Lecture 2:
 When You Need Graphs and
 How We See Graphs and
 Merging

January 25, 2021

Overview

Course Administration

Good, Bad and Ugly

Few, Chapters 3 and 5

Merging

Merging

Course Administration

1. Any trouble submitting tutorials? questions?
2. Questions/issues with readings?
3. Make sure you're signed up for Piazza - email me if you are not
4. Reading quiz

Course Administration

1. Any trouble submitting tutorials? questions?
2. Questions/issues with readings?
3. Make sure you're signed up for Piazza - email me if you are not
4. Reading quiz
5. Be sure to check online listing for good/bad/ugly: linked at bottom of lectures page

- I moved a few of you around to even up finders and commenters
- If you didn't sign up, I signed you up
- If date is not ok, try to switch with a classmate

Course Administration

1. Any trouble submitting tutorials? questions?
2. Questions/issues with readings?
3. Make sure you're signed up for Piazza - email me if you are not
4. Reading quiz
5. Be sure to check online listing for good/bad/ugly: linked at bottom of lectures page

- I moved a few of you around to even up finders and commenters
- If you didn't sign up, I signed you up
- If date is not ok, try to switch with a classmate

5. Additions to syllabus

- Lecture 8, March 22: Former students doing good: McCall Pitcher and Kimberly Wilson
- Lecture 9, March 29: WashPo's Kate Rabinowitz on March 30

6. One-page proposal is due next week
7. Anything else?

Next Week's Good Bad and Ugly

Finders, send link Wed. by noon.
Finder Commenter
1 Sarah H. Gabriel C.
2 Arjun B. Anthony C.

Email me ASAP if you're not on the google sheet.

Few:
Visual Perception and Graphical Communication

When Should You Use Tables vs. Graphs?

- Tables are for when
- you care about the actual numbers
- you have very few numbers

When Should You Use Tables vs. Graphs?

- Tables are for when
- you care about the actual numbers
- you have very few numbers
- Graphs are for when
- you care about trends or general tendencies
- you have more numbers than a table can support
- the exact values are not critical
- you wish to highlight a particular relationship

Starting with the Table

Job Satisfaction By Income, Education, and Age

	College Degrees		No College Degrees	
Income	Under 50	50 \& over	Under 50	50 \& over
Up to $\$ 50,000$	643	793	590	724
Over $\$ 50,000$	735	928	863	662

Few, Chapter 3, Figure 3.13

Few

Version One of a Set of Numbers

Employee Job Satisfaction

- College degree, up to $\$ 50,000$
= College degree, over $\$ 50,000$
= No college degree, up to $\$ 50,000$
No college degree, over $\$ 50,000$

Few

Version One of a Set of Numbers

What do you think the point of this picture is?
Few, Chapter 3, Figure 3.15

Version Two of the Same Set of Numbers

Version Two of the Same Set of Numbers

And the point of this picture?

Few Chapter 5: Drawing Attention

1. working memory
2. preattentive processing

- form
- color
- spatial position

3. applying to design
4. gestalt principles of visual perception

Working Memory

We don't have much of it

Working Memory

We don't have much of it

- people can remember 3 to 4 visual encodings for a chart
- therefore, more than about 4 colors as identification are distracting
- good visuals can stick in long-term memory

Preattentive Processing

Why is this so important？Find the 5 s ．
48921652097520589

Preattentive Processing

Why is this so important? Find the 5 s.
48921652097520589
And now find the 5 s .

$$
489216 \mathbf{5} 2097 \mathbf{5} 20 \mathbf{5} 89
$$

Preattentive Processing

Form
Color
Spatial Position

Few

Form

But Beware of 2-D Size

Why?

But Beware of 2-D Size

Why?

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this - maybe you're drawing building sizes

But Beware of 2-D Size

Why?

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this - maybe you're drawing building sizes

How much bigger is the small circle than the larger one?

But Beware of 2-D Size

Why?

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this - maybe you're drawing building sizes

How much bigger is the small circle than the larger one? $16 x$

1. Hue

- What you think of as "color"
- Blue, Green, etc

2. Intensity

- make it less intense: add a little gray

1. Hue

- What you think of as "color"
- Blue, Green, etc

2. Intensity

- make it less intense: add a little gray

Contrasting hues stand out. Intense colors stand out.

Do We Perceive Them Quantitatively?

Type	Attribute
Form	Length
	Width
	Orientation
	Size
	Shape
	Enclosure
Color	Hue
	Intensity
Position	2-D Position

Do We Perceive Them Quantitatively?

