
Tutorial 6: Functions

Leah Brooks

February 22, 2021

Contents
A. What is a function? 2

B. A first function 2
B.1. A very first function . 2
B.2. A Slightly More Complicated Function . 3
B.3. A function in a separate file . 4

C. Other Function Argument Basics 5
C.1. More on function arguments . 5
C.2. Defaults . 5
C.3. Calling the right type of variable . 6

D. What the function outputs 6

E. Functions for doing things with dataframes 7
E.1. Load DC crash data . 7
E.2. Understand the data . 8
E.3. Create new output via a function with one input . 9
E.4. Create new output via a function with one input . 11

F. Functions and tidyverse 13
F.1. Why tidyverse is Tricky . 13
F.2. Fixes . 13

G. Homework 14

Mid-way through the semester, we take a break from data visualization to teach you how to create your own
functions in R.

Most of the commands you use in R are functions themselves, so you already know how to use a function
(even if you didn’t realize it). Today you will learn how to make your very own R function.

Make sure to write today’s tutorial in an R script, rather than R Markdown. In addition, put
rm(list=ls())

at the beginning of your code. If strange things are happening in your code, consider running it from the
beginning, and the above command will clear everything in R’s memory. I tell you write a R script so that
you can more easily keep track of what functions are defined where and apply to what.

As to when to use a function, in the immortal words of Hadley Wickham, “You should consider writing a
function whenever you’ve copied and pasted a block of code more than twice (i.e. you now have three copies
of the same code)” (see this here).

1

http://uc-r.github.io/functions

The ability to create functions is one of the most powerful tools that statistical programming gives you. Good
programming relies heavily on functions. Cut and paste is prone to errors. Furthermore, while cut and paste
always seems easiest when you need to do things once, my experience with programming suggests that your
first graph is never your last graph. When you need to make modifications, particularly ones that are the
same across a set of graphs, you will be happy you chose to make a function.

This class gives you an initial introduction to functions. If you’d like to deeper, I recommend Hadley
Wickman’s Advanced R notes.

A. What is a function?
In this section, we define what a function is and explain its parts.

The example below shows the bones of any basic function. The first part function.name is the name of the
function. You can choose any name you’d like for the function.
function.name <- function(arg1, arg2){

stuff your function does
}

Beware, however, that if you use the name of an existing function in R, such as plot, when you call plot,
you will get your new function, instead of R’s usual ‘plot’. Bottom line: stay away from existing names if at
all possible. You can ask R whether it has any functions of a given name by typing
? sum

starting httpd help server ... done

When you type the above, a help window pops up – this means there is an existing function named sum. So
don’t use sum! What about dogs?
? dogs

No documentation for 'dogs' in specified packages and libraries:
you could try '??dogs'

R tells us it can’t find any functions called dogs, and you are good to go.

Every function also needs the word function – this is the same across all functions, and tells R that you are
making a function. You cannot change this word.

The variables arg1 and arg2 are the inputs to the new function. They define what you can put into the
function.

Once you’ve given R values for arg1 and arg2, R undertakes the commands inside the curly brackets. These
commands are known as the “function body.”

B. A first function
B.1. A very first function
Let’s begin with a very simple function that takes one value to the power of the other. As we construct it,
this function has arguments x and y. Whatever value you give R for x, it will take it to the power y. We call
this new function summer.

Before I define it, I check to see if a function by this name already exists.
? summer

No documentation for 'summer' in specified packages and libraries:
you could try '??summer'

2

http://adv-r.had.co.nz/Functions.html

No function exists by this name. This check is not required, but it is good practice, since you can create
trouble by naming your function with a name that already exists as a R function.

Now let’s define the function:
summer <- function(x,y){

x^y
}

In the summer function, the arguments are x and y. The body is xy.

Having defined the function, we’d now like to call it. The most clear way of calling a function is to associate
each argument with its value, as in
summer(x=1,y=2)

[1] 1

This call should look familiar. You’ve been using functions all semester. Now you’re writing one of your own.

The summer function returns a value of 1. Note that

12 = 1

, so all is good. as it should.

Alternatively, you can make the same call by writing
summer(1,2)

[1] 1

This works, but is bad practice. Code like this is hard to decipher and debug.

Now try
summer(x = 2, y = 1)

[1] 2

Note that this does not yield the same outcome. Homework question 1 asks you why.

