Tutorial 1: Welcome to R
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January 11, 2021

Welcome! This tutorial assumes that you've already done everything in “Get R Ready” tutorial. If this is not
the case, do that first.

Today we are working on basic data management commands and becoming familiar with the R interface.
Sadly, no graphs today. But today should show you the power of statistical software relative to Excel, and
prepare you to make graphics next class.

Here is the plan for today

A. Start RStudio
1. Why write a program?
2. Write a program
3. Run a program
Hello world program
Load data
Explore data
Dataframe structure
. Subsetting
1. Base R
2. Tidyverse way
G. Create new variables and dataframes
1. New variable
2. Report summary statistics to screen
3. Create a dataframe of summary statistics
H. Problem set 1
1. What to turn in
2. Where to turn in
3. Questions

MmO Qo

A. Open RStudio

RStudio is an interface for using R.
1. Open up RStudio.
2. What you need to know about what you see

a. Console
This is the window where you input R commands. You can input them one by one, or you can
write a R program, which is what we will do.

b. Terminal
This window is a terminal window. On a Mac, it should be a unix interface; on a PC it is a DOS
interface. I don’t anticipate using this window, but you could use it to find the location of files
and execute system commands.


http://www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2021/subpages/handouts/tutorials/tutorial00/lecture00_pre-class_assignment.pdf

c. Environment
Ignore

d. History
This reports a history of your R commands. Hopefully you won’t need to refer to this window
since you won’t be programming interactively.

e. Connections
Ignore

f. Files
Ignore

g. Plots
Your plots will appear here. But nothing this class!

h. Packages
This lists packages you have installed (they sit on your hard drive). This is probably empty, but
will fill up as the class goes on.

i. Help
Help for commands. Alternatively, you can type help("command") at the console prompt. However,
I usually just google.

j. Viewer
This is for seeing your data as if it were a Excel table. I don’t recommend relying on this, because
it impedes your ability to learn how to code.

B. Hello world program

The very first program people usually write in any language is a very simple one. You make the computer
print the words “hello world” to the screen.

1. Why a program?

There are two ways to tell R how to do things. One is to program “interactively.” That means write things at
teh > in the console and press return.

The second way to tell R how to do things is to write a program. A program is a text file that has all the
command you want R to execute in logical order. You should always write R code (or any code) in a program.
Once you’ve written the program, or part of the program, you run the program, and R does all the steps you
outline in the program.

There are at least two key reasons to write a program rather than to code interactively. First, if you don’t
write down all the commands you’ve executed, you will lose track of them and not be sure what you did.
Then, we you go to fix problems, it will be impossible for you to figure out the steps that you took. Second,
writing a program makes the logical order of steps very clear, and allows you to replicate the work you have
already done.

Writing code — what you’ll learn to do in this class — is a major advantage over using Excel or similar programs.
All your steps to your final output are clear for you or others to follow. When you program interactively, you
lose this advantage.

2. Write a R program
Now let’s write a R program. Ppen RStudio, and choose File -> New File -> RScript.
You should see a new window open up.

In this new window, the first thing you’ll write is information about what this program is, what it does and
who created it. The lines are called “comments,” since they are not directions to R. Instead they are notes
for the programmer. In this program, it may seems silly to write this, since your program will start by doing
so little, but it is good practice, and a very good habit to get into.



To write these comments, use a “#” sign in front of each line. This tells R that everything after the “#” is a
comment for you and not code to evaluate.

My comments look like this

#

# this ©s my program to say "hello world"
#

# hiworld.r

#

# january 7, 2018

#H#### A. print hello world

After your comments, write the R command

print ("Hello World!")

Save this file with a name you’ll remember in a location you’ll remember. Mine is saved as
H:/pppa_ data_ viz/2018/assignments/lecture01__helloworld.R (If you type the file name, R will au-
tomatically add the .R extension to the name). This extension, .R,means it is an R program. Without the
proper extension, the program will not work.

3. Run a R program
Now we want to run this program.
There are two ways to run this file (also known as a script)

1. While in the editor window, go to the Code menu -> Run Region -> Run All (or click the “run” bottom
at the top of the window).

2. At the prompt in the console window, type the full name of your file and use the option “echo=TRUE”
so that R will show all the individual commands that you’re using.

source('H: /pppa_data_viz/2018/assignments/lecture0l_helloworld.R', echo=TRUE)

Either way that you run the program, you should see something like the below in the Console window:

print ("Hello World!")

