're using new data: tax records from Arlington County.

B.1. Load data

In principle, you could find the Arlington data here. You’d use the download button at the bottom left to
download the data as a .csv. Then load the data using read.csv(). BUT — see the next paragraph.

Jill had a lot of trouble with this file last year. The link crashed her Acrobat and she only downloaded 2,785
rows (what you see on the first screen). When Jill downloaded this year, she got 66,385 observations. I've
downloaded it three times and the number of observations has increased each time.

So we can all use the same dataset, please download it from here.

Now read these data using ‘read.csv’.

arl.p <- read.csv("H:/pppa_data_viz/2019/tutorial_data/lecturel1/2019-04-19_arlington_2019_assessment_d
dim(arl.p)
[1] 65791 46

I have formatC(r dim(arl.p)[[1]], big.mark = ",") observations — hopefully you do, too.

B.2. Explore a little bit

Each observation in this data frame is a property in Arlington County, VA. Broadly speaking, this is the
information the county collects on each individual property. Counties in the US (in a few cases, other
jurisdictions) are in charge of land ownership records and property taxation.

As these data are new to us (and as Arlington doesn’t seem to provide a key — though if you find one, let me
know!), let’s explore these data a bit before moving on.

T use str(), names (), table() and summary() to look at values in this dataframe. I encourage you to use
these commands to look at variables other than those I've listed below.

names (arl.p)

[1] "IvwPropertyAssessmentHistoryKey" "ProvalLrsnId"

[3] "RealEstatePropertyCode" "MasterRealEstatePropertyCode"
[5] "ReasPropertyStatusCode" "PropertyClassTypeCode"

[7] "PropertyClassTypeDsc" "PropertyStreetNbrNameText"

[9] "PropertyStreetNbr" "PropertyStreetNbrSuffixCode"
[11] "PropertyStreetDirectionPrefixCode" "PropertyStreetName"

[13] "PropertyStreetTypeCode" "PropertyStreetDirectionSuffixCode"
[15] "PropertyUnitNbr" "PropertyCityName"

[17] "PropertyZipCode" "ZoningDescListText"

[19] "TradeName" "PropertyYearBuilt"

[21] "GrossFloorAreaSquareFeetQty" "EffectiveAgeYearDate"

[23] "NumberOfUnitsCnt" "StoryHeightCnt"

[25] "ValuationYearDate" "CommercialPropertyTypeDsc"

[27] "CondoModelName" "CondoStyleName"

[29] "FinishedStorageAreaSquareFeetQty" "StorageAreaSquareFeetQty"

[31] "UnitNbr" "PropertyKey"

[33] "ReasPropertyOwnerKey" "ArlingtonStreetKey"

[35] "PropertyExpiredInd" "CommercialInd"

http://bit.ly/2TWKXrD
www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2019/subpages/handouts/tutorials/tutorial11/data/2019-04-19_arlington_2019_assessment_data.csv

[37] "DistrictNbr"

[39] "CondominiumProjectName"
[41] "AssessedYearDate"

[43] "AssessmentDate"

[45] "ImprovementValueAmt"
str(arl.p)

'data.frame': 65791 obs.

$ IvwPropertyAssessmentHistoryKey
§ ProvalLrsnId

$ RealEstatePropertyCode

$ MasterRealEstatePropertyCode
$ ReasPropertyStatusCode

$ PropertyClassTypeCode

§ PropertyClassTypeDsc

$ PropertyStreetNbrNameText

$ PropertyStreetNbr

$ PropertyStreetNbrSuffixCode
$ PropertyStreetDirectionPrefixCode:
$ PropertyStreetName

$ PropertyStreetTypeCode

3 PropertyStreetDlrect1onSuff1xCode
$ PropertyUnitNbr

$ PropertyCityName

$ PropertyZipCode

§ ZoningDescListText

$ TradeName

$ PropertyYearBuilt

$ GrossFloorAreaSquareFeetQty
§$ EffectiveAgeYearDate

¢ NumberOfUnitsCnt

$ StoryHeightCnt

§$ ValuationYearDate

$ CommercialPropertyTypeDsc

$ CondoModelName

$ CondoStyleName

$ FinishedStorageAreaSquareFeetQty :
$ StorageAreaSquareFeetQty

§ UnitNbr

$ PropertyKey

$ ReasPropertyOwnerKey

§ ArlingtonStreetKey

$ PropertyExpiredInd

$ Commerciallnd

$ DistrictNbr

$ TaxExemptionTypeDsc

$ CondominiumProjectName

§ TaxBalanceAmt

§ AssessedYearDate

§ TotalAssessedAmt

$ AssessmentDate

$ AssessmentChangeReasonTypeDsc
$ ImprovementValueAmt

¢ LandValueAmt

: Factor w/ 37988 levels "","01001001",
: Factor w/ 2 levels "A","T":

: Factor w/
: Factor w/

: Factor

: Factor w/ 6716 levels "","00000","00001",

. Factor
: Factor
: Factor
: Factor
: Factor
: num NA NA NA -6749 NA ...