Finally, the call below does not work at all. We’ve specified nothing for y, and all arguments are mandatory
unless a default value is specified (which we’ll learn how to do in a bit).
summer(x = 1,)

B.2. A Slightly More Complicated Function
The example in B.1. was so simple that you might wonder why we bother with functions. Let us start
working toward something slightly more complicated.

Suppose you’d like to know the marginal tax rate for a specific income. Maybe you’d like to automatically
print a chart title that says what the marginal tax rate of the mean income is, for example (so you can update
the picture without looking up the marginl tax rate each time).

The marginal tax rate is the tax you pay on your last dollar of earnings. In the US system, rates are
progressive, so that higher incomes pay higher tax rates. In other words, your first $x of income is taxed at
rate a. Income greater than x, but less that y is taxed at rated b, where b < a. The rate associated with your
“tax bracket” is your marginal tax rate.

A starting point for this kind of work is a function that delivers a marginal tax rate based on an input income.
We do this below, with a thanks to Bankrate for helpful marginal tax rates (for single people; page also has
married, if you’re curious).

3

https://www.bankrate.com/finance/taxes/tax-brackets.aspx

single.marg.tax.rate <- function(income){
mr <-

ifelse(income < 9325,0.10,
ifelse(income < 37950, 0.15,

ifelse(income < 91500, 0.25,
ifelse(income < 191650, 0.28,

ifelse(income < 416700, 0.33,
ifelse(income < 418400, 0.35, 0.396))))))

print(paste0("marginal tax rate for income ",income, " is ", mr))
}

This function takes the argument income and finds the bracket into which that income fits. It then outputs
the tax rate and income in a print statement.

Give it a try!

Here’s my first attempt:
single.marg.tax.rate(income = 10000)

[1] "marginal tax rate for income 10000 is 0.15"

This seems to find the right marginal tax rate, according to the Bankrate page.

Does it work for other incomes?
single.marg.tax.rate(income = 50000)

[1] "marginal tax rate for income 50000 is 0.25"
single.marg.tax.rate(income = 500000)

[1] "marginal tax rate for income 5e+05 is 0.396"

You could do what we just did by copying and pasting the ifelse() statement a number of times, or by
looking up values by hand. So why bother with this function? The function really shines when you’ve made a
mistake with one number in the brackets. If you make a mistake and you’ve done things by hand, you need to
check every individual decision you made. If you made a function, you re-code the function and you are done.

B.3. A function in a separate file
Sometimes you build a function that you would like to use in multiple programs. If you’d like to do this, you
can put your R function in its own .R file.

For example, I put a variant of the summer function we created above in a separate new R file, and saved it
as summer2_func.R (don’t use dots in the file name, except for the .R extension). My file looks like
summer2 <- function(x,y,z){
x^y + z

}

I can now call this function and get a result:
source("H:/pppa_data_viz/2018/tutorials/lecture12/summer2_func.R")
summer2(x = 5, y = 3, z = 1)

[1] 126

4

C. Other Function Argument Basics
In this section, we discuss more features of function arguments: how they work, how you name them, and
setting defaults.

C.1. More on function arguments
Suppose that we would like to run the function summmer2, but we don’t want to add anything to xy (what
the z variable does).

Let’s try to run it two ways:
summer2(x = 5, y = 3, z = 0)

[1] 125

This one runs, and properly gives us 53 + 0 = 45.

Now let’s try
summer2(x = 5, y = 3)

This one should give an error message. Why? R is trying to evaluation xˆy + z, but can’t find a value for z –
so it breaks.

To make sure you understand why R is breaking, look at the following example:
summer3 <- function(x,y,z){
x^y

}

summer3(x = 5, y = 3)

[1] 125

This does not generate an error. The homework asks you why, even without a value for z.

Note that you can also put R objects into a function call. Let’s let natl.mn.income be $53,719, which is the
2014 US mean income. We’ll then use this object in the summer function call.
natl.mn.inc <- 53719
summer(x = natl.mn.inc,y = 1)

[1] 53719

C.2. Defaults
One way to avoid the error we have in section C.1. from calling summer2(5,3) would be to set a default
value for z. Let us set the default value for z as 0.
summer4 <- function(x, y, z = 0){
x^y + z

}

summer4(x = 5, y = 3)

[1] 125

Now if you don’t specify a value for z, R assumes that it is zero. If you do specify a value, that value replaces
zero.