## [1] "Hello World!"

That’s success! Now you’re ready to work on a more complicated program with real data.

C. Loading Data

We begin by loading data into a dataframe.

A dataframe is basic data structure we’ll use most of the time in this course. Think of it like an excel table; it
is a rectangle with rows and columns. We will refer to portions of the dataframe by row and column values.

Start a new R program that you’ll use for this class and for your homework. For the homework, you
should turn in annotated code (that’s a R Script with comments) that includes the class commands and the
homework.

Use one .R file for the rest of this tutorial (and make one for each subsequent tutorial). I encourage you to
do a few steps, run the program, and see how it goes. If there are errors, fix them before moving forward.
Once you have no errors and understand the output, then add new commands to the .R file. Remember, do
not program interactively! It is very hard to get help on your code if you program interactively.



We'll begin by loading a dataset where each observation is a county in the Washington metropolitan area (or
in Virginia, independent city) in a year, 1910 to 2010. See the Washington metropolitan area here. These

data come from the Decennial Census, and you can find source info in this paper of mine in the data appendix.

The data have one row per jurisdiction and year.

In R, we usually read .csv (comma separated values) files, and I have prepared files in this format for today.

Download the data for this class from here. Save this file in a location that you will remember, and for
which you know the path (the path is an ordered list of folders). For example, I save the file into the path
h:/pppa_data_viz/2019/tutorial_data/. You need to know the full path of the directory where you saved
the data, and the name under which you saved it.

We begin by loading the file called was_msas_1910_2010_20190107.csv. If you’re curious what a .csv file
looks like, you can open it in Excel.

Here’s a simple example of a .csv file:
varl, var2, var3

a, b, c

d, e, f

g, h,i

The first row in this file has the variable names: varl, var2, and var3. Each subsequent row in this example is
an observation, which means one unit — perhaps a person, or a state. Each row reports the realization of
each of the three variables (varl, var2, var3) for that observation.

For example, if the observations were states, variables could be population, housing units and median income.

Each row would be a state, and population, housing units and median income would be the columns.
In a comma separated values dataset, all variables (varl, var2, var3) are separated by commas.

To load the file, we use the read.csv command. The input to this command is the location of the file, and you
create (with the <- command) a new dataframe which I am calling was.counties, but you can call whatever
you'd like.

Make a comment that you are loading .csv data, and bring it in. T write

# load csv data
was.counties <- read.csv("h:/pppa_data_viz/2019/tutorial_data/was_msas_1910_2010_20190107.

Note that R uses a forward slash to denote directories, even though Windows usually uses a backslash (Mac
usually use a backslash).

This command creates a dataframe (R’s version of a dataset) that contains the input csv file.

This is a specific example of general R syntax. The assignment function <- assigns the thing on the right
(here, the csv file) to the thing on the object on the left (here, the dataframe).

D. What’s in these data?

The rest of this class teaches you techniques for viewing at and summarizing data. You might think, “why
can’t I just do this in Excel?” Some of what you're learning today may seem easier in Excel... until you get
a very large dataset that you can’t use easily (or at all) in Excel. I also don’t teach techniques that rely on
using the data viewer than R has, since these techniques don’t work for large data. All that said, we are
practicing with a small dataset to begin so you can see all the data and better understand what’s going on.

Now that you've loaded these data, let’s start by looking at the two key elements of what defines a dataframe.

How many rows and columns does this dataframe have? And what variables (columns) does it have?

csv"
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To answer how “big” these data, that is how many rows and columns, we use R’s dim() command. The
dim() command reports the dimension of a dataframe:

# how big is it?
print("this is how many rows x columns the dataset has")

## [1] "this is how many rows x columns the dataset has"

dim(was.counties)

## [1] 246 5

The output in the console window reports the number of rows, comma the number of variables (or columns).
This dataframe has 246 rows and 5 columns (or variables).

Rows and columns are the building blocks of dataframes. Starting by understanding whether the number of
rows and columns you have is reasonable is always a good place to begin. There are about 20 jurisdictions in
the Washington area, and the data set has 11 years, so this seems like a reasonable number of rows.

