
Tutorial 2: Merging
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Today’s tutorial is about merging. Merging means combining more than one dataframe using a common
variable.

We teach merging early on because you will likely need to merge data for almost any project. We devote
an entire tutorial to merging because merging can frequently go wrong. When it does, your data become
garbage, and all products that come from that data are also garbage.

This tutorial uses small example datasets to show you how merging works. It builds in examples of “merges
gone wrong” to point out the type of problems for which you should be on the lookout. For your homework,
you’ll find some additional data and merge it in to a county-level dataset.

We end with a discussion of variable types in R, with an important note about factor variables. Factor
variables are strange but important, and you need to be at least slightly familiar with them to use R
successfully.

Next class we begin with graphs!
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A. Load Data
As you did last week, create a R script for this class. Write all your commands in the R script (recall, a file
with R commands ending in .R). You can run all of the program at once (code -> run region -> run all), or
just selected lines.

For the purposes of this tutorial, you may wish to run selected lines. At the end, be sure that your entire
script works – this will show whether your logic follows throughout the entire program.
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We’ll begin by loading two very small datasets, examining them, and merging them. These are student-level
datasets, and here are the links for what we’ll call students1 and students2.

Like we did last class, we’ll use read.csv() to open these files, and we’ll use other commands to help us
understand the file. This is a small file, and you can understand this file without these commands just by
opening it in Excel. However, you will need to deal with files larger than you can see in Excel – which is why
we learn these tools. We practice them on a small dataset so you can easily see what does and doesn’t work.

Let’s begin by loading students1, printing the data, and then seeing what variable names the data have.
# load the first student data
student1 <- read.csv("H:/pppa_data_viz/2019/tutorial_data/lecture02/2019-01-27_fake_student_data.csv")

# how many students?
student1

## First_name last_name GWID gpa degree remaining_sem
## 1 elpis josefa G37 2.9 mpa 1
## 2 longina nedelya G12 3.9 mpp 4
## 3 richelle bjoern G08 3.4 mpp 1
## 4 mozghan mara G62 3.5 mpa 2
## 5 runa marcelo G14 3.8 mpp 3
dim(student1)

## [1] 5 6
# which variables?
names(student1)

## [1] "First_name" "last_name" "GWID" "gpa"
## [5] "degree" "remaining_sem"

We can see from the data print-out and from dim() that this dataset has five rows and six variables (look at
last week’s tutorial if you need a refresher on dim()). The command names() tells us the variable names in
this dataset. Note that there are two ways you could identify a student: by name (first and last) and by
GWID.

Let’s now load the second students dataset, students2.
# load the second student data
student2 <- read.csv("H:/pppa_data_viz/2019/tutorial_data/lecture02/2019-01-27_fake_student_data_part2.csv")

# how many students?
dim(student2)

## [1] 5 4
# what variables?
names(student2)

## [1] "First_name" "last_name" "GWID" "age"

This new dataset also has five rows (students), so it is possible that the datasets could match perfectly (by
which I mean a one-to-one match). The names() command tells us that this dataset has three variables that
we can see overlap with the variables in students1: First_name, last_name and GWID.
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B. Merging
B.1. Basic Merge
Let’s start by merging these two datasets by the GWID variable. “Merging by” a variable means matching
a row in dataset A with a row in dataset B when both observations have the same value for the merging
variable. In this class we’ll use exact matches. Fancier data work can do things like “fuzzy matches.”

Before we merge, however, recall that both datasets have, in addition to GWID, First_name and last_name.
If we merge by GWID, then the new dataframe will have first and last name from student1 and first and last
name from student2. It is very bad data management practice to have duplicate variables in a dataset (in
addition, R may also not let you have two variables with the same name in the same dataframe). Duplicate
variables in the same dataframe leads to confusion (which one is right?) and is wasteful from a data storage
point of view. So we will begin by keeping just GWID and age from students2 before merging. Below we use
syntax introduced last class; if it seems unfamiliar, return to last class’s tutorial on subsetting.
# make student2 w/o duplicate variables
student2.nd <- student2[,c("GWID","age")]

Now we want to merge students1 with the newly created student2.nd. R’s basic merge command has four
key components that I show below in generic form:
# do the merge
new.dataframe <- merge(x = DATAFRAME1,

y = DATAFRAME2,
by = VARIABLE COMMON IN BOTH DATASETS,
all = TRUE/FALSE)

Use x = and y = to specify the input datasets. Use by = to specify the variable on which you’d like to
merge, putting it in quotes. In this method, this variable name needs to exist in both datasets (we relax this
requirement later in the tutorial).

