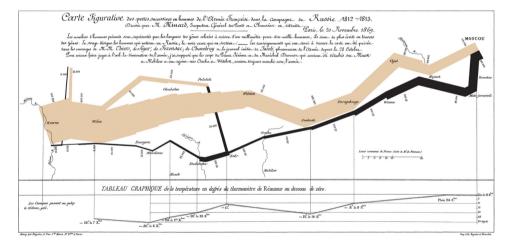

Lecture 1: Welcome to Data Visualization Using R

January 11, 2021

Take This Class So You Won't Make This Graphic


Or This One

EQUALITY INDEX	REVISED 2016 72.2%	2017 72.3%
Health	79.4%	80.0%
Education	77.4%	78.2%
Social Justice	60.9%	57.4%
Civic Engagement	100.6%	100.6%

"U.S. Metros Ranked on Black-White Income Inequality," Next City, May 2, 2017

Instead, Aspire to This

See Tufte for citation.

To Create Memories

- Journalists frequently start articles with anecdotes because they are
 - relateable
 - memorable
 - compelling (?)

To Create Memories

- Journalists frequently start articles with anecdotes because they are
 - relateable
 - memorable
 - compelling (?)
- Raw data is none of these things
- Goal of this course is to create graphics that are
 - compelling
 - clear
 - memorable
 - succinct

Overview

Course Administration

Some R Examples

Tufte, Grandfather of Visualization

Getting Started with R

R Programming

Course Administration

- 1. Reading quiz
- 2. Syllabus
 - Policy brief handout
 - Fully composed chart handout
 - Good/bad/ugly assignments handout
- 3. Questions/issues with readings?
- 4. Make sure you're signed up for Piazza
- Kim Wilson coming soon to answer questions

5. Introductions

- name and degree
- why this course?
- what you do now
- what you'd like to do when you're done

Online Portion of Lecture 1

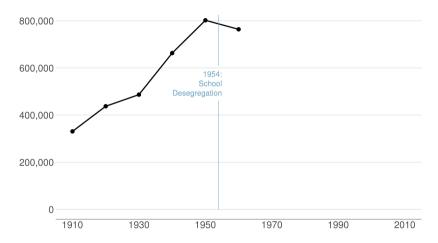
Synchronous Lecture

Online Portion of Lecture 1

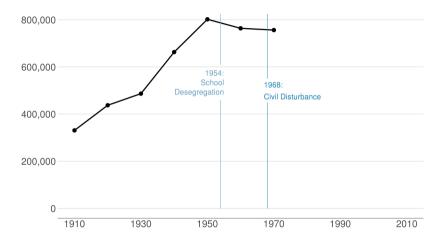
- 1. R examples
- 2. Tufte

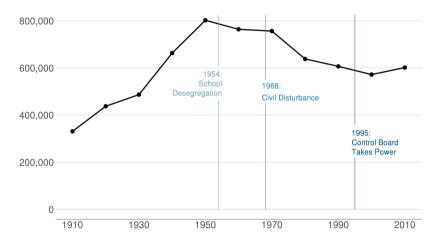
R Examples

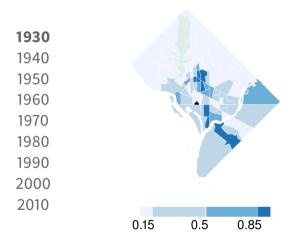
R Examples

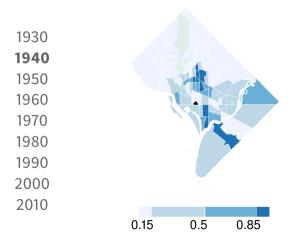

- 1. From a project about the long-run impacts of DC's 1968 civil disturbance
- 2. From a project about whether and why infrastructure costs are increasing
- 3. From a project about working from home in the DC region

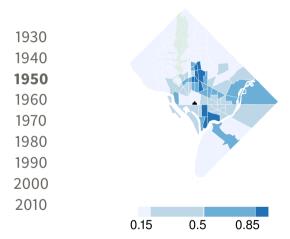
From a Project about the Long-Run Impacts of DC's 1968 Civil Disturbance