Type	Attribute	Quantitatively Perceived?
Form	Length	Yes
	Width	Yes, but limited
	Orientation	No
	Size	Yes, but limited
	Shape	No
	Enclosure	No
Color	Hue	No
	Intensity	Yes, but limited
Position	2-D Position	Yes

Context Matters

Context Matters

Calling Attention

Gestalt Principles of Visual Perception

- Proximity
- Similarity
- Enclosure
- Closure
- Continuity

These all generate meaning, whether you intend it or not!

Applying These Principles

- first a set of slides that do a so-so job
- second a set of slides that do a better (but improvable) job

Few

Baseline Increase of $\$ 7.3$ Million per Mile

Baseline

additional spending per mile, 1970 onward, $\$ 2016$ millions

Measures of Government Quality Unrelated to Spending Increase

Baseline

Has State Env. Protection Act

Land Use Cases per 10k People

Bond Score
Num of Local Governments

additional spending per mile, 1970 onward, $\$ 2016$ millions

Measures of Labor Strength Unrelated to Spending Increase

Baseline

Has State Env. Protection Act

Land Use Cases per 10k People

Bond Score

Num of Local Governments

Right to Work Law

Share Unionized

Share Voting Dem. Pres. Candidate

Few

Using the Principles of Proximity and Similarity

Additional spending per mile，\＄2016 millions

Using the Principles of Proximity and Similarity

Using the Principles of Proximity and Similarity

Using the Principles of Proximity and Similarity

Additional spending per mile, \$2016 millions

Using the Principles of Proximity and Similarity

	Baseline
Land Use	Land Use Cases per 10k People
Law	Has State Env. Protection Act
Fragmentation	Num of Local Governments
Gov't Quality	Bond Score
Labor	Share Unionized
Strength	Right to Work Law
	Share Voting Dem. Pres. Candidate

R: Merging

Make examples

- make tiny dataframes
- to illustrate
- 1 to 1 merge
- 1 to many merge

In Your Breakout Group

Make examples

- make tiny dataframes
- to illustrate
- 1 to 1 merge
- 1 to many merge

Bonus! Why is a many to many merge problematic?

What is a Merge?

You want to put together

Dataset A - One obs/ID

ID	Income
A 50	

B 100

Dataset B - One obs/ID

ID Pool	
A	TRUE

B FALSE

What is a Merge?

You want to put together

Dataset A - One obs/ID

ID	Income
A 50	

B 100

Dataset B - One obs/ID

ID	Pool
A	TRUE

B FALSE
Into

ID	Income	Pool
A	50	TRUE

B 100 FALSE
This is a 1 to 1 merge.

What is a Many to 1 Merge？

You want to put together
Dataset A－One obs／ID

ID	Income
A 50	

B 100
Dataset B－many obs／ID

ID	Pool	Year
A	TRUE	2020

B FALSE 2020
A TRUE 2021
B TRUE 2021

What is a Many to 1 Merge?

You want to put together
Dataset A - One obs/ID

ID	Income
A 50	

B 100

How many rows should it have?

Dataset B - many obs/ID

ID	Pool	Year
A	TRUE	2020
B	FALSE	2020
A	TRUE	2021
B	TRUE	2021

What is a Many to 1 Merge?

You want to put together
Dataset B - many obs/ID

Dataset A - One obs/ID			ID Pool		Year
ID Income			A	UE	2020
A 50			B FAL	SE	2020
B 100			A TR	UE	2021
			B T	UE	2021
	ID	Pool	Year		
	A	TRUE	2020	50	
How many rows should it have?	B	FALSE	2020	100	
	A	TRUE	2021	50	
	B	TRUE	2021	100	

What is a Many to Many Merge?

A mess!

What is a Many to Many Merge?

A mess!
Dataset A

ID	Income
A 50	

A 60
B 100

Dataset B

ID	Pool	Year
A	TRUE	2020

B FALSE 2020
A TRUE 2021
B TRUE 20212021

What is a Many to Many Merge?

A mess!

Dataset A

ID	Income
A	50
A	60
B	100

Dataset B

ID	Pool	Year
A	TRUE	2020

B FALSE 2020
A TRUE 2021
B TRUE 2021

There is no logical path to merge A and B.

What is a Many to Many Merge?

A mess!
Dataset A

ID	Income
A 50	

A 60
B 100

Dataset B

ID	Pool	Year
A	TRUE	2020

B FALSE 2020
A TRUE 2021
B TRUE 2021

There is no logical path to merge A and B. Probably something is wrong with A.