: Factor w/ 6 levels "1/1/2019 12:00:00 AM",
: Factor w/ 3 levels "O1- Annual","16- Tax to Exempt",

"TaxExemptionTypeDsc"
"TaxBalanceAmt"
"TotalAssessedAmt"
"AssessmentChangeReasonTypeDsc"
"LandValueAmt"

of 46 variables:

int 74 111 148 185 222 260 334 371 408 445 ...

int 134 136 137 139 140 141 143 144 145 147 ...

1001007 1001009 1001010 1001012 1001013 1001014 1001016 1
: 35689 10 12 13 14
1111111111

int 511 511 511 511 511 511 511 511 511 511

58 levels "100-0ff Bldg-VacLand-no s.plan",..: 37 37
63816 levels "","1 N FENWICK ST",..: 31569 57412 573
int 3007 6547 6541 3518 3526 3530 3538 3544 3550 3562 ...

int

w/ 15 levels "","A","B","BK", 1111111111..
Factor w/ 3 levels "","N","S": 2112222222 ...
: Factor w/ 302 levels "","10th","10TH",..: 244 293 293 256 256
: Factor w/ 14 levels "","AVE","BLVD", 13 3 3 13 13 13 13 13
Factor w/ 3 levels "","N","S": 1111111111 ...
: Factor w/ 6329 levels "","# 1","# 102",..: 1111111111
: Factor w/ 13 levels "","ARILNGTON",..: 6 6 6 6 6 6 6 6 6 6 ...
int 22213 22213 22213 22213 22213 22213 22213 22213 22213 222
: Factor w/ 155 levels "","Accessory Dwell",..: 44 44 44 44 44 4
: Factor w/ 1788 levels "","#129 CRYSTAL GATEWAY 3",..: 1111
int 2012 1950 1950 2008 1950 1950 1950 1950 1950 2013 R
int NA NA NA NA NA NA NA NA NA NA ...
int NA NA NA NA NA NA NA NA NA NA ...
int NA NA NA NA NA NA NA NA NA NA ...
int NA NA NA NA NA NA NA NA NA NA ...
int NA NA NA NA NA NA NA NA NA NA ...
: Factor w/ 5 levels "","Apartment", 1111111111
: Factor w/ 2370 levels "","(Penthse A) 2 Bd/2 Bth (1,510)",
: Factor w/ 31 levels "","19","20","Co-op", 111111111

int NA NA NA NA NA NA NA NA NA NA ...

int NA NA NA NA NA NA NA NA NA NA ...

111111111
int 234567910 11 12 ...

int 20362 55397 57081 26494 36100 40877 11120 37425 17377 619
int 179 222 222 185 185 185 185 185 185 185 ...

w/ 1 level "False": 1 111111
w/ 2 levels "False","True": 1 1 1 1111 ...

w/ 11 levels "OC","OG","OM",..: 2 222222

w/ 16 levels "","0 - WMATA - NVTC", 111111 1 1
w/ 199 levels "","1423 RHODES STEET CONDOMINIUM",..: 1

111
111
222

int 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 ...

int 1941900 1053200 1039500 1406500 760400 1189400 788400 808
11111111
111
int 1151000 400900 380000 709800 87500 482900 105900 136300 1.
int 790900 652300 659500 696700 672900 706500 682500 671900 6

table(arl.p$Number0fUnitsCnt)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

0

8
16
4
33
4
57
1
83
1
104
2
132
1
162
2
194
1
224
1
253
1
299
2
345
1
410
1
499
1
717
1

1
35
17
2
34
1
62
1
84
2
105
1
134
4
163
1
197
1
225
1
254
1
300
2
348
1
411
1
500
1
834

1

2

1
18
8
36
2
63
2
85
1
108
2
135
1
168
1
198
2
227
1
255
1
302
1
350
1
412
1
504
1
900
3

3

3
19
3
37
4
64
3
87
1
109
3
138
1
170
1
199
1
228
1
257
2
303
1
360
2
435
1
509
1
1075
1

4
20
5
38
3
65
1
88
2
110
3
142
1
172
1
200
1
229
1
258
1
308
1
361
1
437
1
534
1
1295
1

21

40

66

90

111

143

173

204

231

261

314

363

440

539

table(arl.p$PropertyYearBuilt)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