5

C.3. Calling the right type of variable
You should also be careful that the type of input argument you give to the function matches how the function
will use that argument.

The text below yields an error:
summer(x = "fred", y = "ted")

Explain why in homework question 3.

D. What the function outputs
Sometimes you’d like a function to just calculate something and print the result to the screen. Other times,
it’s helpful to have a function return something to you that you can use in the rest of the code. For example,
suppose we’d like to use the marginal tax rate that the function single.marginal.tax.rate creates.

Can I work with this new marginal tax rate in the rest of the code?
single.marg.tax.rate(income = 500000)

taxes.paid <- (500000 - 418401)*mr

This second command gives an eror. Why is this? Didn’t we just create mr in this function? Why doesn’t
this object now exist?

This brings up a key element of functions. Everything that you create in the function is “local” to the function
unless you specifically tell R you want to take it out of the function. To tell R to take something out of the
function, you need to “return” the value. “Returning” the value means taking something that exists just in
the function and making it exist in the rest of the code as well. We will learn how to do this in this section.

As an aside, when you write mr in plain R code, R will print the value of mr. When you write mr inside a
function, R doesn’t print the value of mr to the console. To see the value of mr, you need to write print(mr).
I also illustrate this point in the code below.

Running our original function again, we see that just running it in plain code delivers the marginal tax rate
to the console.
single.marg.tax.rate(income = 500000)

[1] "marginal tax rate for income 5e+05 is 0.396"

Making the function deliver something to a new object prints nothing, but gives no error.
out <- single.marg.tax.rate(income = 500000)

[1] "marginal tax rate for income 5e+05 is 0.396"

Let’s look at the new object:
out

[1] "marginal tax rate for income 5e+05 is 0.396"

It’s a text string! Which is the last thing the function did.

If we want the marginal tax rate as a number, we need to modify the function. Let’s make a new function
called single.marg.tax.rate.v2.
single.marg.tax.rate.v2 <- function(income){
mr <-

ifelse(income < 9325,0.10,
ifelse(income < 37950, 0.15,

6

ifelse(income < 91500, 0.25,
ifelse(income < 191650, 0.28,

ifelse(income < 416700, 0.33,
ifelse(income < 418400, 0.35, 0.396))))))

print(paste0("marginal tax rate for income ",income, " is ", mr))
mr

}

Let’s now run the function, and also put its output into out2.
single.marg.tax.rate.v2(income = 500000)

[1] "marginal tax rate for income 5e+05 is 0.396"

[1] 0.396
out2 <- single.marg.tax.rate.v2(income = 500000)

[1] "marginal tax rate for income 5e+05 is 0.396"
out2

[1] 0.396

This output is now a number, since listing mr is the last thing the function did. We can now use out2 in our
main program. Below I calculate the taxes paid, for someone earning $500,000, on income above $418,401.
(This person does not pay the marginal tax rate of 39.6 on all of their income – just income above $418,401.
For income between $416,701 and $418,401, the person pays a rate of 35 percent. Below that – from about
$200,000 to $400,000 they pay 33 percent.)
taxes.paid <- (500000 - 418401)*out2
taxes.paid

[1] 32313.2

E. Functions for doing things with dataframes
To illustrate the value of functions, let’s automate some repetitive operations. A good practice when building
a function is to write out one instance of what you’d like to do in plain code. Then work on the function that
automates it. You can write the function directly, but this is best for when you are quite comfortable with
functions.

E.1. Load DC crash data
Begin by loading the csv with crashes in DC, found here.

You can do this in a bunch of different ways. Here are two alternatives. The first is to download the
spreadsheet, read it into R, and find out what variables this dataframe has. I’ve done this already, and to be
sure you’re using the same data, you can use the data I downloaded and find it here.