Finally, all = lets you modify R’s behavior when merging. If you omit this part, R will just keep observations
in the first dataset. I generally suggest that you keep all observations. If they don’t merge properly (more
below on what this means) you should generally understand why – so it’s important to know whether the
merge is successful or not.

So for our particular example, we specify the merge as below:
# do the merge
students <- merge(x = student1,

y = student2.nd,
by = "GWID",
all = TRUE)

How many observations do you expect this new dataframe to have? Five – the same number as in each input
dataframe. How many variables? The six variables in students1 plus one (age) from students2. You might
object, saying that students2 has two variables – and that’s right, but one of them is a duplicate of one in
students1 (GWID).

More generally, when you’re doing a merge, you should know how many observations you expect in the final
product before you merge. You should then check to be sure that the total number of observations fits your
expectations. Not doing this is data malpractice and can cause serious errors. Many times things that you
think should work do not. It is better to verify that things work, rather than assume that they do.

Use the commands below to check on whether your merged dataframe has the five observations and seven
variables:
# check on things in new dataframe
dim(students)
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## [1] 5 7
names(students)

## [1] "GWID" "First_name" "last_name" "gpa"
## [5] "degree" "remaining_sem" "age"
str(students)

## 'data.frame': 5 obs. of 7 variables:
## $ GWID : Factor w/ 5 levels "G08","G12","G14",..: 1 2 3 4 5
## $ First_name : Factor w/ 5 levels "elpis","longina",..: 4 2 5 1 3
## $ last_name : Factor w/ 5 levels "bjoern","josefa",..: 1 5 4 2 3
## $ gpa : num 3.4 3.9 3.8 2.9 3.5
## $ degree : Factor w/ 2 levels "mpa","mpp": 2 2 2 1 1
## $ remaining_sem: int 1 4 3 1 2
## $ age : int 40 25 24 22 25

We see that the new dataframe has 5 observations (good!), and seven variables (good!). If you compare
names(students1) to names(students), you see one additional variable: age. Also good.

I include the command str() so you have another tool for examining a dataframe. This tool tells you the
number of observations in a dataframe, the variables, and some hint of the values of those variables.

B.2. Merging by two variables
Sometimes it is necessary to merge by two variables, rather than one. In our small dataframe, first name
information is sufficient to identify a student. This is not generally true, however. (And frequently names
are insufficient to uniquely identify a student, which is why schools use ID numbers!) But for purposes of
example, we will do a merge by two variables.

When else might you want to merge by two variables? Think back to the county data from last class. County
FIPS codes are not unique across states. For example, multiple states have county 001. Thus to merge
properly, we need to match by both state FIPS code (e.g., 11 for DC) and county FIPS code (001 for DC).
State FIPS plus county FIPS do uniquely identify counties.

To start this merge, let’s first make a dataset that has first name, last name and age from students2.
# make student2 w/o gwid
student2.nd2 <- student2[,c("First_name","last_name","age")]

With this new dataframe, we do a merge on two variables. We denote them c("var1","var2").
# do the merge
students.t2 <- merge(x=student1,

y=student2.nd2,
by=c("First_name","last_name"),
all = TRUE)

Let’s check like before. Does it have 5 observations?
# check on size
dim(students.t2)

## [1] 6 7

No! What went wrong?

4



B.3. Figuring out problems in a merge
The best place to start when figuring out problems in a merge is to make a marker for each of your datasets.
This way you know which observation comes from which dataframe. Having this variable allows you to
pick out observations without a match. Many times, when you view the non-merged observations, you can
diagnose the problem.