Next, let’s explore which variables are in this dataframe. We query the variable names with the names ()
command:

# what wvartables does it have?
print("these are the names of the variables")

## [1] "these are the names of the variables"

names (was.counties)

## [1] "statefips" "countyfips" "cv1" "year" "cv28"

We learn that this dataframe has five variables. States and counties are identified by FIPS (federal information
processing) codes, which you can find at this website (and many others). State FIPS codes are always two
digits, and county codes are always three digits.

Each observation in the was.counties dataframe has a state FIPS and a county FIPS code. Beware that
county FIPS codes are not unique across states. In other words, two states may have a county 003. To
uniquely identify a county, you need both the state and county FIPS codes.

The remaining undefined variables here are cv1, which is population, and cv28, which is the number of
housing units.

Apart from the name of the variable, it is also helpful to know whether a variable is numeric (numbers only),
or a string (there are many kinds of strings in R, and we’ll hold on discussing this till a future class). You
can do mathematical operations with numeric variables, but not with strings.

Use str() (for structure) to find the types of variables in this dataframe:

# what kinds of vartables are these?
print("these are the types of variables")

## [1] "these are the types of variables"

str(was.counties)

## 'data.frame': 246 obs. of b5 variables:

## $ statefips : int 11 24 24 24 24 24 51 51 51 51 ...

## $ countyfips: int 1 9 17 21 31 33 13 43 47 59 ...

## $ cvl : int 331069 10325 16386 52673 32089 36147 10231 7468 13472 20536 ...
## $ year : int 1910 1910 1910 1910 1910 1910 1910 1910 1910 1910 ...

## $ cv28 : int NA NA NA NA NA NA NA NA NA NA ...


https://census.missouri.edu/geocodes/

This output reports that this is a dataframe with 246 obervations and 5 variables. R then lists the variables.
For each variable, R reports the variable type (string, int, numeric) and prints the values of this variable for
the first ten or so observations.

In this particular dataframe, all variables are of type “int” for integer. This means they are all numeric with
no decimals. There is no data for housing units (cv28) for the observations listed. The value “NA” is R’s
way of stating a missing value.

To get an overall sense of the magnitude of these variables, use summary (), which reports summary statistics
on each variable:

# look at wvalues
print("these are the values they take on")

## [1] "these are the values they take on"

summary (was.counties)

## statefips countyfips cvl year

## Min. :11.00 Min. : 1.0 Min. : 5199 Min. 11910
## 1st Qu.:24.00 1st Qu.: 31.0 1st Qu.: 13350 1st Qu.:1940
## Median :51.00 Median : 61.0 Median : 24218 Median :1960
## Mean :43.31 Mean :178.3 Mean : 119984 Mean 11962
## 3rd Qu.:51.00 3rd Qu.:179.0 3rd Qu.: 93974 3rd Qu.:1990
## Max. :54.00 Max. :685.0 Max. 11081726 Max. 12010
## NA's 16

## cv28

## Min. . 1739

## 1st Qu.: 5832
## Median : 13438

## Mean : 58393
## 3rd Qu.: 57275
## Max. 1407998

## NA's :86

Here we learn that the statefips variable seems to take on only limited values (11,24,51,43), which makes
sense: there are four states (counting DC) in the greater Washington metropolitan area. The population
variable (cv1) has six observations with no value (NA), and the housing variable 86.

While an average is a reasonable way to look at population, it makes less sense for a categorical variable like
statefips (“categorical” means the variable takes on a number of discrete categories; there is no state 11.5,
for example).

To look at the distribution of categorical variables, it is helpful to make a frequency table, which is easy in R
using table(), combined with a reference to a specific variable. To refer to one specific variable, use the
syntax dataframe$varname.

Combining these two concepts, we get

# look at non—numeric variables
print ("for non-numeric variables")

## [1] "for non-numeric variables"

table(was.counties$statefips)

##
## 11 24 51 54
## 11 55 169 11



We see that there are four unique values for statefips. State 11 (DC) has 11 observations (one for each
decade). State 24 (Maryland) has 55 observations, or 5 for each year. State 51 (Virginia) has 169 observations;
it has a very complicated institutional set-up with many small jurisdictions. State 54 is West Virginia, and
has one county that appears 11 times.

Note that we could also have done summary(was.counties$cvl) to just get descriptive statistics for popula-
tion only.

