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Welcome back to maps! Today is the second of two mapping tutorials. We learn how to make

• choropleth maps
• legends for those maps
• dot density maps

We also learn some useful R programming, including

• pivot_wider(): a command to make long data wide
• how to annotate a chart in R

A. Load Packages and Data
We are using a set of packages that you should have already used in the past. Here I am loading them with
library() which installs the package if you do not already have it.
library(tidyverse)

## -- Attaching packages ------------------------------------------------------------------------------- tidyverse 1.3.0 --

## v ggplot2 3.2.1 v purrr 0.3.3
## v tibble 2.1.3 v dplyr 0.8.4
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## v tidyr 1.0.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.4.0

## -- Conflicts ---------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(sf)

## Warning: package 'sf' was built under R version 3.6.3

## Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1

Like the previous map tutorial class, we’ll use crime data. See the Tutorial 5, section D.1. to re-load these
data if you need.
# we'll use the crime data again
c2018 <- st_read("H:/pppa_data_viz/2019/tutorial_data/lecture05/Crime_Incidents_in_2018/Crime_Incidents_in_2018.shp")

## Reading layer `Crime_Incidents_in_2018' from data source `H:\pppa_data_viz\2019\tutorial_data\lecture05\Crime_Incidents_in_2018\Crime_Incidents_in_2018.shp' using driver `ESRI Shapefile'
## Simple feature collection with 33645 features and 23 fields
## geometry type: POINT
## dimension: XY
## bbox: xmin: -77.11232 ymin: 38.81467 xmax: -76.91002 ymax: 38.9937
## geographic CRS: WGS 84

To make these data more manageable, we limit ourselves to the very serious crimes of burglary and homicide.
# make smaller dataframe
vc2018 <- c2018[which(c2018$OFFENSE == "HOMICIDE" | c2018$OFFENSE == "BURGLARY"),]
names(vc2018)

## [1] "CCN" "REPORT_DAT" "SHIFT" "METHOD" "OFFENSE"
## [6] "BLOCK" "XBLOCK" "YBLOCK" "WARD" "ANC"
## [11] "DISTRICT" "PSA" "NEIGHBORHO" "BLOCK_GROU" "CENSUS_TRA"
## [16] "VOTING_PRE" "LATITUDE" "LONGITUDE" "BID" "START_DATE"
## [21] "END_DATE" "OBJECTID" "OCTO_RECOR" "geometry"

We will do all geographic analysis for today’s tutorial at the block group level, so load the block group map
you used in Section D.1 of Tutorial 5.
# load block group map for dc only
bg2010 <- st_read("H:/pppa_data_viz/2019/tutorial_data/lecture05/Census_Block_Groups__2010/Census_Block_Groups__2010.shp")

## Reading layer `Census_Block_Groups__2010' from data source `H:\pppa_data_viz\2019\tutorial_data\lecture05\Census_Block_Groups__2010\Census_Block_Groups__2010.shp' using driver `ESRI Shapefile'
## Simple feature collection with 450 features and 54 fields
## geometry type: POLYGON
## dimension: XY
## bbox: xmin: -77.11976 ymin: 38.79165 xmax: -76.9094 ymax: 38.99581
## geographic CRS: WGS 84
names(bg2010)

## [1] "OBJECTID" "TRACT" "BLKGRP" "GEOID" "P0010001"
## [6] "P0010002" "P0010003" "P0010004" "P0010005" "P0010006"
## [11] "P0010007" "P0010008" "OP000001" "OP000002" "OP000003"
## [16] "OP000004" "P0020002" "P0020005" "P0020006" "P0020007"
## [21] "P0020008" "P0020009" "P0020010" "OP00005" "OP00006"
## [26] "OP00007" "OP00008" "P0030001" "P0030003" "P0030004"
## [31] "P0030005" "P0030006" "P0030007" "P0030008" "OP00009"
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## [36] "OP00010" "OP00011" "OP00012" "P0040002" "P0040005"
## [41] "P0040006" "P0040007" "P0040008" "P0040009" "P0040010"
## [46] "OP000013" "OP000014" "OP000015" "OP000016" "H0010001"
## [51] "H0010002" "H0010003" "SHAPE_Leng" "SHAPE_Area" "geometry"

B. Create a block-group level shapefile with crime data
To make block group maps of crime, we need a block group level simple feature with crime information.
What we have now is a block group level simple feature (bg2010) and a crime dataset that is at the level of
the individual crime (vc2018). To get one spatial dataframe with crime information, we need to (i) modify
the crime dataset to make it block group level and then (ii) add these aggregated crime data to the simple
feature.

Note that this is different than what we did in Tutorial 5. In Tutorial 5, we found the block group in which
each crime point was located, and our final product was a crime level dataframe. In contrast, our goal today
is a block group level dataframe.

We begin by figuring out the block group in which each crime occurs. In the interests of full disclosure, this
information is actually already in vc2018, but we are doing this so you know how to do it when you don’t
already have this helpful information in hand. We did something very similar in the previous map class, so
these steps should be somewhat of a review.