0

1875

1900
117
1916
13
1932
103
1948
1182
1964
644
1980

1000
129
1876

1901

1917
17
1933
80
1949
638
1965
1643
1981

1742

1880
14
1902

1918
37
1934
152
1950
2223
1966
801
1982

1750

1881

1903

1919
43
1935
508
1951
1329
1967
205
1983

1832

1887

1904
99
1920
483
1936
354
1952
1111
1968
154
1984

1836

1888

1905
42
1921
37
1937
728
19563
731
1969
279
1985

22

41

67

91

112

144

178

205

234

262

317

365

442

564

1840

1889

1906

1922
82
1938
1093
1954
745
1970
101
1986

23

42

68

92

114

146

181

208

235

265

318

366

452

571

1845

1890

1907
11
1923
97
1939
1933
1955
2493
1971
103
1987

10
25

44

70

93

115

147

183

210

237

266

321

369

453

575

1848

1891

1908
12
1924
270
1940
4789
1956
662
1972
132
1988

©

26

45

74

94

116

148

184

212

238

267

325

377

454

577

1850

1892

1909
21
1925
446
1941
1449
1957
370
1973
456
1989

10

27

46

75

95

119

151

186

214

241

269

326

378

458

580

1860

1893

1910
131
1926
109
1942
743
1958
691
1974
580
1990

11

28

47

77

97

120

152

187

217

244

270

330

383

464

597

1862

1894

1911
13
1927
93
1943
208
1959
754
1975
96
1991

12

29

48

78

99

122

153

188

218

247

272

336

385

474

647

1865

1895

1912
19
1928
124
1944
1764
1960
637
1976
415
1992

13

30

49

79

100

125

154

189

219

249

273

337

400

476

686

1866

1896

1913
30
1929
189
1945
481
1961
664
1977
128
1993

14

31

51

81

101

126

155

191

220

250

274

342

406

483

699

1867

1898

1914
21
1930
444
1946
626
1962
359
1978
213
1994

15

32

56

82

102

128

161

193

221

252

280

344

407

491

714

1870

1899

1915
90
1931
52
1947
1790
1963
268
1979
729
1995

697 707 503 1060 546 418
1996 1997 1998 1999 2000 2001

1033 852 242 838 163 271 727 186 350 610
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

352 129 324 173 464 270 378 848 362 2038 1533 915 722 431 321 203
2012 2013 2014 2015 2016 2017 2018 2019

238 365 216 316 277 315 308 4

summary (arl.p$PropertyYearBuilt)

#i#t Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

#it 0 1944 1956 1963 1987 2019 3392

summary (arl.p$TaxBalanceAmt)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

-40509.1 -3917.3 -2227.3 -2691.3 -556.8 1797.8 64390

From this I learn that there are many variables in this dataframe, that most structures have few units (from
Number0fUnitsCnt), but a few have quite a few, that the median structure in Arlington was built in 1956
(PropertyYearBuilt), and that most properties are current on their taxes (I take TaxBalanceAmt to be the
amount outstanding on property taxes; NA means the property is current).

C. Basic scatters and drawing attention

We now turn to some basic scatter plots to show the relationship between two variables. We’ll rely on
geom_point (), which is similar to the ggplot commands we’ve used so far. We then move to two methods
for calling out particular areas or conditions of interest.

C.1. Basic scatters

We begin by looking at the correlation between the assessed value of land and the assessed value of the
improvements on that land (the structure(s)). The assessed value is the value that the county assessor gives
to the property for purposes of taxation. It is distinct from the market value, which is the value for which a
property sells on the open market.

Generally, economists anticipate that higher value land should have higher valued structures. We can see
whether the data are consistent with this hypothesis using a scatter plot.

We start by simply plotting these two measures, specifying the dataframe and the x (land value) and y
(improvement value) amounts.
cO <-

gegplot () +

geom_point(data = arl.p,

mapping = aes(x = LandValueAmt, y = ImprovementValueAmt)) +

labs(title = "first pass: land value vs improvement value")

cO

first pass: land value vs improvement value

[]
6e+08 - ¢
€ °
<
g
f>f 4e+08 - o
[
g [
g o
= 2¢+08- o o
[]
[)
[X)
® []
0e+00 -)
0e+00 3e+08 6e+08 9e+08

LandValueAmt

This plot is illegible! The large values at the high end of the distribution make the part of the distribution
where the majority of observations lie invisible. In addition, the numbers on the plot are in scientific notation,
which is hard to read. We can fix the problem of outliers in two ways.

We’ll begin by just omitting the outliers. This isn’t good statistical practice if the outliers are true data, but
if we are predominantly concerned about the relationship for most observations (and we're clear about what
we’re doing) this is ok.

You can modify the sample multiple different ways. You can create a new dataframe that is limited by some
conditions, and just call that dataframe. You can subset the dataframe directly in the ggplot command,
or you can use limits = c(min(xxx), max(xxx)) inside of the scale_x_continuous() command. Here I
subset the dataframe inside the ggplot command.