Here we create the marker variable in each dataset before we merge. Note that the variables always takes the
value 1.
# make id variables for each dataset
student2.nd2$s2 <- 1
student1$s1 <- 1

Now, re-do the merge with these revised dataframes:
# re-do merge
students.t2 <- merge(x=student1,

y=student2.nd2,
by=c("First_name","last_name"),
all = TRUE)

dim(students.t2)

## [1] 6 9
students.t2

## First_name last_name GWID gpa degree remaining_sem s1 age s2
## 1 elpis josefa G37 2.9 mpa 1 1 22 1
## 2 longina nedelya G12 3.9 mpp 4 1 25 1
## 3 mozghan mara G62 3.5 mpa 2 1 25 1
## 4 richelle bjoern G08 3.4 mpp 1 1 40 1
## 5 runa marcelo G14 3.8 mpp 3 1 NA NA
## 6 runa marcelo <NA> NA <NA> NA NA 24 1

We still have the same problem of six observations (and we should, since we haven’t yet done anything to fix
it).

Now clean up the marker variables to make <NA> values zero. We do this using the (very useful) ifelse
command. The syntax for this command is
output$var <- ifselse(test = IF CONDITION,

yes = [DO IF TRUE],
no = [OTHERWISE DO THIS])

The first part of this command is the test. You tell R to evaluate a statement. If the statement after test
= is true, then R assigns to variable var in dataframe output the value following the yes option. If the
statement after test = is false, then R assigns the variable var the value after the no = option.

In the ifelse() function below, we are going to use another R function that evaluates whether an observation
is missing or not. The function is.na() returns TRUE or FALSE depending on whether the observation is
missing or not. Here is a small example of this function. First we create a dataframe called example. The
column (or variable) v1 has a missing value; v2 does not.
example <- data.frame(v1 = c(1,3, NA),

v2 = c(4,5, 6))
# this reporting if there are any variables in v1 missing
is.na(example$v1)

## [1] FALSE FALSE TRUE
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# this reporting if there are any variables in v2 missing
is.na(example$v2)

## [1] FALSE FALSE FALSE
# and now we can figure out how many
table(is.na(example$v1))

##
## FALSE TRUE
## 2 1
table(is.na(example$v2))

##
## FALSE
## 3

The output of is.na() is only TRUE or FALSE, and there is only one false, since only on observation (row in
the dataframe) is missing. The output of the table() command reports the number of TRUE and FALSE in
each variable. Look back at Tutorial 1 if you would like a reminder about this function.

Now we apply the logic of this command to the students data. The first command below says that if
studentst2$s1 is missing, then make studentst2$s1 0; otherwise, leave studentst2$s1 its original value.
Note that the condition we evaluate in the test = portion of the function has a conditional equals sign (==).
# make marker variables zero
students.t2$s1 <- ifelse(test = is.na(students.t2$s1)==TRUE,

yes = 0,
no = students.t2$s1)

students.t2$s2 <- ifelse(test = is.na(students.t2$s2)==TRUE,
yes = 0,
no = students.t2$s2)

Now we’ll use the newly created markers s1 and s2 to see what’s going on. How many observations are both
in the first dataset (s1=1) and in the second (s2=1)? There are two ways to do this, now that we’ve made
our markers. First, you can also print just observations where the merge doesn’t work – where s1+s2 != 2,
using the same subsetting logic as before.
# check on it
students.t2[which(students.t2$s1 + students.t2$s2 != 2),]

## First_name last_name GWID gpa degree remaining_sem s1 age s2
## 5 runa marcelo G14 3.8 mpp 3 1 NA 0
## 6 runa marcelo <NA> NA <NA> NA 0 24 1

The printed out subset shows that the problem observations are Runa Marcelo. In this dataframe, where
there are no missing data, we could also use missing values in any variable to pick out the problem. However,
this is generally not the case, which is why the markers are so useful.

Alternatively, use the two-way table command to check. Above we used a one-way table() command,
which does a one-variable frequency. Here we do a two variable frequency.
# check on it
table(students.t2$s1,students.t2$s2)

##
## 0 1
## 0 0 1
## 1 1 4
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The (unhelpfully unlabled) top row of this table shows values for the first variable in the command,
students.t2$s1. The first column shows the values of the second variable in the table command,
students.t2$s2. No observations have s1 = 0 and s2 = 0 – this makes sense, since it is equivalent to
saying that no observations come not from students1 (1 if the observation comes from students1) and no
observations come from students2 (1 if the observation comes from students2).