To make sure that all we are adding to the crime data is block group identification numbers, we create a
subset of the full block group map file and call this new dataframe bg2010.small. This dataframe has just
the tract and block group ids (recall, a block group id is the tract id plus the block group id – 7 digits in
total; if these data spanned counties, we would also need the state and county IDs). We then intersect the
crime data with this block group simple feature. This tells us, for each observation in vc2018, in which block
group it lies.
# find which crimes are in which block groups
# vc2010 actually already has the block group, but i want to be sure you can do this yourself
bg2010.small <- bg2010[,c("TRACT","BLKGRP")]
cbg <- st_intersection(vc2018,bg2010.small)

## although coordinates are longitude/latitude, st_intersection assumes that they are planar

## Warning: attribute variables are assumed to be spatially constant throughout all
## geometries
head(cbg)

## Simple feature collection with 6 features and 25 fields
## geometry type: POINT
## dimension: XY
## bbox: xmin: -77.0734 ymin: 38.90259 xmax: -77.05759 ymax: 38.91258
## geographic CRS: WGS 84
## CCN REPORT_DAT SHIFT METHOD OFFENSE
## 1826 18064713 2018-04-23T13:04:28.000Z DAY OTHERS BURGLARY
## 11452 18134729 2018-08-14T03:10:42.000Z MIDNIGHT OTHERS BURGLARY
## 26674 18042061 2018-03-15T16:09:21.000Z EVENING OTHERS BURGLARY
## 30745 18026424 2018-02-16T14:31:32.000Z DAY OTHERS BURGLARY
## 30750 18026435 2018-02-16T15:42:03.000Z EVENING OTHERS BURGLARY
## 23472 18136654 2018-08-17T04:38:28.000Z MIDNIGHT OTHERS BURGLARY
## BLOCK XBLOCK YBLOCK WARD ANC
## 1826 3100 - 3199 BLOCK OF K STREET NW 394626 137194 2 2E
## 11452 3036 - 3099 BLOCK OF M STREET NW 394737 137483 2 2E
## 26674 3000 - 3099 BLOCK OF N STREET NW 394778 137665 2 2E
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## 30745 2800 - 2899 BLOCK OF PENNSYLVANIA AVENUE NW 395005 137471 2 2E
## 30750 2800 - 2899 BLOCK OF PENNSYLVANIA AVENUE NW 395005 137471 2 2E
## 23472 3700 - 3799 BLOCK OF RESERVOIR ROAD NW 393634 138304 2 2E
## DISTRICT PSA NEIGHBORHO BLOCK_GROU CENSUS_TRA VOTING_PRE LATITUDE
## 1826 2 206 Cluster 4 000100 4 000100 Precinct 5 38.90258
## 11452 2 206 Cluster 4 000100 4 000100 Precinct 5 38.90519
## 26674 2 206 Cluster 4 000100 4 000100 Precinct 5 38.90683
## 30745 2 206 Cluster 4 000100 4 000100 Precinct 5 38.90508
## 30750 2 206 Cluster 4 000100 4 000100 Precinct 5 38.90508
## 23472 2 206 Cluster 4 000201 1 000201 Precinct 6 38.91258
## LONGITUDE BID START_DATE END_DATE
## 1826 -77.06195 GEORGETOWN 2018-04-23T10:56:35.000Z <NA>
## 11452 -77.06068 GEORGETOWN 2018-08-13T22:52:11.000Z 2018-08-14T00:19:42.000Z
## 26674 -77.06021 <NA> 2018-03-14T03:48:45.000Z 2018-03-14T03:49:12.000Z
## 30745 -77.05759 GEORGETOWN 2018-02-16T01:25:28.000Z 2018-02-16T02:30:15.000Z
## 30750 -77.05759 GEORGETOWN 2018-02-15T17:30:53.000Z 2018-02-16T08:15:53.000Z
## 23472 -77.07340 <NA> 2018-08-17T03:36:29.000Z 2018-08-17T03:46:04.000Z
## OBJECTID OCTO_RECOR TRACT BLKGRP geometry
## 1826 259183436 18064713-01 000100 4 POINT (-77.06196 38.90259)
## 11452 259193062 18134729-01 000100 4 POINT (-77.06068 38.9052)
## 26674 259240847 18042061-01 000100 4 POINT (-77.06021 38.90684)
## 30745 259245997 18026424-01 000100 4 POINT (-77.05759 38.90509)
## 30750 259246002 18026435-01 000100 4 POINT (-77.05759 38.90509)
## 23472 259224604 18136654-01 000201 1 POINT (-77.0734 38.91258)

Now we have a crime incident level simple feature (cbg) with block group information (TRACT,BLKGRP).
dim(cbg)

## [1] 1567 26

Note that this file has many more observations than the block group file with which we started. It bears
re-emphasizing that this file is at the crime incident level, not the block group level.