(1) omit outliers, add commas
c0 <-
ggplot () +
geom_point(data = arl.p[which(arl.p$TotalAssessedAmt < 5000000),],
mapping = aes(x = LandValueAmt, y = ImprovementValueAmt)) +
scale_x_continuous(label=comma) +
scale_y_continuous(label=comma) +
labs(title = "land value vs improvment value: omitting outliers")
cO

land value vs improvment value: omitting outliers

:. °
4,000,000 - o L
5 .
°
s .
° [4 o o
e oo o

= 3,000,000 -
5
E °
c oo °
GE) 2,000,000 - ®
g Qe oo
o o o
o o o Y O []
E ° [) [])
—_ .‘ °

1,000,000 - b oo o e®® &£° o O

Sogoe™ e ° o
.. ° [] ‘ [J °
‘ ? ..
F B o ® ®o® ¢ °
0- Snal csfinee cvem ¢ o ¢ wnes 0o

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,00(
LandValueAmt

Another way to “squish” a distribution is by taking logs. The log function spreads out the small numbers
and relatively shrinks the big numbers.

We want to take the log of two variables. You could write a log command twice, but you can also be a more
efficient programmer in case you decide to come back and make more logged variables. To program efficiently,
don’t use a loop — and in fact, I'm reasonbly confident you cannot use a loop for this problem because of
difficulties getting R to recognize a variable name made from a loop variable.

Thankfully, there is a quick, elegant solution (that took me over an hour to figure out). Create two new
columns based on the log of two existing columns, using paste0 to create the new names.

(2) take logs
tolog <- c("LandValueAmt","ImprovementValueAmt")
arl.p[paste0("1ln.",tolog)] <- log(arl.p[tologl)

For large dataframes, this type of processing is also faster than loops.

Now create the logged version of the graph using these new variables (alternatively, you could have logged
them in the ggplot command).

cln <-
ggplot() +
geom_point(data = arl.p,
mapping = aes(x = ln.LandValueAmt, y = 1ln.ImprovementValueAmt)) +
labs(title = "with logs")

cln
with logs
[]
20- ®
o
E
)
% 159
=)
©
2
[y
()
2 |
()]
3 °
£ 104
=
-]
[]
[] ° 9 o monEBE (X . N []
[] [X}
5-
[] [] o0 [] ®
5 10 15 20

In.LandValueAmt

This is clearly better than the first one in the sense of seeing all the data. Of course, logged values are also
more difficult to understand!

One way to deal with this issue of logged variables is to label the axis of the logged variables with the levels,
rather than the logged values. My graph below does this. It shows the relationship between neighborhood
population density and neighborhood median income for the exurban jurisdictions of the greater Washington
area.

520,000
=
wn
0]
O,
@ 2,000 S .
o *. @
8 *® £5018
. e o °
= Lo
@ 150 :
() .
-o Y Ll
= .
S
©
2 10
oS
0 50,000 100,000 150,000 200,000 250,000

median household income by neighborhood

C.2. Call out particular areas

If you’re using a scatterplot for presentation purposes, you're frequently interested in calling out an area or
group. In this section we’ll call out properties with delinquent taxes to see if they systematically differ from
properties at large. I’ll continue using the logged values here, since I found that graph easier to intepret.

We begin by making a marker for tax delinquency, using the TaxBalanceAmt variable. Using summary(), I
see that NAs are non-delinquent, so I make those 0, and set all others to 1. I check my results with table().

lets call out those delinquent on their tazes
summary (arl.p$TaxBalanceAmt)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-40509.1 -3917.3 -2227.3 -2691.3 -556.8 1797.8 64390

arl.p$tax.late <- ifelse(is.na(arl.p$TaxBalanceAmt) == TRUE,0,1)
table(arl.p$tax.late)

##
0 1
64390 1401

Now I repeat the previous chart, but with a second layer of red points for the late tax observations. It’s
important to put this call second, as R stacks points, beginning with the first layer. If this tax delinquent
layer were first, it would be invisible since it would be covered by the following layer. I use color = "red"
inside the aes() command to show the delinquent points.

latetax <-
ggplot () +
geom_point(data = arl.p, aes(x = ln.LandValueAmt, y = ln.ImprovementValueAmt)) +
geom_point(data = arl.p[which(arl.p$TotalAssessedAmt < 5000000),],
mapping = aes(x = ln.LandValueAmt, y = 1ln.ImprovementValueAmt)) +
geom_point(data = arl.p[which(arl.p$TotalAssessedAmt < 5000000 & arl.p$tax.late == 1),],
mapping = aes(x = ln.LandValueAmt, y = 1ln.ImprovementValueAmt),
color = "red") +
labs(title = "logged land value vs logged improvment value: no tax payment")
latetax

10

logged land value vs logged improvment value: no tax payment

20- o
[]

=
<)
D 159
=)
©
>
C
2 |
e
()
3 °
£ 104
=
-]

[]

[] ° (YY) [X . N []

[] [X }

5-
[} [] o0 [] []
5 10 15 20

In.LandValueAmt

This figure shows that delinquent assessments are much more likely for lower-valued properties. Smaller dots
might make this relationship more clear visually.

C.3. Small multiples

Another way to call attention to comparisons in a distribution is to use small multiples. Below I use
facet_grid() to compare the relationship between land and improvement value for residential and non-
residential property. Below I make a graph with two rows; you can also make columns, or a grid with multiple
rows and columns.