Here is the code to read in the csv file and find the names of the variables.
crashes <- read.csv("H:/pppa_data_viz/2021/tutorial_data/tutorial_06/20210221_Crashes_in_DC.csv")

The second way to grab the data is by using the API. Grab the GeoJSON format data and get rid of the
spatial component.
load the required library
require(geojsonsf)

7

http://opendata.dc.gov/datasets/crashes-in-dc
http://www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2021/subpages/handouts/tutorial_data/tutorial_06/2021021_Crashes_in_DC.csv

Loading required package: geojsonsf
require(tidyverse)

Loading required package: tidyverse

-- Attaching packages --------------------------------------- tidyverse 1.3.0 --

v ggplot2 3.3.2 v purrr 0.3.4
v tibble 3.0.4 v dplyr 1.0.2
v tidyr 1.1.2 v stringr 1.4.0
v readr 1.4.0 v forcats 0.5.0

-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
require(sf)

Loading required package: sf

Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
name the location of the data
crashessjson <- "https://opendata.arcgis.com/datasets/70392a096a8e431381f1f692aaa06afd_24.geojson"
load the geojson as a sf
crashessf <- geojson_sf(crashessjson)
make a copy of the dataframe
crashesnosf <- crashessf
get rid of the geometry
st_geometry(crashesnosf) <- NULL

I am using a file that was last updated August 12, 2020.

E.2. Understand the data
Before we get started on iterative programming, let’s first take a look at this dataframe to understand how
it’s set up and what variables it has.
str(crashes)

'data.frame': 244418 obs. of 60 variables:
$ ï..X : num -77 -77 -77 -76.9 -76.9 ...
$ Y : num 38.9 38.9 38.9 38.9 38.9 ...
$ OBJECTID : int 190508290 190508291 190508292 190508293 190508294 190508295 190508296 190508297 190508298 190508299 ...
$ CRIMEID : int 28645003 28645013 28644550 28644553 28644582 28644608 28644614 28644616 28644619 28644623 ...
$ CCN : chr "21002328" "21002815" "21002323" "21002335" ...
$ REPORTDATE : chr "2021/01/07 03:52:24+00" "2021/01/07 04:11:09+00" "2021/01/06 06:32:00+00" "2021/01/06 07:37:24+00" ...
$ ROUTEID : chr "0" "0" "0" "0" ...
$ MEASURE : num 0 0 0 0 0 0 0 0 0 0 ...
$ OFFSET : num 0.68 4.19 2.89 3.53 5.3 ...
$ STREETSEGID : int NA NA NA NA NA NA NA NA NA NA ...
$ ROADWAYSEGID : int NA NA NA NA NA NA NA NA NA NA ...
$ FROMDATE : chr "2021/01/05 05:00:00+00" "2021/01/06 05:00:00+00" "2021/01/05 05:00:00+00" "2021/01/06 05:00:00+00" ...
$ TODATE : chr "1970/01/01 00:00:00+00" "1970/01/01 00:00:00+00" "1970/01/01 00:00:00+00" "1970/01/01 00:00:00+00" ...
$ MARID : int 26775 46921 313187 289486 9414 239363 296206 228314 330694 24455 ...
$ ADDRESS : chr "411 FRANKLIN STREET NE" "2452 ALABAMA AVENUE SE" "NAYLOR ROAD SE & GOOD HOPE ROAD SE" "257 56TH PL NE" ...
$ LATITUDE : num 38.9 38.9 38.9 38.9 38.9 ...
$ LONGITUDE : num -77 -77 -77 -76.9 -76.9 ...