Now we are at the second step: create a block group level dataframe. First, we make the simple feature into
a dataframe by getting rid of all geometry information. Recall that since this is a incident-level dataframe,
the geometry is at the level of the incident, not the block group. We want the block group geometry, not the
point locations of crimes.
st_geometry(cbg) <- NULL

Next, we want to add up the crime-level dataframe to the block group level (this is one example of the type of
aggregation I’m asking you to do in your policy brief). We return to the pair of functions – group_by() and
summarize() – that we learned in previous classes. Refer back to the previous tutorials for explanations of
these. We check the number of observations after we summarize the data. It should have no more obsevations
than the number of block groups times two, since each block group and offense gets its own row. There may
be fewer observations than the number of block groups, since some block groups have no crime.
cbg2 <- group_by(cbg, TRACT, BLKGRP, OFFENSE)
cbg3 <- summarize(.data = cbg2, tot_crimes = n())
dim(cbg3)

## [1] 478 4

If you look at this this dataframe, it has the following variables
names(cbg3)

## [1] "TRACT" "BLKGRP" "OFFENSE" "tot_crimes"
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This is a “long” dataframe, where each observation is a block group and an incident type. Note that the
variable OFFENSE indicates the incident type and variable tot_crimes reports the number of incidents.

For the purposes of today’s tutorial, it is more useful to have a wide dataframe than a long one. A wide
dataframe will have one row per block group, and will have two variables for crimes – one for homicides and
one for burglaries.

For most ggplot purposes, a long dataframe is preferable. It is particularly useful if you want to show
different categories within one chart, such as categories within a histogram, or categories on a map.

As an aside, here is a little example of the same data, wide versus long. This is a wide dataframe. The unit
of observation here is the year, and we observe multiple variables for that unit – both baked goods muffins
and sugar cookies.

The kable() command below is just a way of printing the dataframe that makes it a little easier to read. You
don’t need to use this (it only works in R markdown), and you can substitute by just typing the dataframe
name to see what is going on.
data.wide <- data.frame(year = c(2001,2002,2003),

muffins = c(50,49,36),
sugar_cookies = c(100,200,300))

print("here are the wide data")

## [1] "here are the wide data"
kable(x = data.wide, format = "latex")

year muffins sugar_cookies
2001 50 100
2002 49 200
2003 36 300

What if we want to make these wide data long? Use pivot_longer(). Tell R which data you want to use
(data.wide), which variables you want to make long (cols = c("muffins","sugar_cookies")), what you
want the column that names the types to be called (names_to = "baked_goods_type") and what you want
the column that describes the values to be called (values_to = "num_baked_goods").
data.long <- pivot_longer(data = data.wide,

cols = c("muffins","sugar_cookies"),
names_to = "baked_goods_type",
values_to = "num_baked_goods")

print("here are the long data")

## [1] "here are the long data"
kable(x = data.long, format = "latex")

year baked_goods_type num_baked_goods
2001 muffins 50
2001 sugar_cookies 100
2002 muffins 49
2002 sugar_cookies 200
2003 muffins 36
2003 sugar_cookies 300

You can then go backwards with pivot_wider():
data.wide.again <- pivot_wider(data = data.long,

id_cols = c("year"),
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names_from = "baked_goods_type",
values_from = "num_baked_goods")

print("back to wide data")

## [1] "back to wide data"
kable(x = data.wide.again, format = "latex")

year muffins sugar_cookies
2001 50 100
2002 49 200
2003 36 300

Same data, different representations. Usually we prefer long data when using ggplot – just not today.

To transform our crime long dataframe into a wide one, we use a command called pivot_wider(). The basic
syntax of this command is
new.wide.df <- pivot_wider(data = long.dataframe,

id_cols = set of columns that uniquely id obs,
names_from = column from which new variable name comes,
values_from = which column(s) to get values from)

In our case, tract + block group + offense uniquely identify observations in cbg3. We would like R to take
the values to make wide from the variable OFFENSE. Before starting, we know that the final dataframe should
have no more than the number of block groups in our data, which we know from above is 450 (look at the
output when you first loaded bg2010).

Putting this all together, we write
cbg4 <- pivot_wider(data = cbg3,

id_cols = c("TRACT","BLKGRP","OFFENSE"),
names_from = OFFENSE,
values_from = tot_crimes)

As always, let’s check things.
head(cbg4)

## # A tibble: 6 x 4
## # Groups: TRACT, BLKGRP [1,074]
## TRACT BLKGRP BURGLARY HOMICIDE
## <fct> <fct> <int> <int>
## 1 000100 2 1 NA
## 2 000100 3 1 NA
## 3 000100 4 5 NA
## 4 000201 1 3 NA
## 5 000202 1 2 NA
## 6 000202 2 2 NA
dim(cbg4)

## [1] 387 4

This new dataframe now has one column that reports the number of homicides, and one column that reports
the number of burglaries.

The dataframe has 387 rows – fewer than the 450 block groups that we know exist in DC. Fewer rows means
that there are block groups without crimes, and this is ok. (We’ll have to do some fixes later, but this is
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logically ok.) If there were more than 450 rows, you would immediately know that something is wrong, since
we should never exceed the true number of block groups in the city.

Now we have in hand a non-spatial block group file with information on crime levels. It is non-spatial in the
sense that it has plenty of information about each block group, but contains no geography. So to map things,
we need to add the block group geography. We do this by merging the data we just created (cbg4) with our
nearly-original block group shape file(bg2010.small). We can do with with the basic merge command that
we have used before.