I don’t think this is the best use of small multiples, but I did want to show you what they do.

I use the CommercialInd variable, which takes on the values of TRUE and FALSE for this step.

restidential vs commercial
table(arl.p$Commerciallnd)

##
False True
63302 2489

hl <-
ggplot(data = arl.p,
mapping = aes(x = ln.LandValueAmt, y = 1ln.ImprovementValueAmt)) +
geom_point () +
facet_grid(rows = vars(Commerciallnd)) +
labs(title = "logged land vs logged improvement value: by residential/commercial") #+
scale_z_continuous(label=comma, limits=c(min(0),

11

mazx (2000000))) +
scale_y_continuous(label=comma, limits=c(min(0),

maz (2000000)))
hi

logged land vs logged improvement value: by residential/commercial

20-

=
o1

=
o
o wenlssverer Yo
[]

asye4

N
(@]
1

In.ImprovementValueAmt
& o
[}
[}

aniL

=
o
-

5 10 15 20
In.LandValueAmt

I ask you to think about what these graphs tell us in the homework.

D. A limited scatter: year built and value

We now edge toward looking at a Cleveland dot plot by considering the relationship between the year a
structure was built (PropertyYearBuilt) and its value (TotalAssessedAmt).

This is a ggplot geom_point () as before, but recall that the year takes on discrete (as in an integer), rather
than continuous, values.
distribution of assessed value by year built
cl <-

ggplot () +

geom_point(data = arl.p,

mapping = aes(x = TotalAssessedAmt, y = PropertyYearBuilt))

cl

Warning: Removed 3392 rows containing missing values (geom_point).

12

2000~ ”. o % .
[]
e o [J [J

[]
1500 -
%
@
S
i; 1000- @ o
o
o
e
a
500 -
0- [)
0.0e+00 5.0e+08 1.0e+09 1.5e+09

TotalAssessedAmt

This chart immediately points out some data problems. There are no structures in Arlington from the year
1000. Let’s limit to years 1850 and onward for a better looking chart.

distribution without some crazy years
c2 <-
gegplot () +
geom_point(data = arl.p[which(arl.p$PropertyYearBuilt >1850),],

mapping = aes(x = TotalAssessedAmt, y = PropertyYearBuilt))
c2

13

[]
2000 - o
[}
%
m
T 1950-
()
; °
a3
o
e
o
1900 -) °
e
®
[J
]
8
0.0e+00 5.0e+08 1.0e+09 1.5e+09
TotalAssessedAmt

This fix highlights the need to limit the amount of assessed values we consider; for purposes of graphing I set
this maximum at 2,000,000, using the 1limits() option in scale_x_continuous().
distribution without some crazy assessed values
c4 <-
gegplot () +
geom_point(data = arl.p[which(arl.p$PropertyYearBuilt >1900),],
mapping = aes(x = TotalAssessedAmt, y = PropertyYearBuilt)) +
scale_x_continuous(label=comma, limits=c(min(0),

max (2000000)))
cd

Warning: Removed 1312 rows containing missing values (geom_point).

14

2000 -
°
- °
'S 1975-
Q
S s
2 .
2
@
Q 1950~
° %
Q . ‘Qz g&‘
o o o op ' I b ‘. %
°) - . A) ol h * A% eee
1925 - ° % e)] O ® ;’
o °©° o VN § ’ i ® o0 ange °
o o okt f“'?‘rj X cepe §, b ? °
o @ Ny o &
taatesdress o ¥y e *
.ﬂ [a6 °
1900~ SH o — ’ *
6 SOdOOO LOOéDOO L506000 ZOOdOOO

TotalAssessedAmt

Regardless of these fixes, these charts suffer from having so many dots that it’s hard to understand what’s
going on. This is where you need to mix statistics and graphics. We’ll calculate the median assessed value in
each year and then limit the plot to this information.

We begin with the combination of group_by() and summarize() that we’ve used before to get a dataframe
that has one observation by PropertyYearBuilt.
find the points
arl.p.byy <- group_by(.data = arl.p, PropertyYearBuilt)
byyear <- summarize(.data = arl.p.byy,
med.assed.val = median(TotalAssessedAmt),
med.imp.val = median(ImprovementValueAmt),
med.land.val = median(LandValueAmt))
head (byyear)

A tibble: 6 x 4
PropertyYearBuilt med.assed.val med.imp.val med.land.val

<int> <dbl> <dbl> <dbl>
1 0 681400 598200 70700
2 1000 437800 263300 352800
3 1742 642800 30800 612000
4 1750 693200 147800 545400
5 1832 958800 327500 631300
6 1836 1122500 199050 923450

With these data in hand, we turn to the plot:

15

plot them
el <-
gegplot () +

geom_point (data = byyear [which(byyear$PropertyYearBuilt >= 1900),],

mapping = aes(x = med.assed.val,
y = PropertyYearBuilt)) +

labs(title = "first pass, one value by year")
el
first pass, one value by year
[]
[
[
2000 - ‘ .
- . .
[]
° 3 * L4
° o
[] Y °
= [] °)
S 1975- — o« ° ®e
Q « ° S o
@ ° ° ® o
Q L] ° °
> ° [®
2 ° o °
e []
8 1950- ° . ‘.’
e L ; C
o ° ° ..
® .
o .o
1925 - }‘.
%
<
' []
. e
1900 - ¢ o o
400000 800000

med.assed.val

16000(

This is easier to understand, but doesn’t do a good job highlighting the horizontal distance, which is the
key value in this chart. In fact, the default horizontal distance doesn’t even start at 0, which makes the

comparison across years misleading.