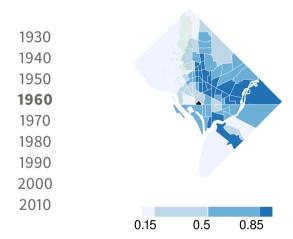

DC Gains Population Through 1950

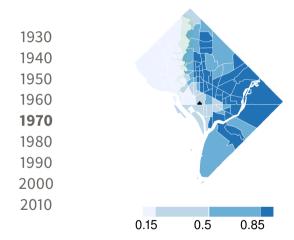

Population Loses Start with Desegregation

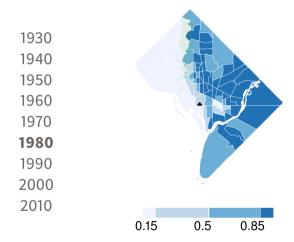


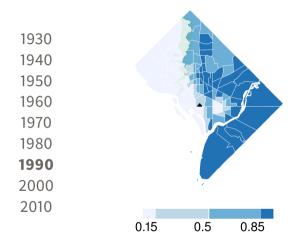

Continue After Civil Disturbance

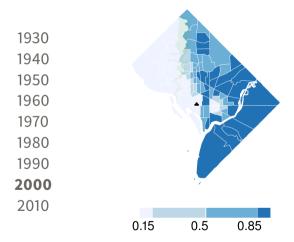


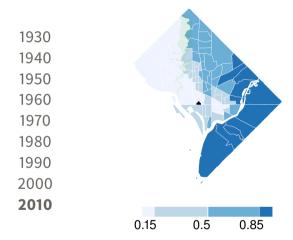

Population Turns Up After 2000

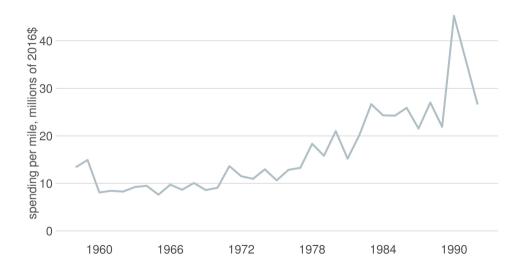


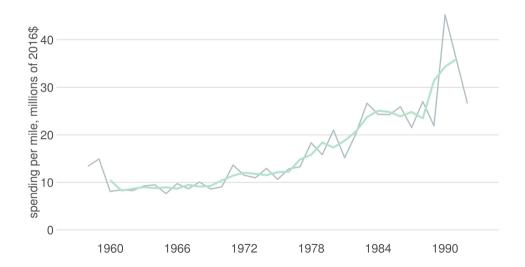




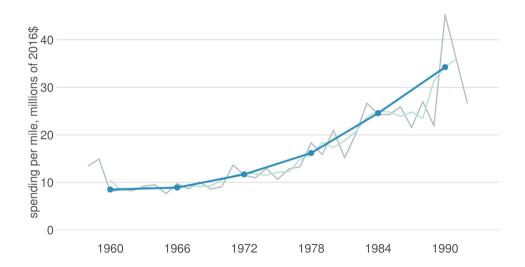


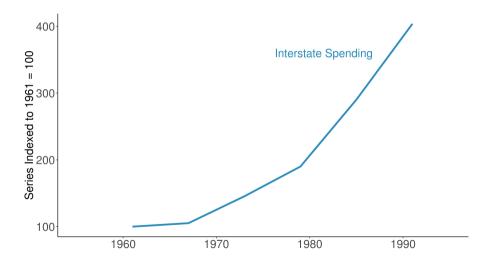


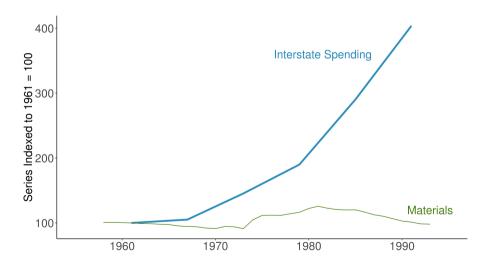


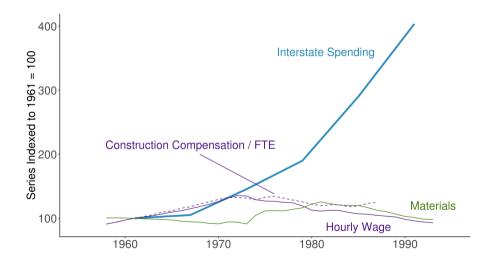


From a project about whether and why infrastructure costs are increasing

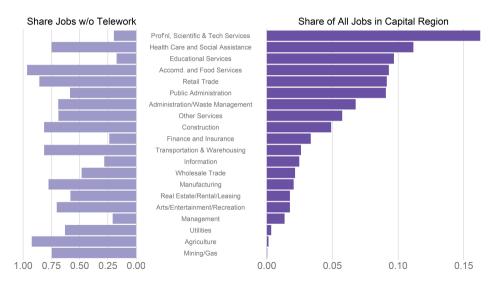

Spending Per Mile has Tripled Since 1960s


Spending Per Mile has Tripled Since 1960s

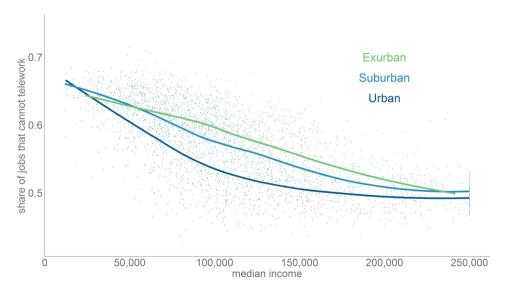

Spending Per Mile has Tripled Since 1960s


Interstate Spending Per Mile, Indexed to 100 in 1961

Materials Prices are Roughly Flat Over the Period



Wages Are Flat, Too → Input Prices Cannot Explain Increase



From a project about the likely impacts of Covid on the DC region

Capitol Region Strong in Work-from-home Sectors

Wealthier People More Likely to Be Able to Telework

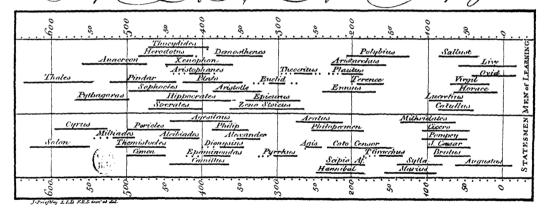
Tufte

Tufte

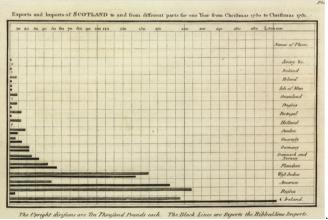
- 1. Why Tufte?
- 2. Beginnings of graphics
- 3. Why visualizations help

- 4. Tufte's four types of graphs, with examples
- 5. Tufte's problems with graphics
- 6. Rules of graphic integrity

Edward Tufte


- A quantitative political scientist
- Writing in the mid-1970s
- Became interested in visualization by working with pioneering statistician John Tukey
- Remember that this is the pre-Excel era, in which data graphics are difficult to make

Why Do We Read This?


- Among the first to take the field as a whole seriously
- Greatest popularizer of a now-accepted set of conventions
- Highlights that visualizations only began
 - 1765 with Joseph Priestley
 - 1786 with William Playfair