Before you conduct a merge, you should always know – or at least have a ballpark sense – of what the number
of observations in the final file should be. What is that number here?

Now check the final file. Does it have the expected number of observations? If no, something has gone wrong.
# merge each back into the block groups file so we have all block groups with shapes
bg2010.c2 <- merge(x = bg2010.small, y = cbg4, by = c("TRACT","BLKGRP"), all = TRUE)
dim(bg2010.c2)

## [1] 450 5

We find that this file has 450 observations. This is the original number of block groups we started with and is
good news.

C. Make quartiles for the map
Now that we have these data together, we need to think about how to display them on a map. Recall that
people have a hard time remembering more than four colors. This limitation strongly suggests that maps
should show things like quartiles and terciles of a distribution (and not deciles!).

While we have the full distribution of crime incidents, we don’t know to which quartile of incidents each block
group belong. We need to know this so we can tell R to plot the quartile. This is important – we don’t give
R the number of burglaries, for example. Instead, we tell R the quartiles directly.

To find quartiles, we use a R dplyr function called ntile(), which asks you for the input dataframe and
variable, and then the number of groups into which you’d like to divide the data in roughly equal numbers.

Specifically, this function has the following syntax
df$new.variable <- ntile(x = df$continuous.var,

n = number of categories to make)

While we are finding quartiles (n = 4), you can use this function to find any grouping you’d like – deciles
(1/10, or n = 10), centiles (1/100, or n = 100), and beyond.

We implement this function for the burglary variable:
bg2010.c2$burg.quartile <- ntile(x = bg2010.c2$BURGLARY,

n = 4)

As always, check the outout. A first test that this function is behaving properly uses the table() command.
All observations should be in a quartile and each quartile should have roughly the same number of observations.
table(bg2010.c2$burg.quartile)

##
## 1 2 3 4
## 96 95 95 95

Each quartile has roughly the same number of observations. However, 95*3 + 96 < 400 – this is a hint that
something is wrong, since we don’t have a quartile for each block group (remember, about 450 block groups).
You’ll see how this problem plays out in the steps ahead.
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D. Choropleth maps
We now have all the data in hand to make a choropleth map: geographic areas and a variable with quartiles
to plot. As we did the last mapping tutorial, we will use geom_sf(). This class we’ll also add the fill=
option to plot our variable of interest.

D.1. Burglaries
We begin by plotting quartiles of burglaries (burg.quartile).
burg <- ggplot() +

geom_sf(data = bg2010.c2,
mapping = aes(fill = burg.quartile))

burg
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1
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3

4
burg.quartile

This is a good first step. But this is far from the last step, because there are a number of things we should
quite dislike about it

• some block groups have no crime information and are in grey
• the legend has a graduated color scale, but the data are categorical
• low numbers are darker than high ones – attention should be directed to the darkest color, or the higher

crime areas
• the plot background is useless and distracting

Let’s fix these and see how things look. First, consider what a block group with a NA value for burglaries
means. In this case a NA block group is a block group with no burglaries. Because of this, we make block
groups with NA values zero. Changing NA values to zero is ok in this case. It is not, however, generally the
case that you can set NA values to zero. In many cases NA means that we don’t know what the value is.

8



However, in this particular case, we know that block groups with NA don’t have crime, and that their true
number of reported burglaries is really zero.

Below, we use ifelse() to re-assign NA values to zero. We then check our work using table() to see if all
observations now have a value.
# lets fix
# make NA values zero
# test before
dim(bg2010.c2)

## [1] 450 6
table(bg2010.c2$burg.quartile,bg2010.c2$BURGLARY)

##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 20 23
## 1 92 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 79 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 38 48 9 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 20 28 14 6 5 7 1 2 2 5 2 1 1 1
bg2010.c2$BURGLARY <- ifelse(test = is.na(bg2010.c2$BURGLARY) == TRUE,

yes = 0,
no = bg2010.c2$BURGLARY)

# test afterward
table(bg2010.c2$burg.quartile,bg2010.c2$BURGLARY)

##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 20 23
## 1 0 92 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 79 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 38 48 9 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 20 28 14 6 5 7 1 2 2 5 2 1 1 1

Note how the second table() output is different from the first – zeros are now a part of the distribution.

The table() output after we convert NAs to zeros shows that all one-burglary block groups are in the first
quartile, along with a few two-burglary block groups. Two- and three-burglary block groups are in the second
quartile, and the top quartile contains block groups with 5 to 23 burglaries.

To address the problem of the graduated color legend, let’s create a color scale. I got these hex colors from
www.colorbrewer2.org; we discuss this website in greater detail in the lecture. I create a vector (a list of
values) that I can later use in the chart. Recall the c() notation for making a column (or vector).
# make color ramp
# see
four.colors <- c("#edf8e9","#bae4b3","#74c476","#238b45")

To put these colors in the graph, we use the scale_fill_manual() command, which will put in the colors in
the order we have specified in four.colors. If you don’t like the order that you get, you can either change
the factor levels, or change the order of the colors.