The table also tells us that there are four observations where s1=1 and s2=1. There is one observation where
s1 = 1 and s2 = 0, and one observation where s1 = 0 and s2 = 1. This method is very good for larger
dataframes. It can help you understand if you have a merging problem, and whether it is a big or little
problem.

Why doesn’t the Marcelo observation merge? There’s a hint in the print out: one marcelo is longer than the
other. We can check whether this is the case by creating new variables that are the length of the name (where
this is the length in characters). The command nchar() counts the number of characters in a string. If the
variable is a factor (as these names are; more on factors later), you need to tell R to treat it as a character
variable, using as.character().
# look at the length of the merging variables
students.t2$first.length <- nchar(as.character(students.t2$First_name))
students.t2$last.length <- nchar(as.character(students.t2$last_name))
students.t2

## First_name last_name GWID gpa degree remaining_sem s1 age s2 first.length
## 1 elpis josefa G37 2.9 mpa 1 1 22 1 5
## 2 longina nedelya G12 3.9 mpp 4 1 25 1 7
## 3 mozghan mara G62 3.5 mpa 2 1 25 1 7
## 4 richelle bjoern G08 3.4 mpp 1 1 40 1 8
## 5 runa marcelo G14 3.8 mpp 3 1 NA 0 4
## 6 runa marcelo <NA> NA <NA> NA 0 24 1 4
## last.length
## 1 6
## 2 7
## 3 4
## 4 6
## 5 7
## 6 8

Looking at the output, we can see that in the fifth observation the last name has length 7; in the sixth
observation, last name has length 8. It has a space after “marcelo”! You can fix this using a ifselse()
command on the student2 dataset for this particular observation. This is for your homework.

More generally, this is one of the many types of problems that can plague merges. Be vigilant when merging
data! This section has given you the tools to figure out when a merge is not working as expected.

C. Many-to-1 merges
So far we have done 1:1 merges, where observations should have a one corresponding match in each dataset.
Now we’ll try a many to one match, where many observations in a dataset correspond to one observation in
the merging dataset.

C.1. Merge in attributes by degree program
For this example, we’ll merge in attributes of the degree program. Each degree program has some features
(perhaps number of students, mean time to graduation) that you may want to add to the individual student
records. Begin by downloading these data, and then load them and look at them.
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# bring in degree program info
dp <- read.csv("H:/pppa_data_viz/2019/tutorial_data/lecture02/2019-01-27_program_data_1.csv")
dp

## deg grad_rate
## 1 mpp 0.95
## 2 mpa 0.96
names(dp)

## [1] "deg" "grad_rate"

Note that this degree program data has a different variable name for the degree program (deg) than the
students dataset (degree). We want to merge by this variable and that’s ok: we just let R know that the
merging variable has a different name in dataframes x and y as below using by.x and by.y.

Before merging, how many observations do you expect these data to have?
# merge with student data
students.wd <- merge(x=students,

y=dp,
by.x="degree",
by.y="deg",
all = TRUE)

dim(students.wd)

## [1] 5 8
names(students.wd)

## [1] "degree" "GWID" "First_name" "last_name"
## [5] "gpa" "remaining_sem" "age" "grad_rate"

After merging, we find that the dataset has the expected 5 observations, and that the new dataframe has a
graduation rate variable. All good.

Helpfully, you can see from the output of names() that R does not keep degree and deg: one is enough!
(Both would be redundant and confusing.)

C.2. Another many-to-one merge example
That merge went very smoothly. Here’s a (more typical) example when things don’t go as you’d hoped.
Download this new program csv file, and load the data.
# bring in degree program info
dp2 <- read.csv("H:/pppa_data_viz/2019/tutorial_data/lecture02/2019-01-27_program_data_2.csv")
names(dp2)

## [1] "degree" "grad_rate"
dp2

## degree grad_rate
## 1 mpp 0.95
## 2 mpa 0.96
## 3 enrp 0.95

Again, how many observations do we expect after the merge?