Priestly's Sensation

A Specimens of a Chart of Biography.

The World's First Bar Chart

.jpg

William Playfair (1759-1823), 1786. [Public domain via Wikipedia]

	I		II		III		IV	
X	Y	X	Y	X	Y	X	Y	
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58	
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76	
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71	
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84	
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47	
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04	
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25	
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50	
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56	
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91	
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89	

All series have the same

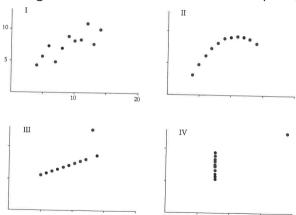
- mean of X
- variance of X
- mean of Y
- variance of Y
- corr(*X*, *Y*)
- $\hat{\beta}$
- \bullet R^2

	I		II		III		IV	
X	Y	X	Y	X	Y	X	Y	
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58	
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76	
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71	
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84	
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47	
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04	
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25	
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50	
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56	
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91	
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89	

All series have the same

- mean of X
- variance of X
- mean of Y
- variance of Y
- corr(X, Y)
- β̂
- \bullet R^2

Which one is a vertical line?


	I	1	II		III		IV
X	Y	X	Y	X	Y	X	Y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

All series have the same

- mean of X
- variance of X
- mean of Y
- variance of Y
- corr(X, Y)
- β̂
- \bullet R^2

Which one is a vertical line?
Which one is an upside-down U?