Finally, we tell R that we want a discrete set of colors (e.g., 1, 2, 3, 4), rather than a continuous legend (e.g,
1 to 4 with all numbers in between). We do this by make the quartiles variable a factor. We can do this
by creating a new variable (using as.factor()), or by just writing as.factor() around the variable in the
geom_sf() command.

Now we try to make a graph with all of these fixes: without the NA values, without the plot background,
and with better colors for discrete categories. Note that we set both the panel and the plot background to be
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transparent.
# make graph with categorical legend
## still need to get rid of NAs and make borders white
burg <- ggplot() +

geom_sf(data = bg2010.c2,
mapping = aes(fill = as.factor(burg.quartile), color = "white")) +

scale_fill_manual(values = four.colors) +
theme(panel.background = element_rect(fill = "transparent",colour = NA),

plot.background = element_rect(fill = "transparent",colour = NA))
burg
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Some things are fixed in this revision, but we still have NAs. Why? Recall that we defined the quartiles
before we set the NAs to zero – and the above graph is plotting those original quartiles. Mistake!

We fix this mistake by re-defining the quartiles with the variable where NAs are coded to zero. We do this
below:
## for first problem: b/c quartiles were defined before we fixed the NAs to zeros
## lets try a second round of making quartiles
bg2010.c2$burg.quartile2 <- ntile(bg2010.c2$BURGLARY, 4)
table(bg2010.c2$burg.quartile2)

##
## 1 2 3 4
## 113 112 113 112

Note that this number of observations should look different than before.
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We also have an odd red border around the blockgroups. Looking carefully, this is because the color=
command was inside the aes() command – where it should not have been. Fixing both of these issues, we get
# another attempt
# the -white- was inside the aes call, which it should not have been
# using the new quartiles solves the previous problem
burg2 <- ggplot() +

geom_sf(data = bg2010.c2,
mapping = aes(fill = as.factor(burg.quartile2)),
color = "white") +

scale_fill_manual(values = four.colors) +
theme(panel.background = element_rect(fill = "transparent",colour = NA),

plot.background = element_rect(fill = "transparent",colour = NA))
burg2
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This is not perfect, but it is good enough for now.

D.2. Homicides
Let’s repeat this exercise for homicides, of which there are (thankfully) many fewer than burglaries. First we
set NAs equal to zero and then calculate quartiles (skipping the previous mistake!).
## look at homicide plot
bg2010.c2$HOMICIDE <- ifelse(is.na(bg2010.c2$HOMICIDE) == TRUE,0,bg2010.c2$HOMICIDE)
bg2010.c2$hom.quartile2 <- ntile(bg2010.c2$HOMICIDE, 4)
table(bg2010.c2$hom.quartile2)

##
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## 1 2 3 4
## 113 112 113 112

Plotting the same graph as before but for homicides, it looks like this
# another attempt
homc <- ggplot() +

geom_sf(data = bg2010.c2,
mapping = aes(fill = as.factor(hom.quartile2)),
color = "white") +

scale_fill_manual(values = four.colors) +
theme(panel.background = element_rect(fill = "transparent",colour = NA),

plot.background = element_rect(fill = "transparent",colour = NA))
homc
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The legend on this graph is very misleading. take a look at the number of homicides by quartile. The
homework asks you to explain why it is so misleading and to make another graph that is not as misleading.

E. Legends that Show Distribution
I have come to believe that all choropleth maps should be accompanied by a histogram legend. This is
because, as we discuss in lecture, the histogram legend ameliorates part of the worst aspects of a choropleth
map, namely the unconscious equation of size and value. It also helps us see the full distribution of the
variable in a way that the map cannot.

This is a great example of a choropleth map with a histogram legend:
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Figure 1: Choropleth Map with Histogram Legend

And a zoom in on the legend:

This example comes from Matthew Kiang who explains exactly how to do it in the linked blog post. We will
try to do exactly what this author does, but it will not work out exactly because our the quartiles in our
data don’t break neatly by category. We will then show a modified bar alternative.

E.1. Histogram Legend
Below, we make a histogram showing the distribution of the number of burglaries, where the bars are colored
the quartile in which the observation falls.
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lego <- ggplot() +
geom_histogram(data = bg2010.c2,

mapping = aes(x = BURGLARY, fill = burg.quartile2))
lego

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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But all the bars are grey! This is because we tried to fill with a numeric variable. Let’s try again with a
factor. Let’s also add axis labels, get rid of the background and get rid of the legend.
# note that this wont work with the fill as a numeric thing
lego <- ggplot() +

geom_histogram(data = bg2010.c2,
mapping = aes(x = BURGLARY, fill = as.factor(burg.quartile2))) +

theme(legend.position = "none",
axis.line.x = element_line(color="black"),
axis.line.y = element_line(color="black"),
panel.background = element_rect(fill = "transparent",colour = NA),
plot.background = element_rect(fill = "transparent",colour = NA)) +

labs(title = "", subtitle = "",
x = "number of burglaries",
y = "number of block groups")

lego

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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Now we have colors. But these aren’t very helpful because they are not the same colors in the map.
The legend only works if we use the same colors as the choropleth. I do this below by adding the same
scale_fill_manual() command from the choropleth maps.
# note that this wont work with the fill as a numeric thing
lego <- ggplot() +