E. Dataframe Structure

To work with dataframes, you must know how to refer to rows and columns. We discuss how to
do this in this section. Generally, you can refer to the rows and columns in a dataframe using
dataframe.name[rows,columns]. This convention of rows -comma- columns is standard in R.

You can use this format to print rows to the screen. Here I print the first five:

# print some rows to the screen
print("first five rows")

## [1] "first five rows"

was.counties([1:5,]

##  statefips countyfips cvl year cv28

## 1 11 1 331069 1910 NA
## 2 24 9 10325 1910 NA
## 3 24 17 16386 1910 NA
## 4 24 21 52673 1910 NA
## 5 24 31 32089 1910 NA

This shows only the first five rows. You could print rows 20 to 30 by replacing 1:5 with 20:30.

You can also print just some columns:

# print some columns to the screen
print("first two columns")

## [1] "first two columns"

was.counties[1:10,1:2]

## statefips countyfips

## 1 11 1
## 2 24 9
## 3 24 17
## 4 24 21
## 5 24 31
## 6 24 33
## 7 51 13
## 8 51 43
## 9 51 47
## 10 51 59

This prints rows 1 to 10 and columns 1 and 2. To print all rows, with columns 1 and 2, you would write
was.counties[,1:2] (but this prints 200 rows and takes up too much space for this tutoriall).

Above, I used the column order to pick out columns. This is almost always a bad idea because you may
not know the column ordering, or, even worse, the column ordering many change. Rather than use column
numbers, you should use the column name directly, as I do below. Below I tell R to take the columns named
statefips, countyfips, and year. I use the notation c() to list a vector (list of things) that R should take.



# print columns by name
print("first five rows and three columns")

## [1] "first five rows and three columns"

was.counties[1:5,c("statefips","countyfips","year")]

##  statefips countyfips year

##t 1 11 1 1910
## 2 24 9 1910
## 3 24 17 1910
## 4 24 21 1910
## 5 24 31 1910

This is particularly helpful as your data gets bigger and you want to check your work.

F. Subsetting

It is also frequently useful to work with a smaller dataset. (Perhaps not with this current dataset, but the
principle we’ll learn here will be useful in the future.) There are MANY ways to do this in R. Here we review
two methods. The first is “Base R,” and the second uses a package (more on this below).

1. Base R

Your R program arrives with a number of built-in commands. We first review how to subset with these
“Base R” commands. Base R commands can be very useful because they always work, unlike commands
from packages, which may not work in all circumstances. In addition, when we go to write functions, around
Tutorial 8, Base R subsetting is much easier to put in a function.

The Base R subsetting relies on the same logic of limiting rows and columns as we did before. To make a
dataframe without 1910, we tell R to take all rows where the variable year is not equal (!'=) to 1910. We
check the new dataframe (was.counties.no1910) using dim().

Note that we are creating a new dataframe called was.counties.no1910. This dataframe exists in addition
to the was.counties dataframe. The ability to have multiple dataframes is a key strength of R relative to
Excel or Stata.

# make a dataframe without 1910
print ("make a dataset w/o 1910")

## [1] "make a dataset w/o 1910"

was.counties.nol1910 <- was.counties[was.counties$year != 1910,]
dim(was.counties.no1910)

## [1] 226 5

Recall that the original had 246 rows. Does this seem reasonable?

We can use any variable to subset. Below we omit Washington, DC from the dataframe, again using the not
equals command:

# make a dataframe without washington dc
print ("make a dataframe w/o washington dc")

## [1] "make a dataframe w/o washington dc"

was.counties.no.dc <- was.counties[was.counties$statefips != "11",]
dim(was.counties.no.dc)



## [1] 2356 b

Subsetting is not just limited to rows. To remove a column, I can tell R to not include any column where the
column name is cv28: ! (names(was.counties) %in’, ("cv28")). The ! command means “not.” The other
part — names (was.counties) %in% ("cv28") — means “where the name of the column in was.counties is
cv28” The %in% command means “any item in the following list.” So we could potentially expand the list to
include more variables by doing, for example, %in% c("cv1","cv28"). We use c to let R know that this is a
set of values.

# make a dataframe without housing (cv28)
print ("make a dataframe w/o housing variable")

## [1] "make a dataframe w/o housing variable"

was.counties.no.cv28 <- was.counties[, !(names(was.counties) %in’% ("cv28"))]
dim(was.counties.no.cv28)

## [1] 246 4

Note that the number of rows is still 246, but the number of columns is now 4, rather than 5.

