lecture 4

leah brooks

February 9, 2021

Today

- A. Heads-up: Bigger Data
- B. If-else recap
- C. Histograms
- D. Results by group: groupings and facets

A. Bigger Data

- > You need to work with more data than you can see in a window
- Today's tutorial has techniques to do this
- Look to summary statistics

A. Looking at crashes

dim(crash)		
## [1] 59777 44		
<pre>table(crash\$Light)</pre>		
##		
## DARK UNKNOWN LIGHTING	DARK LIGHTS ON	DARK NO LIG
## 660	13971	2
## DAWN	DAYLIGHT	DI
## 1239	39305	1:
## N/A	OTHER	UNKNI
## 497	143	4

look at the total size of the dataset

A. A Legible Version

##	#	A tibble: 9 x 2											
##		Light light_type											
##		<fct> <int></int></fct>											
##	1	DARK UNKNOWN LIGHTING	660										
##	2	DARK LIGHTS ON	13971										
##	3	DARK NO LIGHTS	2158										
##	4	DAWN	1239										
##	5	DAYLIGHT	39305										
##	6	DUSK	1393										
##	7	N/A	497										
##	8	OTHER	143										
##	9	UNKNOWN	411										

B. A Key Programming Command: ifelse()

B. An Example, 1 of 3

 ##
 1
 A
 1983

 ##
 2
 B
 1989

 ##
 3
 C
 2005

What if I want to know the century in which each building is built?

Warning in Ops.factor(ex\$yb, 2000): '<' not meaningful for factors</pre>

B. An Example, 3 of 3

B. An Example, 3 of 3

table(ex\$c)

##

20th 21st

2 1

B. An Example, 3 of 3

table(ex\$c)

20th 21st ## 2 1

What could go wrong with programming like this?

B. Some rules of thumb for ifelse()

check your output!

B. Some rules of thumb for ifelse()

check your output!

- a test can include multiple conditions
- good idea to define all cases don't let a case be the residual

B. Some rules of thumb for ifelse()

```
check your output!
```

- a test can include multiple conditions
- good idea to define all cases don't let a case be the residual
- you can nest ifelse() commands:

C. Histograms

We will use three new geoms this lecture

- geom_histogram()
- geom_density()
- geom_freqpoly()

C.1. How to create a histogram

Use

- only need to list one variable
- histograms are univariate graphics
- geom_histogram() is best for a distribution with limited values

C.1. How to create a histogram

Use

- only need to list one variable
- histograms are univariate graphics
- geom_histogram() is best for a distribution with limited values
- but not a categorical distribution, which should be a bar

C.2. Histogram options

- fill overall: outside aes, fill = [color]
- fill by group: inside aes, fill = [variable]
- bin width: bin_width = [unit span],
- by groups: inside aes, color = [grouping variable]

C.3. Approximating Continuous Distributions

For almost-continuous bins, use

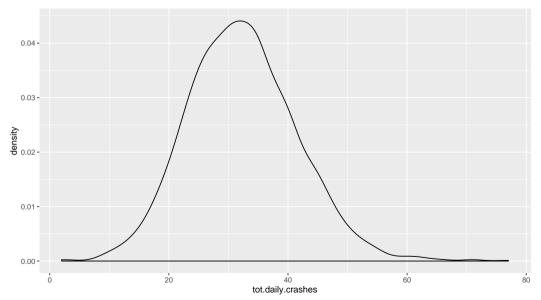
geom_freqpoly()

For much more smoothing, use

geom_density()

C.4. Example

- take crash-level data from last class
- use group_by() and summarize() to make daily data
- count number of crashes by day


```
# add up total number of crashes by date
crash2 <- group_by(.data = crash, date2)
crash2 <- summarize(.data = crash2, tot.daily.crashes = n())
table(crash2$tot.daily.crashes)</pre>
```

##

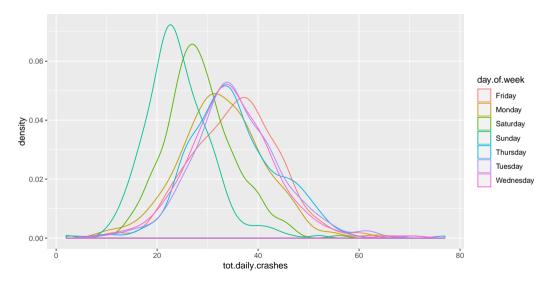
##	2	3	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
##	1	1	1	2	4	5	3	8	8	11	12	20	19	33	26	44	43	57	61	65	76	73	76	74
##	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55
##	80	76	85	89	66	59	61	55	59	48	38	27	37	39	18	25	18	11	14	8	8	6	6	5
##	59	60	61	62	63	65	66	71	77															
##	1	2	2	2	1	1	1	2	1															

Plot these data

Plot these data

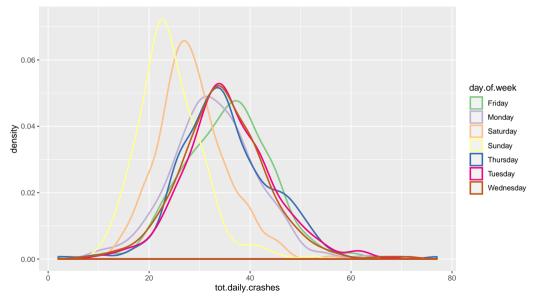
D. Results by Group

```
# find the day of the week
crash2$day.of.week <- weekdays(x = crash2$date2)</pre>
```


check
table(crash2\$day.of.week)

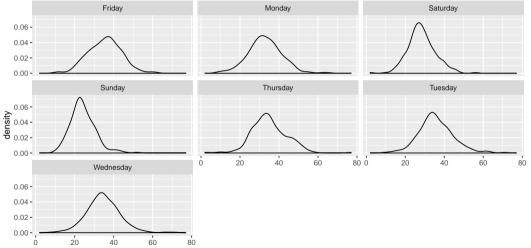
##

##	Friday	Monday	Saturday	Sunday	Thursday	Tuesday	Wednesday
##	264	264	264	264	265	264	264


- you need a variable that indicates a group
- then plot distribution by group
- we'll use distribution of traffic accidents (x variable)
- by weekday (grouping variable)

By day of the week $_{wd}$

By day of the week, better colors and thicker lines


By day of the week, better colors and thicker lines

By day of the week, facets

By day of the week, facets

wd

tot.daily.crashes