8

$ XCOORD : num 400000 402577 402765 406915 406554 ...
$ YCOORD : num 139724 131617 132490 136124 134894 ...
$ WARD : chr "Ward 5" "Ward 8" "Ward 7" "Ward 7" ...
$ EVENTID : chr "{F2770210-F512-4A6D-A158-F175A90BFF55}" "{58C6F0CB-0FE3-495C-954C-B9D7424A2587}" "{1605EB86-5B6E-4287-8E15-E9FCE7A02AB5}" "{6E3D648B-27D6-401B-A853-53F546CC9228}" ...
$ MAR_ADDRESS : chr "411 FRANKLIN STREET NE" "2452 ALABAMA AVENUE SE" "2720 GOOD HOPE ROAD SE" "257 56TH PLACE NE" ...
$ MAR_SCORE : num 200 200 200 200 200 200 200 200 200 200 ...
$ MAJORINJURIES_BICYCLIST : int 0 0 0 0 0 0 0 0 0 0 ...
$ MINORINJURIES_BICYCLIST : int 0 0 0 0 0 0 0 0 0 0 ...
$ UNKNOWNINJURIES_BICYCLIST : int 0 0 0 0 0 0 0 0 0 0 ...
$ FATAL_BICYCLIST : int 0 0 0 0 0 0 0 0 0 0 ...
$ MAJORINJURIES_DRIVER : int 0 0 0 0 0 0 0 0 0 0 ...
$ MINORINJURIES_DRIVER : int 0 0 0 0 0 0 0 0 0 0 ...
$ UNKNOWNINJURIES_DRIVER : int 0 0 0 0 1 1 0 0 0 0 ...
$ FATAL_DRIVER : int 0 0 0 0 0 0 0 0 0 0 ...
$ MAJORINJURIES_PEDESTRIAN : int 0 0 0 0 0 0 0 0 0 0 ...
$ MINORINJURIES_PEDESTRIAN : int 0 0 0 0 0 0 0 0 0 0 ...
$ UNKNOWNINJURIES_PEDESTRIAN: int 0 0 0 0 0 0 0 0 0 0 ...
$ FATAL_PEDESTRIAN : int 0 0 0 0 0 0 0 0 0 0 ...
$ TOTAL_VEHICLES : int 2 2 2 2 2 2 1 2 2 2 ...
$ TOTAL_BICYCLES : int 0 0 0 0 0 0 0 0 0 0 ...
$ TOTAL_PEDESTRIANS : int 0 0 0 0 0 0 0 0 0 0 ...
$ PEDESTRIANSIMPAIRED : int 0 0 0 0 0 0 0 0 0 0 ...
$ BICYCLISTSIMPAIRED : int 0 0 0 0 0 0 0 0 0 0 ...
$ DRIVERSIMPAIRED : int 0 0 0 0 0 0 0 0 0 0 ...
$ TOTAL_TAXIS : int 0 0 0 0 0 0 0 0 0 0 ...
$ TOTAL_GOVERNMENT : int 0 0 0 0 0 0 0 1 1 0 ...
$ SPEEDING_INVOLVED : int 0 0 0 0 0 0 0 0 0 0 ...
$ NEARESTINTROUTEID : chr "0" "0" "0" "0" ...
$ NEARESTINTSTREETNAME : chr "Not Available" "Not Available" "Not Available" "Not Available" ...
$ OFFINTERSECTION : num 0 0 0 0 0 0 0 0 0 0 ...
$ INTAPPROACHDIRECTION : chr "East" "East" "East" "East" ...
$ LOCATIONERROR : chr "" "" "" "" ...
$ LASTUPDATEDATE : chr "1970/01/01 00:00:00+00" "1970/01/01 00:00:00+00" "1970/01/01 00:00:00+00" "1970/01/01 00:00:00+00" ...
$ MPDLATITUDE : num 38.9 38.9 38.9 38.9 38.9 ...
$ MPDLONGITUDE : num -77 -77 -77 -76.9 -76.9 ...
$ MPDGEOX : num 400011 402558 402765 406934 406569 ...
$ MPDGEOY : num 139724 131632 132490 136119 134892 ...
$ BLOCKKEY : chr "fca23fb057e1e2de954cca8f83e116d8" "c039dd96253c7f4db9f26228fe93ec26" "ff7123e74b15ab7c31391d7d741a5f23" "bff0339794dca31dc5c26dce0dcb5ead" ...
$ SUBBLOCKKEY : chr "a4be23d5c0dc651475ba3a0bb0517308" "c039dd96253c7f4db9f26228fe93ec26" "ff7123e74b15ab7c31391d7d741a5f23" "bff0339794dca31dc5c26dce0dcb5ead" ...
$ FATALPASSENGER : int 0 0 0 0 0 0 0 0 0 0 ...
$ MAJORINJURIESPASSENGER : int 0 0 0 0 0 0 0 0 0 0 ...
$ MINORINJURIESPASSENGER : int 0 0 0 0 0 0 0 0 0 0 ...
$ UNKNOWNINJURIESPASSENGER : int 0 0 0 0 0 0 0 0 0 0 ...

E.3. Create new output via a function with one input
Suppose we’d like to run a couple of commands on multiple variables. This is something we can do with a
function. Let’s suppose that we’d like to * output summary statistics using summary() * look at number of
missings with table() * look at distribution of outcomes with table()

Here’s an example of this code for the variable TOTAL_VEHICLES
summary(crashes$TOTAL_VEHICLES)

Min. 1st Qu. Median Mean 3rd Qu. Max.