Because good visualizations tell the most compelling story

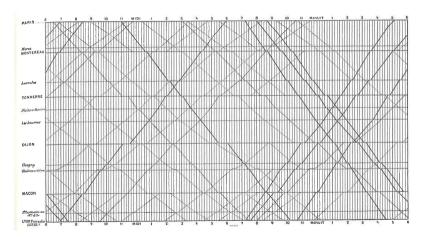
Tufte's Types of Graphs

- 1. Data maps
- 2. Time series
- 3. Space-time narrative designs
- 4. Relational graphs the holy grail

Data Maps

- Describe the location of numbers
- This can be revealing or obfuscating
- We will make these in this class
- A product of the mid-1800s

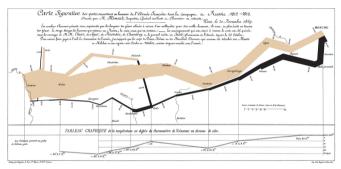
John Snow on the Location of Cholera in London, c. 1850



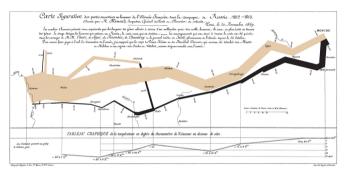
Time Series

- Time on the horizontal axis
- Something else on the vertical axis
- One of the first types of data graphics

Train, Paris to Lyon



Space-Time Narrative Designs


- Move over space and time at the same time
- A time series plus

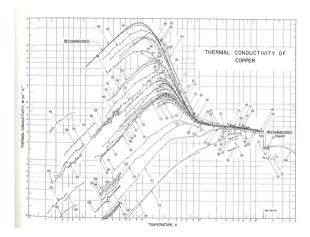
Space-Time Narrative Example

Which dimensions?

Space-Time Narrative Example

Which dimensions?

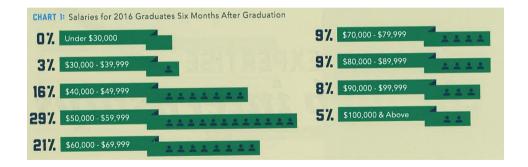
- 1. army size
- 2. army location, N/S
- 3. army location, E/W


- 4. direction of movement
- 5. temperature
- 6. by date

Relational Graphics

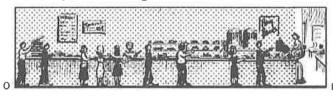
- One variable on the vertical, another on the horizontal
- A conceptual advance in graphics
- A more sophisticated way of thinking

Relational Graphics Example



Tufte's Main Causes of Distortion in Graphics

- 1. Data are bad
 - should be per capita and are not
 - data are not consistent over time
 - don't adjust for inflation
- 2. Graphics are rotten
 - size doesn't match the numbers
 - colors and styles are misleading
 - graphic fails to highlight key point


- 3. Graphics are irrelevant
 - too much extraneous stuff

Ex. of 2: Size and Number Don't Match

Ex. of 3: Graphics are Irrelevant

The Company Cafeteria was used by 9 Out of 10 Employees during the Fiscal Year 1949

00%

Source: COMPANY REPORTS

Tufte's Six Rules of Graphic Integrity, 1 to 3 of 6

- The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities represented.
- 2. Clear, detailed, and thorough labeling should be used to defeat graphical distortion and ambiguity. Write out explanations of the data on the graphic itself. Label important events in the data.
- 3. Show data variation, not design variation.

Tufte's Six Rules of Graphic Integrity, 4 to 6

- 4. In time-series displays of money, deflated and standardized units of monetary measurement are nearly always better than nominal units.
- 5. The number of information-carrying (variable) dimensions depicted should not exceed the number of dimensions in the data.
- 6. Graphics must not quote data out of context.

In Class: Getting Started with R

Getting Started with R

What is R?

- A programming language
- Developed by statisticians from New Zealand
- Open source, and therefore free
- Based on "S," developed by Bell Labs

Strengths of R

- Free
- Open-source, so packages by all kinds of users are available
- There are frequently many ways to do the same task
- Very good graphics
- Very flexible
- Can have many datasets in memory at once
- Can analyze large datasets
- Can do maps and spatial analysis
- Big user community and lots of online help

Weaknesses of R

- Not always enterprise-ready: packages break and there is no central help
- There are frequently many ways to do the same task
- Syntax can be challenging
- Syntax can be inconsistent across packages

Today's Goals

- When you finish today's tutorial, you will be able to
 - run a R script
 - create a R dataframe
 - do basic operations with a R dataframe
- Download the R tutorial for this class now.
- I'll put you into breakout groups to work together
 - I will check on groups
 - Feel free to return to main room for help as needed
- You'll continue work at home on your own and turn in a problem set next lecture

R Tools

Today

- A. Write a program
- B. Hello World
- C. A R dataframe
- D. Packages
- E. Subsetting
- F. Functions
- G. Summarizing