Now here is the merge:
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# merge with student data
students.wd2 <- merge(x=students,

y=dp2,
by="degree",
all = TRUE)

dim(students.wd2)

## [1] 6 8

This output has one more observation than we expect. Why?

We look for the answer following merging logic. I know that the dataframe students has a value for the
variable first_name in every row (this is the same thing as saying “for every observation”). Below I tell R to
print any observation from the merged data that does not have a value for the variable First_name, using
is.na().
students.wd2[which(is.na(students.wd2$First_name) == TRUE),]

## degree GWID First_name last_name gpa remaining_sem age grad_rate
## 6 enrp <NA> <NA> <NA> NA NA NA 0.95

I can get rid of this extra row – we have no ENRP students in the students dataframe – by using a subsetting
command as we learned last class. In words, this command says "keep only observations from students.wd2
where GWID is not missing. We are comforted that the final product has the five observations we expect.
# keep only true students
students.wd2 <- students.wd2[which(is.na(students.wd2$GWID) == FALSE),]
dim(students.wd2)

## [1] 5 8

It is good practice to only ever drop observations when you know what you’re dropping and why.

D. Using the merged data
The point of merging data is to do something with the newly created data.

Here are some examples of things you can do with this newly merged dataframe.
# what is the average age in the class?
av.age <- mean(x = students.wd2$age,

na.rm = TRUE)
av.age

## [1] 27.2
# standard deviation of age?
std.age <- sd(x = students.wd2$age,

na.rm = TRUE)
std.age

## [1] 7.259477
# how many people by degree program?
table(students.wd2$degree)

##
## mpa mpp enrp
## 2 3 0
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E. Data types in R
Variables in R may be one of six types

1. numeric
2. integer
3. character
4. logical
5. complex
6. raw

We will use the first four in this class, and we cover them in this tutorial. We will also cover a special case of
the integer variable type, called a factor. The remaining two variable types (raw and complex) are likely not
going to be of use to you (or me) in the foreseeable future.

E.1. Numeric variable
A numeric variable is one where all the observations of the variable are either numbers of missing (NA). For
example, v1 below is a numeric variable, but v2 is not. You can evaluate whether a variable is numeric by
using is.numeric(), which returns TRUE if numeric and FALSE if not.
e1 <- data.frame(v1 = c(1.2, 2.3, 3.4),

v2 = c(4.5, "c", 5.6))
is.numeric(e1$v1)

## [1] TRUE
is.numeric(e1$v2)

## [1] FALSE

You can also take a look at the structure of the dataframe using str() to evaluate variable types.
str(e1)

## 'data.frame': 3 obs. of 2 variables:
## $ v1: num 1.2 2.3 3.4
## $ v2: Factor w/ 3 levels "4.5","5.6","c": 1 3 2

E.2. Integer variable
An integer variable is a special case of a numeric variable – it is a numeric variable where each value is an
integer. Because integers do not have decimals and therefore take up less memory, R prefers to store numeric
variables as integers if possible.

E.3. Character variable
A character variable is one that has at least one non-numeric value in any observation. In other words, if
you have 1000 observations of variable v1, and one of them has a letter or symbol, the entire variable will
be non-numeric. For example, the variables students$first_name and students$last_name are character
variables.

E.4. Logical variable
A logical variable takes only the values TRUE and FALSE. You can enter these variables yourself, or create
them as an output from other variables, as we did with is.na() above. The is.na() function (and many
others) returns only the two logical values.
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E.5. Factor variable: special case of integer
Factor variables are a special case of the integer variable. In short, R creates factor variables for character
variables that take on a limited number of values. For example, imagine a variable with a limited number of
string outcomes, such as “good”, “bad”, and “ugly”. R assigns a number to each of the string outcomes, so,
for example, 1 = "bad", 2 = "good", and 3 = "ugly" (by default, R creates factors in alphabetical order).
R stores the numbers (not the strings) and also stores the numbers-to-strings mapping. This can save a lot of
memory, especially when strings are long.

