Untitled

Leah Brooks

February 24, 2021

Today in R

Why Functions?

Defining a function

Getting things out of a function
Modifying a dataframe
Functions and ggplot

NS

Why Functions?

» Many times, you need to repeat very similar code

» You can copy and paste, but ..

» Subject to error when you make your small changes
» A real bother when you need to change things

» For example

Why Functions?

» Many times, you need to repeat very similar code

» You can copy and paste, but ..

» Subject to error when you make your small changes
» A real bother when you need to change things

» For example

» Make many similar graphs
» Load multiple files with similar names
» Create summary stats with different subsets

Good Functions

1. Make code more readable
2. Avoid coding errors
3. Make you more productive

From “Nice R Code"” on github.

https://nicercode.github.io/guides/functions/

However: Never Start Writing a Function by Writing a Function

P Get one version of your code working first
» Then build the function
> When you've been programming for two years, try the function first

What We Cover About Functions

O

Defining a function

Calling a function

Getting things out of a function
Modifying a dataframe
Functions and ggplot

1. Defining a Function

function.name <- function(argl, arg2){
stuff your function does
b

function.name: what you call the function

function: needed to tell R this is a function

argl: first argument of the function

arg2: second argument of the function

inside the curly braces: what you want the function to do

vVvvyyvyy

Simple Function Example

summer <- function(x,y){
x7y

}
» function name?

> arguments?
» body of the function?

. Calling a Function

summer <- function(x,y){
X7y
}

summer(x = 2,y = 3)

2. Calling a Function

summer <- function(x,y){
X7y
}

summer (x = 2,y = 3)

[1] 8

2. Calling a Function

summer <- function(x,y){
X7y
}

I
N
<
I
w
A3

summer (x

[1] 8

summer (x = 3,y = 2)

2. Calling a Function

summer <- function(x,y){

X7y
}
summer (x = 2,y = 3)
[1] 8
summer (x = 3,y = 2)

[1] 9

3. Getting things out of a function

» Suppose you want to use the output of summer elsewhere in your program
» Functions “return” the last line

> “Return” means makes a value that exists outside of the function

» Best explained via example

3. Getting things out of a function

» Suppose you want to use the output of summer elsewhere in your program
» Functions “return” the last line

> “Return” means makes a value that exists outside of the function

» Best explained via example

However, if you save a graph with ggsave () in the function, that will exist outside the
function.

What Gets Returned, 1 of 4

summer2 <- function(x,y){
ol <- x7y
ol
print(pasteO("ol is ", ol1))
02 <-x +y
print(paste0("o02 is ", 02))
}

summer2(x = 1,y = 2)

[1] "ol is 1"
[1] "o2 is 3"

What Gets Returned, 1 of 4

summer2 <- function(x,y){
ol <- x7y
ol
print(paste0("ol is ", ol))
02 <-x +y
print(paste0("o02 is ", 02))
}

summer2(x = 1,y = 2)

[1] "ol is 1"
[1] "o2 is 3"

What if | write 027

What Gets Returned, 1 of 4
summer2 <- function(x,y){
ol <- x7y
ol
print(paste0("ol is ", o1))
02 <-x +y
print(paste0("o02 is ", 02))
}

summer2(x = 1,y = 2)

[1] "ol is 1"
[1] "o2 is 3"
What if | write 027
02

Error in eval(expr, envir, enclos): object 'o2' not found

What Gets Returned, 2 of 4

summer?2 <- function(x,y){
ol <- x7y
print(pasteO("ol is ", ol))
02 <-x +y
print(paste0("o2 is ", 02))
}

03 <- summer2(x = 1,y = 2)

[1] "ol is 1"
[1] "o2 is 3"

What Gets Returned, 2 of 4

summer?2 <- function(x,y){
ol <- x7y
print(pasteO("ol is ", ol))
02 <-x +y
print(paste0("o2 is ", 02))
}

03 <- summer2(x = 1,y = 2)

[1] "ol is 1"
[1] "o2 is 3"

What if | call 037

What Gets Returned, 2 of 4

summer?2 <- function(x,y){
ol <- x7y
print(pasteO("ol is ", ol))
02 <-x +y
print(paste0("o2 is ", 02))
}

03 <- summer2(x = 1,y = 2)

[1] "ol is 1"
[1] "o2 is 3"
What if | call 037
o3

[1] "o2 is 3"

What Gets Returned, 3 of 4

summer2 <- function(x,y){
ol <- x7y
print(paste0("ol is ", ol))
02 <- x +y
#print (paste0("02 is ", 02))
}