A lollipop graph — a version of the Cleveland dot plot — does a better job. In general, I would recommend
this for fewer observations that we have here, though this might look fine in a large format. We also use
geom_segment (), which takes xend and yend in addition to x and y. This draws a segment from (x,xend)
to (y,yend). In our case, we want a straight line, so y and yend are the same. The segment starts at x=0

and ends at the median assessed value for that year.

lollipop wversion
el <-

ggplot() +

geom_point(data = byyear [which(byyear$PropertyYearBuilt >= 1900),],

mapping = aes(x = med.assed.val,
y = PropertyYearBuilt)) +

geom_segment (data = byyear [which(byyear$PropertyYearBuilt >= 1900),],

mapping = aes(x = 0, xend = med.assed.val,

16

y = PropertyYearBuilt, yend = PropertyYearBuilt))

labs(title = "first pass, one value by year")
$title
[1] "first pass, one value by year"
##

attr(,"class")
[1] "labels"

el
2000 - %o
S 1975-
@
S
>_
P
8 1950-
o
o
) g
1925 - 4

- —e—— Z

0 500000 1000000 1500000
med.assed.val

17

E. More Cleveland dot plots

Now we move to a more serious consideration of the power of dot plots, with many thanks to this excellent
tutorial.

E.1. Just one point

We need a smaller set of categories to make a reasonable looking chart, so we will look at the
PropertyClassTypeDsc variable (words for the PropertyClassTypeCode variable) and limit our analysis to
codes with more than 200 properties. These codes describe the type of property — single family, townhome,
commercial, etc.

We start by finding the median assessed value by property class using group_by () and summarize().
find the points
arl.p.bypc <- group_by(.data = arl.p, PropertyClassTypeDsc)
bypc <- summarize(.data = arl.p.bypc,
med.assed.val = median(TotalAssessedAmt),
med.imp.val = median(ImprovementValueAmt),
med.land.val = median(LandValueAmt),
obs = n())

18

https://uc-r.github.io/cleveland-dot-plots
https://uc-r.github.io/cleveland-dot-plots

If you look at the bypc dataframe, you'll see that there are many property types with few observations (small
obs). For legibility — and to concentrate on the bulk of the distribution, we graph types with more than 200
properties. We use geom_point () as a starting point.

plot them if there are > 200 obs
el <-
ggplot () +
geom_point(data = bypc[which(bypc$obs > 200),],
mapping = aes(x = med.assed.val,
y = PropertyClassTypeDsc)) +
labs(title = "first pass, one value by type")
el

first pass, one value by type

616—-Condo Stacked - o
614-Condo Co-op - o
613-Condo Garden - °
612-Condo Mid-rise - (]
611-Condo High-rise - °
540 - Not Valued Resd. (H.O.A)- @
515-Duplex - °
514-Side by side - °
513-Townhouse (condo own) - °
512-Townhouse (fee simple own) - o
511-Single Family Detached - °
510-Res - Vacant(SF & Twnhse)- @

PropertyClassTypeDsc

311-Apartment — Garden - o
290-Commercial Condo - [
215-Gen Comm - other - [

211-Retail strip - °

1 1 1 1
0 500000 1000000 1500000 2000000
med.assed.val

This is not very helpful because the points are not in order. We can order points many ways; here I use
reorder () when I call the y variable. The syntax for this command is reorder (graph variable, ordering
variable).

lets get them in order!
el <-

gegplot() +

geom_point (data = bypc[which(bypc$obs > 200),],

mapping = aes(x = med.assed.val,
y = reorder(PropertyClassTypeDsc, med.assed.val))) +

labs(title = "first pass, ordered")

el

19

first pass, ordered

311-Apartment — Garden - °
215-Gen Comm - other - o
211-Retail strip - o
511-Single Family Detached - o
515-Duplex - °
512-Townhouse (fee simple own) - °
290-Commercial Condo - °
513-Townhouse (condo own) - o
616—Condo Stacked - o
611-Condo High-rise - o
514-Side by side - °
613-Condo Garden -]
612-Condo Mid-rise - (]
614-Condo Co-op - o
510-Res - Vacant(SF & Twnhse)- @

reorder(PropertyClassTypeDsc, med.assed.val)