2. Using filter and select from tidyverse package

Alternatively, you can achieve the same outcome using commands from a user-written package. A package
means a set of commands written by someone to plug into R. The first time you use a new package you need
to install it, as in

install.packages("tidyverse")

Install this package now, writing the command in the console and pressing return. There are a lot of
commands in this package, and it may take a while to load. Installing packages is the one time that you
should not write a command in a program. If you put this command in your program, you would install it
everything you ran your program. This would be unnecessary and very slow. Bottom line: Do this once, and
do not put the install.packages() command in your program.

Then, having installed the package, in any program where you want to use the package, you need to let R
know that you want to use it:

library(tidyverse)

## -- Attaching packages ————————————— oo

## v ggplot2 3.2.1 v purrr 0.3.3
## v tibble 2.1.3 v dplyr 0.8.4
## v tidyr 1.0.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.4.0
## -- Conflicts —————————————————————— - tid;

## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()

This output here tells us that tidyverse is really a collection of packages, including ggplot2, purrr, tibble,
dplyr, and four others. The filter and select command are from the dplyr package.

The “conflicts” portion of the output warns you that there are commands in the packages you just loaded
that have the same name as command in the stats package. For now, we don’t worry about this.

If you want to use a package in a program, you should put this library command at the top of your R script to
make R load the package immediately when you start running the program. We will use two commands from
the tidyverse set of packages (for now — it contains many other useful commands): filter and select.



We start with the filter command, which is a way of creating a subset of a dataframe based on characteristics
of observations. The filter command takes two inputs. The first is the data frame and the second is the
subsetting condition: filter(.data = dataframe, *condition*). You can have more than one condition,
linked by “and” (&) or “or” ().

As before, we can keep only counties (rows) where the year is 1910. Note that when we use these tidyverse
commands, we name the dataframe at the beginning, and then don’t have to call variables by their full name
with an $.

# keeps only rows where the condition evaluates to TRUE
print("use dplyr to make a dataset that is just 1910")

## [1] "use dplyr to make a dataset that is just 1910"
was.counties.1910.d <- filter(.data = was.counties, year == 1910)
dim(was.counties.1910.d)

## [1] 20 5

Comfortingly, these new data are smaller than the old data.

But let’s check to be sure that the new dataframe has only 1910. It is good programming practice to, as
President Reagan said, “trust but verify.” Virtually always if there is a mistake, it is your fault.

# check <f the filter command does what we wanted
print ("before filtering")

## [1] "before filtering"

table(was.counties$year)

##
## 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
## 20 20 20 20 24 24 22 24 24 24 24

print("after filtering")

## [1] "after filtering"
table(was.counties.1910.d$year)

#
## 1910
## 20

This worked! The variable year in dataframe was.counties.1910.d takes on only the value 1910, as we
wished.

We can also keep all states that are not DC, again using ! as not. This command says “return all observations
where the state ID number is not 11.”

# keep everything but washington DC
print("filter: keep not DC")

## [1] "filter: keep not DC"

was.counties.no.dc.d <- filter(.data = was.counties, statefips != "11")
dim(was.counties.no.dc.d)

## [1] 235 5

However, unlike with base R, this command does not work to drop columns in a dataframe. Instead, we
use the select command to choose columns. The select command takes the inputs select(.data =
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dataframe, *columns*), where dataframe is the input dataframe and columns are the columns to keep (no
minus sign in front) or drop (put a minus sign in front, as below).

The select command below says “make a new dataframe called was.counties.no.cv28.d that has all columns
from was.counties except cv28.

# make a dataframe w/o housing variable
# try select
print("can't use filter to drop columns. use select")

## [1] "can't use filter to drop columns. use select"

was.counties.no.cv28.d <- select(.data = was.counties, -c("cv28"))
names (was.counties.no.cv28.d)

## [1] "statefips" ‘"countyfips" "cv1i" "year"

head(was.counties.no.cv28.d)

##  statefips countyfips cvl year
## 1 11 1 331069 1910
## 2 24 9 10325 1910
## 3 24 17 16386 1910
## 4 24 21 52673 1910
## 5 24 31 32089 1910
## 6 24 33 36147 1910

We check the output with head() and names (), both of which report that the newly created dataframe does
not have the cv28 variable.

