Lecture 2: When You Need Graphs and How We See Graphs and Merging

January 25, 2021

Overview

Course Administration

Good, Bad and Ugly

Few, Chapters 3 and 5

Merging

Merging

Course Administration

- 1. Any trouble submitting tutorials? questions?
- 2. Questions/issues with readings?
- 3. Make sure you're signed up for Piazza– email me if you are not
- 4. Reading quiz

Course Administration

- 1. Any trouble submitting tutorials? questions?
- 2. Questions/issues with readings?
- 3. Make sure you're signed up for Piazza– email me if you are not
- 4. Reading quiz
- Be sure to check online listing for good/bad/ugly: linked at bottom of lectures page
 - I moved a few of you around to even up finders and commenters
 - If you didn't sign up, I signed you up
 - If date is not ok, try to switch with a classmate

Course Administration

- 1. Any trouble submitting tutorials? questions?
- 2. Questions/issues with readings?
- 3. Make sure you're signed up for Piazza– email me if you are not
- 4. Reading quiz
- Be sure to check online listing for good/bad/ugly: linked at bottom of lectures page
 - I moved a few of you around to even up finders and commenters
 - If you didn't sign up, I signed you up
 - If date is not ok, try to switch with a classmate

- 5. Additions to syllabus
 - Lecture 8, March 22: Former students doing good: McCall Pitcher and Kimberly Wilson
 - Lecture 9, March 29: WashPo's Kate Rabinowitz on March 30
- 6. One-page proposal is due next week
- 7. Anything else?

Next Week's Good Bad and Ugly

Finders, send link Wed. by noon.

	Finder	Commenter
1	Sarah H.	Gabriel C.
2	Arjun B.	Anthony C.

Email me ASAP if you're not on the google sheet.

Few: Visual Perception and Graphical Communication

When Should You Use Tables vs. Graphs?

- Tables are for when
 - you care about the actual numbers
 - you have very few numbers

When Should You Use Tables vs. Graphs?

- Tables are for when
 - you care about the actual numbers
 - you have very few numbers
- Graphs are for when
 - you care about trends or general tendencies
 - you have more numbers than a table can support
 - the exact values are not critical
 - you wish to highlight a particular relationship

Starting with the Table

Job Satisfaction By Income, Education, and Age

	College Degrees		No College Degrees	
Income	Under 50	50 & over	Under 50	50 & over
Up to \$50,000	643	793	590	724
Over \$50,000	735	928	863	662

Few, Chapter 3, Figure 3.13

Version One of a Set of Numbers

Version One of a Set of Numbers

What do you think the point of this picture is?

Few, Chapter 3, Figure 3.15

Version Two of the Same Set of Numbers

Version Two of the Same Set of Numbers

And the point of this picture?

Few? Chapter 3, Figure 3.14

Few Chapter 5: Drawing Attention

- 1. working memory
- 2. preattentive processing
 - form
 - color
 - spatial position
- 3. applying to design
- 4. gestalt principles of visual perception

Working Memory

We don't have much of it

Working Memory

We don't have much of it

- people can remember 3 to 4 visual encodings for a chart
- therefore, more than about 4 colors as identification are distracting
- good visuals can stick in long-term memory

Preattentive Processing

Why is this so important? Find the 5s.

48921652097520589

Preattentive Processing

Why is this so important? Find the 5s.

48921652097520589

And now find the 5s.

 $489216 \\ \mathbf{5}2097 \\ \mathbf{5}20 \\ \mathbf{5}89$

Preattentive Processing

Form Color Spatial Position

Form

Why?

Why?

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this – maybe you're drawing building sizes

Why?

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this – maybe you're drawing building sizes

How much bigger is the small circle than the larger one?

Why?

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this – maybe you're drawing building sizes

How much bigger is the small circle than the larger one? 16x

Color

- 1. Hue
 - What you think of as "color"
 - Blue, Green, etc
- 2. Intensity
 - make it less intense: add a little gray

Color

- 1. Hue
 - What you think of as "color"
 - Blue, Green, etc
- 2. Intensity
 - make it less intense: add a little gray

Contrasting hues stand out. Intense colors stand out.

Do We Perceive Them Quantitatively?

Type	Attribute
Form	Length
	Width
	Orientation
	Size
	Shape
	Enclosure
Color	Hue
	Intensity
Position	2-D Position

Do We Perceive Them Quantitatively?

Туре	Attribute	Quantitatively Perceived?
Form	Length	Yes
	Width	Yes, but limited
	Orientation	No
	Size	Yes, but limited
	Shape	No
	Enclosure	No
Color	Hue	No
	Intensity	Yes, but limited
Position	2-D Position	Yes

Context Matters

Context Matters

Calling Attention

Gestalt Principles of Visual Perception

- Proximity
- Similarity
- Enclosure
- Closure
- Continuity

These all generate meaning, whether you intend it or not!

Applying These Principles

- first a set of slides that do a so-so job
- second a set of slides that do a better (but improvable) job

Baseline Increase of \$7.3 Million per Mile

Measures of Government Quality Unrelated to Spending Increase

Measures of Labor Strength Unrelated to Spending Increase

R: Merging

In Your Breakout Group

Make examples

- make tiny dataframes
- to illustrate
- 1 to 1 merge
- 1 to many merge

In Your Breakout Group

Make examples

- make tiny dataframes
- to illustrate
- 1 to 1 merge
- 1 to many merge

Bonus! Why is a many to many merge problematic?