9

0.000 2.000 2.000 1.969 2.000 16.000
table(crashes$TOTAL_VEHICLES)

##
0 1 2 3 4 5 6 7 8 9 10
1279 30871 192284 15779 3111 734 215 92 22 18 2
11 12 13 14 16
4 4 1 1 1
table(is.na(crashes$TOTAL_VEHICLES))

##
FALSE
244418

Now suppose we’d like to do this for all the variable that start with “TOTAL.” We’ll make a function to do
this. But first let’s start with a function that does not work. I do this to point out how you need to adjust
your coding to make a function work.

You can try to run this, and it should generate an error:
sumup <- function(varin){

print(summary(crashes$varin))
print(table(crashes$varin))
print(table(is.na(crashes$varin)))

}
sumup(varin = TOTAL_VEHICLES)

Length Class Mode
0 NULL NULL
< table of extent 0 >
< table of extent 0 >

When you write crashes$varin, R looks for a variable named varin – it doesn’t replace varin with the
text you’re passing in.

Instead, you need to write the variables inside a double bracket [[]], rather than the dollar sign notation.
Here R does know to replace the varin marker with its value.
sumup2 <- function(varin){

print(paste0("inside the function for variable ",varin))
print(summary(crashes[[varin]]))
print(table(crashes[[varin]]))
print(table(is.na(crashes[[varin]])))

}
sumup2(varin = "TOTAL_VEHICLES")

[1] "inside the function for variable TOTAL_VEHICLES"
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 2.000 2.000 1.969 2.000 16.000
##
0 1 2 3 4 5 6 7 8 9 10
1279 30871 192284 15779 3111 734 215 92 22 18 2
11 12 13 14 16
4 4 1 1 1
##
FALSE
244418

10

Now that we know the function works, we can use it for other variables:
sumup2(varin = "MAJORINJURIES_DRIVER")

[1] "inside the function for variable MAJORINJURIES_DRIVER"
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.07069 0.00000 7.00000
##
0 1 2 3 4 5 7
229310 13099 1879 106 20 3 1
##
FALSE
244418
sumup2(varin = "MINORINJURIES_DRIVER")

[1] "inside the function for variable MINORINJURIES_DRIVER"
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 0.000 0.000 0.173 0.000 11.000
##
0 1 2 3 4 5 6 11
207036 32865 4197 281 30 6 2 1
##
FALSE
244418
sumup2(varin = "TOTAL_BICYCLES")

[1] "inside the function for variable TOTAL_BICYCLES"
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.01775 0.00000 2.00000
##
0 1 2
240122 4254 42
##
FALSE
244418
sumup2(varin = "TOTAL_PEDESTRIANS")

[1] "inside the function for variable TOTAL_PEDESTRIANS"
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.05604 0.00000 12.00000
##
0 1 2 3 4 5 6 7 8 12
231627 12072 604 72 29 8 3 1 1 1
##
FALSE
244418

Now we’ve generated summary statistics for a set of variables. If we wanted to add another summary statistic,
we could just modify the function.

E.4. Create new output via a function with one input
But what we’ve just done doesn’t really illustrate the power of functions because we are just changing one
element each time we’re going through the function. If you’re familiar with loops in other programming, this
is doing what a loop does.

11

A function can iterate through two (or more) conditions, which makes it more powerful than a loop. Let’s
use that power to look at the summary statistics we already have, but for day and night separately.

Unfortunately, this dataframe doesn’t have day and night – but it does have a a time from which we can
create a day and night variable
crashes$time <- substr(x = crashes$REPORTDATE, start = 12, stop = 13)
table(crashes$time)

##
00 01 02 03 04 05 06 07 08 09 10
9549 8594 9121 7558 6354 101851 3813 3408 3306 3396 3069
11 12 13 14 15 16 17 18 19 20 21
3094 3684 5210 6730 7262 6999 7418 7701 6974 5996 7040
22 23
7959 8332
#2021/01/07 03:52:24+00
#1234567890123456789012

I look at the distribution of times here and I’m a little suspicious – does the evening shift end at 5 am? I
don’t believe that most accidents occur at 5 am. But for the purposes of this assignment, we’ll just continue
and create a variable that is day or night.
crashes$day <- ifelse(test = as.numeric(crashes$time) >= 6 & as.numeric(crashes$time) <= 18,

yes = 1,
no = 0)

table(crashes$day)

##
0 1
179328 65090

Now we have a variable that is equal to 1 if the accident took place during the day and 0 if the accident took
place at night.