geom_histogram(data = bg2010.c2,
mapping = aes(x = BURGLARY, fill = as.factor(burg.quartile2))) +

scale_fill_manual(values = four.colors) +
theme(legend.position = "none",

axis.line.x = element_line(color="black"),
axis.line.y = element_line(color="black"),
panel.background = element_rect(fill = "transparent",colour = NA),
plot.background = element_rect(fill = "transparent",colour = NA)) +

labs(title = "", subtitle = "",
x = "number of burglaries",
y = "number of block groups")

lego

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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This is sort of successful. The graph is on its way to being ok, but the output reveals a glaring problem for
this type of representation. Some block groups with just one burglary are assigned to the first quartile. Other
block groups with just one burgalry are assigned to the second quartile. This makes the legend too confusing.

What can you do? You can re-define your cut-offs, so that you create things that are not quartiles, but are
interesting categories. This would allow clean cut-offs at integers that you could graph. This may sometimes
be preferable.
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E.2. Distribution Bar
Another alternative to the histogram legend is a bar legend. If we are using quartiles, we know that each
color has the same number of observations – but not the same range of values. A distribution bar legend can
help readers understand this.

The first step to doing this is to get the cut-offs for the quartiles into a variable. To do this, I return to
group_by() and summarize(). We group by the quartile created above and find the max and min value for
each quartile with summarize().

The final command below re-orders the quartiles. We need to do this for the legend below, given how R plots
the quartiles.
cts <- bg2010.c2
st_geometry(cts) <- NULL
cts <- group_by(.data = cts, burg.quartile2)
qcuts <- summarize(.data = cts, qmin = min(BURGLARY),

qmax = max(BURGLARY))
qcuts

## # A tibble: 4 x 3
## burg.quartile2 qmin qmax
## <int> <dbl> <dbl>
## 1 1 0 1
## 2 2 1 2
## 3 3 2 4
## 4 4 4 23
# opposite quartiles
qcuts$opp.bg.qs <- 5 - qcuts$burg.quartile2

Sadly, this isn’t quite enough to make an appropriate bar graph. We also need a variable that tells us how
much more each quartile gains above the previous. Basically, when we go to make a bar chart, R interprets
the number of the y axis as the number of things in this category, not the absolute number. So we need a
number that is parallel to “the number of things in this category” to trick R into making a bar chart that
looks right.1

To this end, we use the tidyverse mutate command to add a new variable that measures the increase in qmax
from quartile to quartile. From each value of qmax, we subtract the value in the previous row (lag(qmax,
n= 1)). As you can see, this gives nothing for the first observation, since it has no previous value. We set it
equal to qmax, which is, appropriately, the number of things in this category.
# create the incremented valued
qcuts <- mutate(.data = qcuts,

qincre = qmax - lag(qmax, n = 1))
qcuts

## # A tibble: 4 x 5
## burg.quartile2 qmin qmax opp.bg.qs qincre
## <int> <dbl> <dbl> <dbl> <dbl>
## 1 1 0 1 4 NA
## 2 2 1 2 3 1
## 3 3 2 4 2 2
## 4 4 4 23 1 19
# assign the first quartile a value of 1 (its increment from zero)
qcuts$qincre <- ifelse(test = qcuts$burg.quartile2 == 1,

1If you’re curious, you can do everything below where the ‘y‘ variable is ‘qmax‘ and see what you get.
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yes = qcuts$qmax,
no = qcuts$qincre)

qcuts

## # A tibble: 4 x 5
## burg.quartile2 qmin qmax opp.bg.qs qincre
## <int> <dbl> <dbl> <dbl> <dbl>
## 1 1 0 1 4 1
## 2 2 1 2 3 1
## 3 3 2 4 2 2
## 4 4 4 23 1 19

Now we are finally ready to make a one-bar graph with this. To do this we trick R into having a category for
the bar (there will only be one, but that’s ok). We’ll call it cato and set it equal to 1.
qcuts$cato <- 1

Now can we plot this?
### plot it
p2 <- ggplot() +

geom_bar(data = qcuts,
mapping = aes(x = cato, fill = as.factor(opp.bg.qs), y = qincre),
position = "stack",
stat = "identity",
width = 0.1)

p2
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This is ok, but let’s do some fixes to make it look sort-of decent. Just like we made the quartile numbers
backwards, we also have to make the colors backwards order to match:
four.colors.backwards <- c("#238b45",

"#74c476",
"#bae4b3",
"#edf8e9")

With this new color in hand, we can now do the following:
### plot it
p3 <- ggplot() +

geom_bar(data = qcuts,
mapping = aes(x = cato, fill = as.factor(opp.bg.qs), y = qincre),
position = "stack",
stat = "identity",
width = 0.1) +

coord_flip() +
scale_fill_manual(values = four.colors.backwards) +
labs(x = "",

y = "") +
theme(

axis.text.y = element_blank(),
axis.ticks = element_blank(),
panel.background = element_rect(fill = "white"),
legend.position = "none"

)
p3
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Now readers can see that the first quartile of burglaries is very few burglaries, as is the second quartile.
However, some block groups in the fourth quartile have over 20 burglaries per year.