Factor variables are tricky, because they sometimes look like character variables. For example, if you ask R
to make a table of a factor variable, R will display the character values, not the integer ones. For example,
our students.wd2 dataframe has some factor variables. We can get a sense of them by using the str()
command. See what R outputs about ‘degree’ from the table command – it looks like a string, not the factor
that it actually is.
# look at the variables here
str(students.wd2)

## 'data.frame': 5 obs. of 8 variables:
## $ degree : Factor w/ 3 levels "mpa","mpp","enrp": 1 1 2 2 2
## $ GWID : Factor w/ 5 levels "G08","G12","G14",..: 4 5 1 2 3
## $ First_name : Factor w/ 5 levels "elpis","longina",..: 1 3 4 2 5
## $ last_name : Factor w/ 5 levels "bjoern","josefa",..: 2 3 1 5 4
## $ gpa : num 2.9 3.5 3.4 3.9 3.8
## $ remaining_sem: int 1 2 1 4 3
## $ age : int 22 25 40 25 24
## $ grad_rate : num 0.96 0.96 0.95 0.95 0.95
table(students.wd2$degree)

##
## mpa mpp enrp
## 2 3 0

Apart from saving memory, why does R have factor variables? The UCLA website writes that “There are a
number of advantages to converting categorical variables to factor variables. Perhaps the most important
advantage is that they can be used in statistical modeling where they will be implemented correctly, i.e., they
will then be assigned the correct number of degrees of freedom. Factor variables are also very useful in many
different types of graphics.”

As the people at UCLA said, and as we will see in future tutorials, it is helpful to have factors when you’re
looking to tabulate categorical data. But remember that although factors sort of look like numbers when you
do str(), they are not numbers and can’t be treated as such:
# can you add factors?
students.wd2$odd <- students.wd2$degree + students.wd2$GWID

## Warning in Ops.factor(students.wd2$degree, students.wd2$GWID): '+' not
## meaningful for factors
str(students.wd2)

## 'data.frame': 5 obs. of 9 variables:
## $ degree : Factor w/ 3 levels "mpa","mpp","enrp": 1 1 2 2 2
## $ GWID : Factor w/ 5 levels "G08","G12","G14",..: 4 5 1 2 3
## $ First_name : Factor w/ 5 levels "elpis","longina",..: 1 3 4 2 5
## $ last_name : Factor w/ 5 levels "bjoern","josefa",..: 2 3 1 5 4
## $ gpa : num 2.9 3.5 3.4 3.9 3.8
## $ remaining_sem: int 1 2 1 4 3
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## $ age : int 22 25 40 25 24
## $ grad_rate : num 0.96 0.96 0.95 0.95 0.95
## $ odd : logi NA NA NA NA NA

We will return to factor variables when we make graphs, predominantly for labeling.

E.6. Why all these different types?
Types matter because functions apply only to certain variable types. For example, you cannot add strings.
Similarly, you can’t use nchar() to count the number of characters in a numeric variable.

F. PS 2: Try it yourself with bigger data
1. Use R programming commands to fix the one problematic observation in the student2 dataframe and

make it merge properly (by first and last name) with student1.

2. Find a dataset with county information and merge it either with the data we used last class, or with a
larger county-level dataset for all counties in the US, 1910 to 2010. This second dataset is here, and the
variable definitions are here.

It is sufficient for your new dataset to have just one year of information, or information for just one state or
one year.

The final dataset could be at the county level, or at some other unit of observation. (For example, if you
found a dataset about power plants, which had one observation per power plant with a county ID, you would
end up with a power plant-level dataset.)

Make sure you explain the following:

• what your new data describe
• the source of your additional data
• how many observations the new data have
• how many observations you expect from the merge and why; if this seems off, fix it and explain what

you did

3. Make three relevant summary statistics of your choice for these new merged data. What these output
are depends on what you’re merging in.

As with the first problem set, you need to turn in

• your R script
• your R console file output (for just the clean R script)
• and some text that explains answers to questions
• in one pdf
• to the google drive folder you created last class
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http://www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2019/subpages/handouts/tutorials/tutorial01/data/was_msas_1910_2010_20190107.csv
http://www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2018/subpages/handouts/tutorials/lecture01/counties_1910to2010_20180115.csv
http://www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2018/subpages/handouts/tutorials/lecture01/loadcountiesv01.lst
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