. Create new variables and dataframes

In this step, we create a new variable and make new dataframes of summary statistics.

1. Create a new variable

Creating a new variable in R is reasonably straightforward. Use the <- to denote the output, and use the
dataframe$var notation to describe variables.

For example, suppose we’d like to know the average number of people per housing unit in each jurisdiction.
To do this, we need to divide population (cv1) by housing (cv28). We do this as below:

# people per housing unit
print ("make new variable with people per housing unit in each county")

## [1] "make new variable with people per housing unit in each county"

was.counties$ppl.per.hu <- was.counties$cvl / was.counties$cv28
summary (was.counties$ppl.per.hu)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 1.909 2.566 2.762 2.852 3.272 3.975 86

We created the number of people per housing units, and then we use summary() to check the value. Does
this value seem reasonable? I anticipate that it should be between 1 and 5. Is it?

When programming, it is always a good idea to build in checks like these as things can and do go wrong.
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2. Summarizing data to screen

The most familiar summary statistic is the mean. R can easily calculate the mean of a variable with mean().
If there are any missing values in a variable and you don’t tell R to omit these missing value observations, R
will report a missing value for the mean. That is why the first mean command below reports NA, while the
second gives a value. The na.rm = TRUE means “yes, omit missing values in calculations.”

# brute force
print("find a mean")

## [1] "find a mean"

mean(was.counties$cvl)

## [1] NA

mean(was.counties$cvl, na.rm = TRUE)

## [1] 119983.7
Does this value seem reasonable for the mean jurisdiction population over the entire period?

It is also sometimes helpful to put the mean into its own variable (maybe you’ll want to put it in a title or
some such). You can do this as we do below, creating a newvar.

# putting value into its own wvariable
print ("put mean value into a variable")

## [1] "put mean value into a variable"

newvar <- mean(was.counties$cvl, na.rm = TRUE)
newvar

## [1] 119983.7
This newvar is a 1x1 dataframe.

There are many different statistical functions in R — so many that you’re better off googling “statistical
functions in R” to think about this. Most of them work just like the mean() function that we just explored.

3. Summarizing variables to a dataframe

We now move on to creating dataframes of summary values. Suppose we’d like to know the mean population
across all jurisdictions in each year. We can do this using the commands group_by and summarize, which
are part of tidyverse.

As your program should already have library(tidyverse) at the top, you don’t need to do anything else to
load this package now.

This section of the tutorial is the beginning of understanding what statistical software (like R) can do that
Excel cannot. We are going to take data at one level — the county-year level — and create a dataframe at a
different level — the year level.

To do this, we first need to understand what “groups” we want in the final output. For a year-level dataset,
we want to make groups (from the county-year data) by year.

Tell R what your groups are using the group_by command. The group_by function takes inputs
group_by(.data = dataframe, [variables to group by, separated by commas]).

Only after you’ve told R how your data are grouped, you then ask R to calculate summary statistics at the
level of that group. R calculates grouped summary statistics with the tidyverse command summarize. Note
that the dataframe we used in the summarize command is the grouped dataframe (was.counties.grp.yr)
that we created in the previous line.
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In the command below we create a new dataframe, was.by.year with the variable cvl.yr, which is the
mean population for all counties in each year. Note that the group_by command doesn’t change the look of
your data — it just changes its functionality in susequent commands.

# summarize by year
print("find average by year")

## [1] "find average by year"

was.counties.grp.yr <- group_by(.data = was.counties, year)
was.by.year <- summarize(.data = was.counties.grp.yr, cvl.yr=mean(cvl))
was.by.year

## # A tibble: 11 x 2

## year cvl.yr
## <int>  <dbl>
## 1 1910 32892.
## 2 1920 39282.
## 3 1930 44222.
## 4 1940 59891.
## 5 1950 NA
## 6 1960 NA
## 7 1970 143834.
## 8 1980 142777
## 9 1990 173222.

## 10 2000 201560.
## 11 2010 234843

This is a good point to note that all commands in this package can be used with American spelling
(“summarize”) or British spelling (“summarise”). I will use the American spelling throughout the course, but
you may find the British spelling when you look for help online.