Let’s do one more fix to this graphic, by adding the cut-offs as labels.
### plot it
p4 <- p3 +

scale_y_continuous(breaks = c(0,qcuts$qmax))
p4
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0 1 2 4 23

For presentation, I’d further fix this by

• making the bar way less tall – this you can fix in ggsave() depending on how you save the data
• maybe putting the quartile labels directly on the bars (e.g., “Q1”, “Q2”, etc.)

F. Dot Density Map
Our final task for this tutorial is to make a dot density map. A dot density map is an alternative way of
showing spatial patterns on a map. Here is a very nice example on which I based this section.

For this section, I needed to install a new package: lwgeom. Remember that new packages should be
installed by typing code directly into the console, not by putting this in your R script.
install.packages("lwgeom", dependencies = TRUE)

F.1. housing density
We begin with a density plot for housing units, showing how the density of housing units varies across space.

To start, let’s get a sense of what the housing unit variable looks like by block group, using summary and dim.
summary(bg2010$H0010001)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.0 413.2 583.5 659.4 843.8 3134.0
dim(bg2010)

## [1] 450 55
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We learn that there are 450 block groups in DC, and the median block group has 583 houses. We probably
cannot make one dot per house, since everything would look like a big black mass (but you can check if you
want!).

So let’s rescale, so that we observe in units of 10 houses. We’ll round up if there are any houses at all.
Alternatively, you could round based on 5, or really any number of your preference; the representation
becomes more divergent from reality the more you need to round up. And, of course, we check the output.
# let's make each dot 10 houses, and then round up to 10 if < 10
bg2010$hby10 <- bg2010$H0010001/10
bg2010$hby10 <- ifelse(test = bg2010$hby10 < 10,

yes = 1,
no = bg2010$hby10)

summary(bg2010$hby10)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 41.33 58.35 65.94 84.38 313.40
# make an integer value for the next step
bg2010$hby10.int <- as.integer(bg2010$hby10)
bg2010[1:10,c("hby10","hby10.int")]

## Simple feature collection with 10 features and 2 fields
## geometry type: POLYGON
## dimension: XY
## bbox: xmin: -77.07977 ymin: 38.89176 xmax: -77.05549 ymax: 38.94223
## geographic CRS: WGS 84
## hby10 hby10.int geometry
## 1 63.4 63 POLYGON ((-77.05708 38.9077...
## 2 1.0 1 POLYGON ((-77.07412 38.9125...
## 3 60.4 60 POLYGON ((-77.06568 38.9118...
## 4 39.5 39 POLYGON ((-77.0689 38.90774...
## 5 50.5 50 POLYGON ((-77.06702 38.9050...
## 6 69.4 69 POLYGON ((-77.06152 38.9407...
## 7 54.0 54 POLYGON ((-77.0596 38.93683...
## 8 30.0 30 POLYGON ((-77.06639 38.9346...
## 9 70.0 70 POLYGON ((-77.07241 38.9422...
## 10 103.4 103 POLYGON ((-77.07905 38.9335...

The next step is a set of lines of code that get the points we need to put on the map. In order of appearance,
here’s what they do. The st_sample() command creates a matrix (hdots) of points from the simple feature
file bg2010. It makes one point for each value of the variable equal to size (here the number of housing units
divided by 10), and points are allocated randomly within a block group (or whatever polygon you’ve told R
in x=).

This command generates a lot of error messages. I have suppressed them so they don’t drive us crazy.
Basically, they are saying that you are taking geographic coordinates and assuming the earth is flat for
purposes of this sampling. Because our area is so small, that is perfectly fine.

But R does not yet know that the things in hdots are points, so we use st_cast() to “cast” them into points
(to = "POINT"). Because we want to plot these points as a dataframe, not a simple feature (I’m not entirely
sure why this is preferred, but it is what this author does, and I’m sure there must be a good reason!) we use
st_coordinates() to get the values of the dots out the simple feature into a matrix.

But ggplot can’t plot matrices, so we still need to create a dataframe using as.data.frame(), and then
give names to the columns with setNames).
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# get the points to plot
hdots <- st_sample(x = bg2010, size = bg2010$hby10.int, type = "random")
hdots <- st_cast(x = hdots, to = "POINT")
hdots.mat <- st_coordinates(hdots)
hdats.df <- as.data.frame(hdots.mat)
hdats.df <- setNames(object = hdats.df, nm = c("lon","lat"))

This step will generate many repeated warning that “although coordinates are longitude/latitude, st_intersects
assumes that they are planar.” This basically means that R is putting spherical coordinates on a flat plane.
For an area as small as DC, this is not at all worrying.