Online Lecture: Merging in R

Today
A. What is Merging?
B. How to Merge 1:1
C. How to Merge Many to 1
D. Cautions with merging
A. Merging

- if you have information in more than one dataframe
- you want to combine these pieces of information
- reliably and replicably
- this is an enormous advantage of statistical software

Examples of When You Need to Merge

Ex. 1:

- you have a dataset on crimes, with addresses
- you want to add the neighborhood median income
- \rightarrow merge by neighborhood id!

Examples of When You Need to Merge

Ex. 1:

- you have a dataset on crimes, with addresses
- you want to add the neighborhood median income
$\rightarrow \rightarrow$ merge by neighborhood id!
Ex. 2:
- you have a dataset of student performance
- you want to add information on teacher
- \rightarrow merge by teacher id!

Merging Command Overview

```
merge(x = data.frame.1,
    y = data.frame.2,
    by = "varname",
    all = TRUE)
```

Merging Command Overview

```
merge(x = data.frame.1,
    y = data.frame.2,
    by = "varname",
    all = TRUE)
```

Now a very simple example

Sample dataframe 1: Class subjects

```
df1 <- data.frame(class = c(1,2,3),
    subject = c("basics","basics","graphs"))
df1
## class subject
## 1 1 basics
## 2 2 basics
## 3 3 graphs
```

Sample dataframe 2: Class attendance

```
df2 <- data.frame(class = c(1,2,3),
    attendance = c(33,45,26))
df2
## class attendance
## 1 1 33
## 2 2 45
## 3 3 26
```

B. Merge 1:1

```
df3 <- merge(x = df1,
    y = df2,
    by = "class",
    all = TRUE)
```

How many rows should d3 have?

B．Merge 1：1

```
df3 <- merge(x = df1,
    y = df2,
    by = "class",
    all = TRUE)
```

How many rows should d3 have？
df3
\＃\＃class subject attendance
\＃\＃ 11 basics 33
\＃\＃ 22 basics 45
\＃\＃3 3 graphs 26

C. Merge Many to 1

Many to 1 merge:

- this is a merge that has unique values in one dataset
- and repeat values in another

C. Merge Many to 1

Many to 1 merge:

- this is a merge that has unique values in one dataset
- and repeat values in another

Unique and repeat values:

- unique values: class in df3
- repeat values: subject in df3
df3
\#\# class subject attendance
\#\# 11 basics 33
\#\# 22 basics 45
\#\# 3 3 graphs 26

Dataset to merge in

```
df4 <- data.frame(subject = c("basics","graphs"),
    difficulty = c("easy","hard"))
df4
## subject difficulty
## 1 basics easy
## 2 graphs hard
```

Merging in

$$
\begin{aligned}
& \mathrm{df} 5<-\operatorname{merge}(\mathrm{x}=\mathrm{df} 3 \\
& \mathrm{y}=\mathrm{df} 4, \\
& \text { by }=\text { subject" } \\
&\text { all }=\text { TRUE })
\end{aligned}
$$

How many rows should this have?

Merging in

```
df5 <- merge(x = df3,
    y = df4,
    by = "subject",
    all = TRUE)
```

How many rows should this have?
df5
\#\# subject class attendance difficulty
\#\# 1 basics 1 easy
\#\# 2 basics 2 easy
\#\# 3 graphs 3 hard
D. Frequent Problems with Merging

- you want to merge 1:1 but one dataframe has repeat values
D. Frequent Problems with Merging
- you want to merge 1:1 but one dataframe has repeat values
- you want to merge 1:1 but the merge doesn't work as expected (see tutorial)
D. Frequent Problems with Merging
- you want to merge 1:1 but one dataframe has repeat values
- you want to merge 1:1 but the merge doesn't work as expected (see tutorial)

Why worry?

D. Frequent Problems with Merging

- you want to merge 1:1 but one dataframe has repeat values
- you want to merge 1:1 but the merge doesn't work as expected (see tutorial)

Why worry?

- bad merges yield garbage
- garbage in \rightarrow garbage out

Try Today's Tutorial

- Make a .R script for whole tutorial
- Plus questions at end
- Go forth!
- I will be online till 5:20 - please stay and ask questions

Next Lecture

- Turn in PS 2
- Read Few Chapter 9 and Chapter 10, pages 210-217 (on bars)
- Read Chang, Chapter 3
- Read two linked examples from WSJ
- Turn in policy brief proposal