Looking at this new dataframe, we have one observation per year (correct!), with a population mean that is
increasing over time (seems reasonable). Unfortunately, we have some missing values. We can correct by
using the same na.rm=TRUE as above:

# summarize by year w/o missings
print("find average by year w/o missing values")

## [1] "find average by year w/o missing values"

was.by.year <- summarize(.data = was.counties.grp.yr, cvl.yr=mean(cvl, na.rm = TRUE))
was.by.year

## # A tibble: 11 x 2

## year cvl.yr
## <int>  <dbl>
## 1 1910 32892.
## 2 1920 39282.
## 3 1930 44222.
## 4 1940 59891.
## 5 1950 81966.
## 6 1960 110812.
## 7 1970 143834.
## 8 1980 142777
## 9 1990 173222.

## 10 2000 201560.
## 11 2010 234843
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An improvement!

This set-up is flexible. We can calculate not just the mean population, but also the total population by
adding an additional function (sum()).

# summarize two variables by year
print("find two things by year")

## [1] "find two things by year"

was.by.year <- summarize(.data = was.counties.grp.yr,cvl.yr=mean(cvl, na.rm = TRUE),
cv.yr.total = sum(cvl, na.rm = TRUE))
was.by.year

## # A tibble: 11 x 3

## year cvl.yr cv.yr.total
# <int> <dbl> <int>
## 1 1910 32892. 657845
## 2 1920 39282. 785643
## 3 1930 44222. 884441
## 4 1940 59891. 1197826
## 5 1950 81966. 1721291
## 6 1960 110812. 2327056
## 7 1970 143834. 3164346
## 8 1980 142777 3426648
## 9 1990 173222. 4157327
## 10 2000 201560. 4837428
## 11 2010 234843 5636232

Additionally, we can add a second variable to group_by. Instead of summaries by year, we can report data
by state and year. Notice how we first define a new “grouped” dataframe.

# summarize by state and year
print("find info by state and year")

## [1] "find info by state and year"

was.counties.grp.st <- group_by(.data = was.counties,year,statefips)
was.by.state.yr <- summarize(.data = was.counties.grp.st,

cv.st.total = sum(cvl, na.rm = TRUE))
was.by.state.yr

## # A tibble: 44 x 3
## # Groups: year [11]

## year statefips cv.st.total
## <int> <int> <int>
## 1 1910 11 331069
## 2 1910 24 147620
## 3 1910 51 163267
## 4 1910 54 15889
## 5 1920 11 437571
## 6 1920 24 158258
## 7 1920 51 174085
## 8 1920 54 15729
## 9 1930 11 486869
## 10 1930 24 189435
## # ... with 34 more rows
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Now, rather than 11 observations, we have 44. Does that make sense?

H. Problem Set 1

Now you are ready to work on your own.

1. What to turn in
For this and all subsequent problem sets you should turn in one pdf that includes

o Written output that directly answers the questions (not just the code that finds the numbers). This
can be a word doc, or any other output of your choice.

o R script for the tutorial and the questions below (the .R program file)

o R output (from console window; ok to paste into a separate file)

2. Where to turn in

All your work in this class will go into the “for students” google folder. Inside this “for students” folder,
please find a “tutorial turn-in” folder.

Inside the tutorial folder, you need to create a new folder called lastname_firstname. Turn all your tutorial
work into this folder (you many want to make sub-folders for different assignments to make sure I can find
your work).

Turn in today’s problem set in your folder. Save as [last name]_PS1.pdf

3. Questions

You are welcome and encouraged to work with others on the homework. However, each of you must turn in
your own homework, in your own words. All duplicate versions of a homework receive a grade of zero.

1. Why do we do table(was.counties$statefips) and summary(was.counties$cvl) and not vice-
versa?

2. Why does the first summary in part G.3. yield 11 observations, but the second 447
3. Find and report the average population in DC for the entire period 1910-2010

4. Find state-level (or the part of the state we observe) average population over the entire period. Put a
table with this information in your final output. Describe the results in a sentence or two.

5. For each of the four states, are there more or fewer jurisdictions in this dataset now than in 19107
(Hint: sum(!is.na(variable.name)) tells you the total number of non-missing observations.)

6. What is the most populous jurisdiction in the DC area in 20107

You may find it helpful to refer to this cheat sheet for this and future classes.
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https://drive.google.com/drive/folders/1xxPJbRo8eqzq2VpPMv4UzpAatXlGTmF4?usp=sharing
https://rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
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