Now that we’ve put all these points together, let’s plot, using our old tool of geom_sf() for the block group
map and geom_point() for the points.
# now plot it with the DC bg map behind it
h.map <-

ggplot() +
geom_sf(data = bg2010,

fill = "transparent",
color = "white") +

geom_point(data = hdats.df,
mapping = aes(x=lon, y = lat))

h.map
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You can make this map bigger on your screen and see if it looks more legible. Alternatively, you can make
small points using shape = ".".
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h.map <-
ggplot() +
geom_sf(data = bg2010,

fill = "transparent",
color = "white") +

geom_point(data = hdats.df,
mapping = aes(x=lon, y = lat),
shape = ".")

h.map
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F.2. Dot density with two categories of things
This is just fine for one value, but I think the benefit of this method is when we want to show more than one
value. In the previous graph, we could have equally well used a choropleth to make categoies of housing units
density (housing units divided by land area).

So now we’ll make a map that shows occupied and vacant housing units. We’ll also use the function skills we
learned last class. To make this new map, we need to make another density dataframe just as we did above.

Rather than copying and pasting, we’ll make a function to create these new dataframes. Our function has
three inputs: the variable we want to make into points (hvar), the scaling we want to use (by 5 units? 10
units? here it is by scaler), and the name of the variable (namer; this was useful for de-bugging, as well as
for creating a ID variable).

This code is very similar to the previous, with two exceptions. Instead of scaling by 10, I’m using the function
to scale by 5. You can try alternatives – which is easy, once you’ve built this into the function.

The second exception is that I add a column to the hdats.df dataframe with the name of the type of unit:
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occupied or vacant. So I use this function twice, once for occupied units and once for vacant ones, each time
returning a dataframe.
hfunc <- function(hvar,scaler,namer){

# check distribution
print(summary(hvar))

# let's make each dot 10 houses, and then round up to 5 if < 5
bg2010$hbyn <- hvar/scaler
bg2010$hbyn <- ifelse(bg2010$hbyn < scaler, 1, bg2010$hbyn)
bg2010$hbyn.int <- as.integer(bg2010$hbyn)

# get the points to plot
hdots <- st_sample(x = bg2010, size = bg2010$hbyn.int, type = "random")
hdots <- st_cast(x = hdots, to = "POINT")
hdots.mat <- st_coordinates(hdots)
hdats.df <- as.data.frame(hdots.mat)
hdats.df <- setNames(object = hdats.df, nm = c("lon","lat"))
hdats.df <- data.frame(hdats.df, htype = namer)

# get the dataframe out
return(hdats.df)

}

## call the function
# occupied units
ohdats.df <- hfunc(hvar = bg2010$H0010002,scaler = 5, namer = "occupied housing")

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.0 373.2 533.0 592.7 749.5 2736.0
# vacant units
vhdats.df <- hfunc(hvar = bg2010$H0010003,scaler = 5, namer = "vacant housing")

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 30.00 50.00 66.69 86.75 451.00

The last thing to do before we map is to stack our two dataframes into one and randomize the order for
plotting. If we didn’t randomize, either all the occupied units or all the vacant units would be on top. First
we stack the dataframes using rbind() (row bind, basically putting one dataframe on top of another).

We then use slice() which selects rows from a dataframe by position. We tell R we want the dataframe
hhats.df, and we want the order to be sample(1:n()), which is a random number. So the new dataframe
is the old one, but in a random order.
## stack these dataframes
hhdats.df <- rbind(ohdats.df,vhdats.df)

## randomize the order of the points
hhdats.df <- slice(.data = hhdats.df, sample(1:n()))

Finally, we plot it! Now we just plot the points using geom_point() (you could put the block groups behind, or
wards, or whatever you think would be helpful). We tell R what colors we want with scale_color_manual()
(not -fill- as before, since these are colors, not fills).

We use shape = "." to get very small points; you could use a different point or shape.
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And finally, we use annotate() to put the relevant legend info straight onto the map. This is much easier
to understand than the legend that R auto-generates (get rid of legend.position = "none" to see for
yourself).
# now plot it with the DC bg map behind it
oh.map <-

ggplot() +
geom_sf(data = bg2010,

fill = "transparent",
color = "white") +

geom_point(data = hhdats.df,
mapping = aes(x=lon, y=lat, color = htype),
shape = ".") +

scale_color_manual(values = c("black","red")) +
labs(x="",y="") +
theme(plot.background = element_rect(fill = "#f5f5f2", color = NA),

panel.background = element_rect(fill = "#f5f5f2", color = NA),
panel.grid = element_blank(),
legend.background = element_rect(fill = "#f5f5f2", color = NA),
legend.position = "none",
axis.ticks = element_blank(),
axis.text = element_blank()) +

annotate(geom = "text",
label = "Occupied",
x = -77.1, y = 38.85,
color = "black", size = 5) +

annotate(geom = "text",
x = -77.1, y = 38.83,
label = "Vacant", color = "red",
size = 5)

oh.map
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Occupied

Vacant

G. Homework
1. Why is the homicide choropleth misleading? Fix it! (There are many ways to fix it – do anything you

think is appropriate.)

2. Make choropleths for both homicides and burglaries in rates (per residential population). Recall that
population is in bg2010 when you load it.

3. Pull in other geographic data (the data we used earlier this semester is fine, as is any other of your
choice) and make a choropleth map with a histogram legend.

4. Make a dot density map with the data of your choice and at least two groups.
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