A. Write a program

- ▶ the great advantage of R over Excel is **replicability**
- to do this, you write a program
- a program is
 - a set of steps
 - ▶ in logical order
 - saved as a text file
 - with a .R extension

A. Write a program

- the great advantage of R over Excel is replicability
- to do this, you write a program
- a program is
 - a set of steps
 - ▶ in logical order
 - saved as a text file
 - with a .R extension
- ▶ if you want help, show us your program and relevant output in Piazza

B. First Program: Hello World

- ▶ the very first computer program prints "Hello World"
- # denotes comments: notes for yourself that don't execute
- so we start with this, saved as [filename].R

```
# this is my first program
# it prints hello world
# lfb 1/11/2021
print("hello world!")
```

B. First Program: Hello World

- ▶ the very first computer program prints "Hello World"
- # denotes comments: notes for yourself that don't execute
- so we start with this, saved as [filename].R

```
# this is my first program
# it prints hello world
# lfb 1/11/2021
print("hello world!")
```

```
## [1] "hello world!"
```

C. A R dataframe

- ▶ a dataframe is the basic building block of data analysis in R
- R has other types of data structures, but this will the be most useful to you
- dataframe consists of columns and rows
- each column has one type
 - ▶ numeric: 1,2,3.556,-2.6

 - character: "hello", "dogs are good", ""
- refer to rows and columns

Sample dataframe

Key parts in this command

- <- is R's assignment command, generally equivalent to =</p>
- c() is how you make a list of elements (a vector)
- typing the name of an object, here a dataframe, prints it to the screen

How to refer to parts of the dataframe

new.dataframe[ROWS,COLUMNS]

How to refer to parts of the dataframe

```
new.dataframe[ROWS,COLUMNS]

Just one column, all rows

new.dataframe[,c("students")]

## [1] 19 19 18
```

How to refer to parts of the dataframe

```
new.dataframe[ROWS,COLUMNS]
Just one column, all rows
new.dataframe[,c("students")]
## [1] 19 19 18
Just two rows, all columns
new.dataframe[1:2,]
##
     class subject students
## 1
            basics
                          19
## 2
         2 merging
                          19
```

Refer to just one column with dollar sign

> you can also refer to one specific variable as

new.dataframe\$students

[1] 19 19 18

D. Packages

- "Base R" is a set of basic commands
- User-written packages add functionality
- ► Some packages are maintained by teams, frequently updated, and do many things
- Some are one-function add-ins
- Most famous are those by Hadley Wickham
- ► Today we'll use his dplyr packcage
- As part of the set of tidyverse packages

Installing packages

▶ install a package once at the command line

```
install.packages("tidyverse", dependencies = TRUE)
```

Installing packages

library(tidyverse)

install a package once at the command line

```
install.packages("tidyverse", dependencies = TRUE)
```

call a package at the beginning of any program in which you'd like to use the package to make the command accessible

E. Subsetting

- > sometimes you want to work with something smaller than the whole dataframe
- create a new dataframe that has only part of the big one
- here we keep just students 1 and 2

```
df.smaller <- new.dataframe[1:2,]
df.smaller</pre>
```

```
## class subject students
## 1 1 basics 19
## 2 2 merging 19
```

Subset by attributes

▶ take only classes with 19 students

```
df19 <-
   new.dataframe[which(new.dataframe$students == 19),]
df19

## class subject students
## 1 1 basics 19
## 2 2 merging 19</pre>
```

F. Functions

- R has 1000s of functions
- ▶ functions take data and do something to it
- general format is

new.output <- function(inputs)</pre>

where inputs can be a dataframe or something else

The Mean Function

- suppose we want to know the average number of students
- use the mean function

```
mean(x = new.dataframe\$students)
```

```
## [1] 18.66667
```

The Mean Function

- suppose we want to know the average number of students
- use the mean function

```
mean(x = new.dataframe$students)
## [1] 18.66667

or
new.mean <- mean(x = new.dataframe$students)
new.mean
## [1] 18.66667</pre>
```

G. Summarizing

- ▶ frequently, you'd like to know something at a level of aggregation not in your dataset
- in our case, maybe average attendance
- make a new dataframe with this information
- use dplyr library, part of tidyverse

Making a new dataset that is a function of the old one

more complicated example in tutorial

Next Lecture: In two weeks

- Turn work for tutorial 1
- Read Few Chapters 3 and 5
- Look at "Graph Choice Chart"