Let’s use this new variable to re-assess our previous analysis. Now our function will make data subsets for
day and or night and re-do the same analysis.
sumup3 <- function(varin, daytime){

c2 <- crashes[which(crashes$day == 1),]
print(paste0("inside the function for variable ",varin, " when day == ",daytime))
print(summary(c2[[varin]]))
print(table(c2[[varin]]))
print(table(is.na(c2[[varin]])))

}
sumup3(varin = "TOTAL_VEHICLES", daytime = 1)

[1] "inside the function for variable TOTAL_VEHICLES when day == 1"
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 2.000 2.000 1.959 2.000 16.000
##
0 1 2 3 4 5 6 7 8 9 10 11 12
255 9541 49774 4241 918 243 69 33 5 6 1 1 1
13 16
1 1
##
FALSE

12

65090

This general principle of referring to variables in double brackets works in all Base R commands, and the
general principles of functions work for all R commands.

However, there are some strange nuances with tidyverse commands, as we’ll explore in the next section.

F. Functions and tidyverse

In this step, we explain why it is that tidyverse commands are tricky, and then we turn to how to deal with
this, and then how to make functions for graphs.

F.1. Why tidyverse is Tricky
Now we turn to how to use functions with tidyverse commands. One of the things that makes tidyverse
commands pleasant to use relative to Base R is the ability to dispense with the full dataframe name for
variables.

For example, compare Base R’s way of subsetting with tidyverse’s:
base R
dayonly <- crashes[which(crashes$day == 1),]

tidyverse
dayonly <- filter(.data = crashes, day == 1)

You probably find the filter way easier to understand. It is, but it is not easier to put in a function.

Here’s why. It seems that this kind of function, where we tell R some input variables, should work.
graphit <- function(xvar,namer1){

ggplot() +
geom_histogram(data = crashes,

mapping = aes(x= xvar)) +
labs(title = paste0("Histogram of ",namer1),

x = namer1)
}

But when you test it, it does not:
graphit(xvar = WARD,

namer1 = "Ward")

This is because of the non-standard way in which all tidyverse packages evaluate R code. For more on that,
see this document.

F.2. Fixes
However, there is a happy fix (many thanks to this post). Put the variables you want to refer to inside double
curly braces: {{}}. Here is an example. Notice that when we call the function, the variable name is not in
quotes, as it was above. Here it is unquoted, as it generally is in tidyverse commands.
graphit2 <- function(xvar,namer1){

ggplot() +
geom_histogram(data = crashes,

mapping = aes(x = {{xvar}})) +
labs(title = paste0("Histogram of ",namer1),

x = namer1)

13

https://www.onceupondata.com/2018/07/06/ggplot-tidyeval/
https://www.infoworld.com/article/3410295/how-to-write-your-own-ggplot2-functions-in-r.html

}
graphit2(xvar = TOTAL_VEHICLES, namer1 = "total vehicles involved in crash")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

0

50000

100000

150000

200000

0 5 10 15
total vehicles involved in crash

co
un

t

Histogram of total vehicles involved in crash

You should now have enough basics to be able to write functions on your own. I strongly encourage you
to practice using them. They streamline both code and thinking, and they are the key to programming
efficiently and reliably.

G. Homework
1. In section B.1., why do

summer(x = 1, y = 2)
summer(x = 2, y = 1)

not yield the same output? Write in math what each one does.

2. In section C.1., why does the call summer3(x = 5, y = 3) return a value when summer2(x = 5, y =
3) does not?

3. In C.2., why does summer(x = "fred", y = "ted") yield an error?

4. Fix the function in part E to remove the graph background.

5. Make a function that automates a graphics operation of interest to you, using a dataset not from this
tutorial.

14

	A. What is a function?
	B. A first function
	B.1. A very first function
	B.2. A Slightly More Complicated Function
	B.3. A function in a separate file

	C. Other Function Argument Basics
	C.1. More on function arguments
	C.2. Defaults
	C.3. Calling the right type of variable

	D. What the function outputs
	E. Functions for doing things with dataframes
	E.1. Load DC crash data
	E.2. Understand the data
	E.3. Create new output via a function with one input
	E.4. Create new output via a function with one input

	F. Functions and tidyverse
	F.1. Why tidyverse is Tricky
	F.2. Fixes

	G. Homework