540 - Not Valued Resd. (H.O.A)- o

0 500000 1000000 1500000 2000000
med.assed.val

E.2. Two points

The real power of this dot plot is in making comparisons between two measures, as in the Wall Street Journal
graphic we discussed in class. However, we’ve just calculated one statistic for each property type; to revise
the chart, we’ll need to calculate more than one. Below I use the quantile() command to find the 25th and
75th percentiles of the assessed value distribution by year. This command has at least two required parts:
the variable from which to find the distribution, and the point in the distribution for which you’re looking.

let find the 25th and 75th percentiles

two points

arl.p.bypc <- group_by(.data = arl.p, PropertyClassTypeDsc)

bypc <- summarize(.data = arl.p.bypc,
p50.assed.val = median(TotalAssessedAmt),
p25.assed.val = quantile(TotalAssessedAmt, 0.25),
p75.assed.val = quantile(TotalAssessedAmt, 0.75),
obs = n())

To use the best of R’s tricks for graphing, we need to make these data long. As we have in previous tutorials,
we’ll use pivot_longer () to do this. Look in the previous tutorials for a more in-depth explanation of this
command, or see the cheat sheet here.
keep in mind that -obs— now refers to the # of the entire category
bypc.long <- pivot_longer(data = bypc,
cols = c("p50.assed.val","p25.assed.val","p75.assed.val"),
names_to = "stat.name",
values_to = "stat.value")

20

https://github.com/rstudio/cheatsheets/blob/master/data-import.pdf

pull out the statistic

bypc.long$pnum <- substring(bypc.long$stat.name,2,3)

head (bypc.long)

A tibble: 6 x 5
PropertyClassTypeDsc

##
##
#
##
##
##
##
#

DO WN -

<fct>

100-0ff
100-0£ff
100-0£ff
101-0ff
101-0ff
101-0ff

Bldg-VacLand-no s.
Bldg-VacLand-no s.
Bldg-VacLand-no s.
Bldg-VacLand-site
Bldg-VacLand-site
Bldg-VacLand-site

plan
plan
plan
plan
plan
plan

obs
<int>
10

10

10

56

56

56

stat.name
<chr>

p50.
p25.
p75.
p50.
p25.
p75.

21

assed.
assed.
assed.
assed.
assed.
assed.

val
val
val
val
val
val

stat.value
<dbl>
722100
122375
1046050
1943300
272125
6073950

pnum
<chr>
50
25
75
50
25
75

One way we’ve used to make comparisons across a pair at multiple levels or categories is a paired or grouped
bar. Let’s start with that for comparison. Recall that we need the stat = "identity" option because our
data already have the total information (they don’t need to be added across observations) and that we use
position = "dodge" to make the paired bars. The aes() option £ill = is for our statistic type. We limit
the sample to property types with more than 200 properties and to the 75th and 25th percentiles (no median,
so bypc.long$pnum != "50").

use the comparison to bar charts

badbar <-
geplot () +
geom_bar(data = bypc.long[which(bypc.long$pnum != "50" & bypc.long$obs > 200),],
mapping = aes(x = reorder(PropertyClassTypeDsc, stat.value),
y = stat.value, fill = stat.name),
stat = "identity",
position = "dodge") +
coord_£f1lip()
badbar

215-Gen Comm - other -

311-Apartment — Garden -
211-Retail strip -
290-Commercial Condo -
511-Single Family Detached -
515-Duplex -

512-Townhouse (fee simple own) - stat name

. p25.assed.val
. p75.assed.val

513-Townhouse (condo own) -
616—-Condo Stacked -
611-Condo High-rise -
514-Side by side -
613-Condo Garden -
612-Condo Mid-rise -

reorder(PropertyClassTypeDsc, stat.value)

510-Res - Vacant(SF & Twnhse) -
614-Condo Co-op -
540 - Not Valued Resd. (H.O.A) -

1 1 1 1
0e+00 2e+06 4e+06 6e+06
stat.value

This picture is not a disaster — but it’s cluttered and doesn’t always make the best visual comparison between
the relevant two bar lengths. Instead, let’s use a dot plot. We’ll start by just plotting both the 25th and 75th
percentiles (and omitting the category “215”, which is commercial buildings, which has a high 75th percentile
and makes the graph look odd).

two colors

twoc <-
ggplot () +
geom_point(data = bypc.long[which(bypc.long$pnum != "50"
& bypc.long$obs > 200
& bypc.long$PropertyClassTypeDsc != "215-Gen Comm - other"),],
aes(x = stat.value, y = reorder(PropertyClassTypeDsc, stat.value), color = stat.name))
twoc

311-Apartment — Garden - o ®
211-Retail strip - o °

@ 290-Commercial Condo - ® °
g 511-Single Family Detached - oo
% 515-Duplex - oo
g 512-Townhouse (fee simple own) - o0
§ 513-Townhouse (condo own) - oo stat.name
E 616-Condo Stacked - oo © p25.assed.val
i 611-Condo High-rise- e e ® p75.assed.val
%_ 514-Side by side - L
a 613-Condo Garden- ®®
E 612-Condo Mid-rise- e© e
g 510-Res - Vacant(SF & Twnhse)- © o