03 <- summer2(x = 1,y = 2)

[1] "ol is 1"

What Gets Returned, 3 of 4

summer2 <- function(x,y){
ol <- x7y
print(paste0("ol is ", ol))
02 <- x +y
#print (paste0("02 is ", 02))
}

03 <- summer2(x = 1,y = 2)

[1] "ol is 1"
What if | call 037

What Gets Returned, 3 of 4

summer2 <- function(x,y){
ol <- x7y
print(paste0("ol is ", ol))
02 <- x +y
#print (paste0("02 is ", 02))
}

03 <- summer2(x = 1,y = 2)

[1] "ol is 1"

What if | call 037
o3

[1] 3

What Gets Returned, 4 of 4

summer2 <- function(x,y){
ol <- x7y
print(pasteO("ol is ", ol1))
02 <-x +y
print(paste0("o2 is ", 02))
return(o2)

}

03 <- summer2(x = 1,y = 2)

[1] "ol is 1"
[1] "o2 is 3"

What Gets Returned, 4 of 4

summer2 <- function(x,y){

ol <- x7y
print(paste0("ol is
02 <- x +y
print(paste0("o02 is
return(o2)

}

03 <- summer2(x = 1,y

[1] "ol is 1"
[1] "o2 is 3"

What if | call 037

n, 01))

n s 02))

2)

What Gets Returned, 4 of 4

summer2 <- function(x,y){
ol <- x7y
print (paste0("ol is ", ol))
02 <- x +y
print (paste0("o2 is ", 02))
return(o2)

}

03 <- summer2(x = 1,y = 2)

[1] "ol is 1"
[1] "o2 is 3"
What if | call 037
03

[1] 3

4. What About Modifying a Dataframe?

load morth korean data
nkd <- data.frame(year = seq(2000,2017,1),
defectors = ¢(0,0,1,0,0,
0,0,0,2,0,
1,0,3,0,0,
1,1,4))

What About Modifying a Dataframe?
nkd

year defectors
1 2000 0
2 2001 0
##H 3 2002 1
4 2003 0
5 2004 0
6 2005 0
##H 7 2006 0
8 2007 0
9 2008 2
10 2009 0
11 2010 1
12 2011 0
13 2012 3
14 2013 0

T

.
1

NAAL A

First Try
addone <- function(fixyear){
nkd$defectors <- ifelse(test = nkd$year == fixyear,
yes = 100,
no = nkd$defectors)

First Try
addone <- function(fixyear){
nkd$defectors <- ifelse(test = nkd$year == fixyear,
yes = 100,
no = nkd$defectors)
}

How do you call this?

First Try
addone <- function(fixyear){
nkd$defectors <- ifelse(test = nkd$year == fixyear,
yes = 100,
no = nkd$defectors)

}

How do you call this?
addone (fixyear = 2002)
addone (fixyear = 2005)
nkd

year defectors
1 2000 0
2 2001 0
3 2002 1
4 2003 0
5 2004 0

Second Try: Successful
addone <- function(fixyear){
nkd$defectors <- ifelse(test = nkd$year == fixyear,
yes = 100,
no = nkd$defectors)

return(nkd)
}
nkd <- addone(fixyear = 2002)
nkd <- addone(fixyear = 2005)
nkd
year defectors
1 2000 0
2 2001 0
3 2002 100
4 2003 0
5 2004 0
6 2005 100

##

Create a new variable as a function of an old variable

This doesn't work:

multiplypls <- function(varo){
nkd$new_varo <- nkd$varo * 5
return(nkd)

}

nkd2 <- multiplypls(var = defectors)

R doesn't know to plug in defectors for varo in the dataframe$variable construction

Create a new variable as a function of an old variable

Instead

multiplypls <- function(varo){
nkd[[paste0("new_",varo)]] <- nkd[[varol] * 5
return(nkd)

}

nkd2 <- multiplypls(var = "defectors")

head (nkd2)

year defectors new_defectors

1 2000 0 0
2 2001 0 0
3 2002 100 500
4 2003 0 0
5 2004 0 0
6 2005 100 500

5. And a Word of Warning About ggplot ()

> many tidyverse commands, including ggplot () use non-standard evaluation
> for your purposes, that means that these command don't always work in expected

ways in functions
» BUT there are work-arounds — see tutorial

Bottom Line

» Use functions!

» Write a non-function example first
> Test

» Write the function

» Check output