What is a Merge?

You want to put together

Dataset A – One obs/ID

ID	Income
Α	50
В	100

 $\mathsf{Dataset}\ \mathsf{B}-\mathsf{One}\ \mathsf{obs}/\mathsf{ID}$

What is a Merge?

You want to put together

 $\mathsf{Dataset}\ \mathsf{A}-\mathsf{One}\ \mathsf{obs/ID}$

 $\mathsf{Dataset}\ \mathsf{B}-\mathsf{One}\ \mathsf{obs/ID}$

	Into	
ID	Income	Pool
Α	50	TRUE
В	100	FALSE
This	is a 1 to	1 merge.

You want to put together

Dataset A – One obs/ID

ID	Income
Α	50
В	100

Dataset B - many obs/ID

ID	Pool	Year
Α	TRUE	2020
В	FALSE	2020
Α	TRUE	2021
В	TRUE	2021

You want to put together

Dataset A - One obs/ID

ID	Income
Α	50
В	100

Dataset B - many obs/ID

ID	Pool	Year
Α	TRUE	2020
В	FALSE	2020
Α	TRUE	2021
В	TRUE	2021

How many rows should it have?

You want to put together

Dataset A - One obs/ID

A 50 B 100 Dataset B - many obs/ID

ID	Pool	Year
Α	TRUE	2020
В	FALSE	2020
Α	TRUE	2021
В	TRUE	2021

ID	Pool	Year	Income	
Α	TRUE	2020	50	
В	FALSE	2020	100	
Α	TRUE	2021	50	
В	TRUF	2021	100	

How many rows should it have?

A mess!

A mess!

Dataset A
ID Income
A 50
A 60

100

В

Data	set B	
ID	Pool	Year
Α	TRUE	2020
В	FALSE	2020
Α	TRUE	2021
R	TRUE	2021

A mess! Dataset A

ID Income
A 50
A 60
B 100

Data	set B	
ID	Pool	Year
Α	TRUE	2020
В	FALSE	2020
Α	TRUE	2021
R	TRUE	2021

There is no logical path to merge A and B.

A	111622:
Data	set A
	Income
Α	50
Α	60
В	100
_	

A mossi

There is no logical path to merge A and B. Probably something is wrong with A.

Online Lecture: Merging in ${\sf R}$

In Class Wrap-Up

Today

- A. What is Merging?
- B. How to Merge 1:1
- C. How to Merge Many to 1
- D. Cautions with merging

A. Merging

- ▶ if you have information in more than one dataframe
- you want to combine these pieces of information
- reliably and replicably
- ▶ this is an **enormous** advantage of statistical software

Examples of When You Need to Merge

Ex. 1:

- you have a dataset on crimes, with addresses
- you want to add the neighborhood median income
- ightharpoonup ightharpoonup merge by neighborhood id!

Examples of When You Need to Merge

Ex. 1:

- you have a dataset on crimes, with addresses
- you want to add the neighborhood median income
- ► → merge by neighborhood id!

Ex. 2:

- you have a dataset of student performance
- you want to add information on teacher
- ightharpoonup ightharpoonup merge by teacher id!

Merging Command Overview

```
merge(x = data.frame.1,
    y = data.frame.2,
    by = "varname",
    all = TRUE)
```

Merging Command Overview

```
merge(x = data.frame.1,
    y = data.frame.2,
    by = "varname",
    all = TRUE)
```

Now a very simple example

Sample dataframe 1: Class subjects

Sample dataframe 2: Class attendance

B. Merge 1:1

How many rows should d3 have?

B. Merge 1:1

How many rows should d3 have?

df3

C. Merge Many to 1

Many to 1 merge:

- ▶ this is a merge that has unique values in one dataset
- ▶ and repeat values in another

C. Merge Many to 1

Many to 1 merge:

- ▶ this is a merge that has unique values in one dataset
- ▶ and repeat values in another

Unique and repeat values:

- unique values: class in df3
- repeat values: subject in df3

df3

```
## class subject attendance
## 1 1 basics 33
## 2 2 basics 45
## 3 3 graphs 26
```

Dataset to merge in

Merging in

How many rows should this have?

Merging in

How many rows should this have?

df5

```
## subject class attendance difficulty
## 1 basics 1 33 easy
## 2 basics 2 45 easy
## 3 graphs 3 26 hard
```

▶ you want to merge 1:1 but one dataframe has repeat values

- > you want to merge 1:1 but one dataframe has repeat values
- > you want to merge 1:1 but the merge doesn't work as expected (see tutorial)

- > you want to merge 1:1 but one dataframe has repeat values
- > you want to merge 1:1 but the merge doesn't work as expected (see tutorial)

Why worry?

- > you want to merge 1:1 but one dataframe has repeat values
- > you want to merge 1:1 but the merge doesn't work as expected (see tutorial)

Why worry?

- bad merges yield garbage
- ightharpoonup garbage out

Try Today's Tutorial

- Make a .R script for whole tutorial
- Plus questions at end
- Go forth!
- I will be online till 5:20 please stay and ask questions

Next Lecture

- Turn in PS 2
- Read Few Chapter 9 and Chapter 10, pages 210-217 (on bars)
- Read Chang, Chapter 3
- Read two linked examples from WSJ
- Turn in policy brief proposal