614-Condo Co-op- ®
540 - Not Valued Resd. (H.O.A)- @

0e+00 2e+06 4e+06
stat.value

23

Now let’s do some fixes to make this more clear. We’ll add a line to emphasize the horizontal comparison
we want readers to make, and we put all the data info into the ggplot() call since it is the same for
both the geom_point () and the geom_line() commands. The geom_line() command uses aes(group =
PropertyClassTypeDsc) to let R know that the line should be by the y variable. We put the geom_line ()
before geom_point () so that the points cover the line and it looks neater.

two colors, make it look decent

twoc <-
ggplot(data = bypc.long[which(bypc.long$pnum != "50"
& bypc.long$obs > 200
& bypc.long$PropertyClassTypeDsc != "215-Gen Comm - other"),],

mapping = aes(x = stat.value,
y = reorder (PropertyClassTypeDsc, stat.value))) +
geom_line(aes(group = PropertyClassTypeDsc)) +
geom_point (aes(color = stat.name))
twoc

311-Apartment — Garden - ®
211-Retail strip - ——————o©

g 290—-Commercial Condo - —e
g 511-Single Family Detached - —o
‘g 515-Duplex - -0
g 512-Townhouse (fee simple own) - —e
§ 513-Townhouse (condo own) - - stat.name
% 616—-Condo Stacked - - p25.assed.val
cG: 611-Condo High-rise - - ® p75.assed.val
g_ 514-Side by side - °
a 613—-Condo Garden - o
E 612—-Condo Mid-rise - -0
g 510-Res - Vacant(SF & Twnhse) - o—e

614-Condo Co-op- ®
540 - Not Valued Resd. (H.O.A)- @

1 1 1
0e+00 2e+06 4e+06
stat.value

24

This graph has all the basics. Let’s do a little more clean-up on the overall look by getting commas in the
scales and fixing the background with the theme () command.

make it presentable

twocd <-
ggplot(data = bypc.long[which(bypc.long$pnum != "50"
& bypc.long$obs > 200
& bypc.long$PropertyClassTypeDsc != "215-Gen Comm - other"),],

aes(x = stat.value, y = reorder(PropertyClassTypeDsc, stat.value))) +

geom_line(aes(group = PropertyClassTypeDsc)) +
geom_point (aes(color = stat.name)) +
scale_x_continuous(label=comma) +
labs(y = "structure assessed value") +
theme_minimal() +
theme (axis.title = element_blank(),

panel.grid.major.x = element_blank(),

panel.grid.minor = element_blank(),

legend.position = "none",

plot.title = element_text(size = 20, margin = margin(b = 10)))

twocd

®
[]

311-Apartment — Garden

211-Retail strip

®

290-Commercial Condo *~—e
511-Single Family Detached —e
515-Duplex o—e
512-Townhouse (fee simple own) o—e

513-Townhouse (condo own)
616—Condo Stacked

611-Condo High-rise

o—e

o—o

—e

514-Side by side L g
613-Condo Garden o
612-Condo Mid-rise —o

510-Res - Vacant(SF & Twnhse) —e
614-Condo Co-op]

540 - Not Valued Resd. (H.O.A) °

0 2,000,000 4,000,000
We could still do some fixes here. One key fix is labeling the 75th and 25th percentiles somewhere on the
graph.

Some other concerns: Why these two colors? I think two shades of the same color might be more intuitive.
I’d make the joining line less dark and distracting. I'd also look into the suspiciously high 75th percentile
value (higher than for single family homes!) for garden apartments.

25

F. Homework

Q1

Use a density plot to evaluate whether residential or commercial structures have a greater variance in
assessed value. To do this, I encourage you to use the facet_grid() we learned this class in combination with
geom_density (). To discriminate between residential and commerical structures, use arl.p$CommercialInd.

Q2

Re-do the graph in E.3., but for years 1900 to 2010 (but only every 10 years, so the picture is legible). Add a
legend for the 25th and 75th percentiles by color.

In case this seems overwhelming, here is the order of operations I followed:

e group the data
e summarize to the year level
e keep only decade years
— alternatively, create a decade variabel and summarize by that
e keep only years >= 1900
o make the dataframe long
e plot it

Q3

Make a nice-looking scatter from a different dataset.

26

	A. Clear environment and load packages
	B. Load and check out data
	B.1. Load data
	B.2. Explore a little bit

	C. Basic scatters and drawing attention
	C.1. Basic scatters
	C.2. Call out particular areas
	C.3. Small multiples

	D. A limited scatter: year built and value
	E. More Cleveland dot plots
	E.1. Just one point
	E.2. Two points

	F. Homework
	Q1
	Q2
	Q3

