
Tutorial 8: Line Charts, Annotations and Themes

Leah Brooks

March 12, 2022

Contents
A. Load packages 2

B. Basic line graph and annotations 2
B.1. Look at the final product . 2
B.2 Load and prepare data . 4
B.3. Make the simplest line graph . 5
B.4. Make some improvements . 6
B.5 A few more improvements via annotations . 8

C. Themes 10
C.1. Modifying individual elements of themes . 10
C.2. Using ggplot’s built-in themes . 11
C.3. Other peoples’ themes . 14
C.4. Make your own theme . 14

D. Grouped Line Graph: Multiple counties 15
D.1 Keep just a few counties . 15
D.2. Plot all counties . 16

E. Preparing Data for Line Graphs 19
E.1 Capital Bikeshare data . 19
E.2. Prepare bikeshare data . 20
E.3. Use date variables for duration calculation . 21
E.4. Make hour level summary statistics . 21
E.5. Plot of number of rides and mean duration . 22

F. Stacked lines, useful for money 25
F.1. Load data . 25
F.2. Make data long . 27
F.3. Graphs . 28

F. Homework 31

Today’s tutorial focuses on line charts. Line charts, as you should know from today’s lecture, are for showing
change over time.

We also discuss how to add text and line segments onto a plot using the annotate() command, and we
discuss ggplot theme options.

We review summarizing, use of factor variables, and making data long (from wide). We also do give an
example of data cleaning to prepare a file to load.

1

A. Load packages
Let’s begin by loading packages. The only addition from what we’ve used before is scales, which helps put
commas into numbers so they are legible, among other things.
library(tidyverse)

-- Attaching packages --------------------------------------- tidyverse 1.3.1 --

v ggplot2 3.3.5 v purrr 0.3.4
v tibble 3.1.4 v dplyr 1.0.7
v tidyr 1.1.3 v stringr 1.4.0
v readr 2.0.1 v forcats 0.5.1

-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
library(scales) # for making numbers with commas

##
Attaching package: 'scales'

The following object is masked from 'package:purrr':
##
discard

The following object is masked from 'package:readr':
##
col_factor

B. Basic line graph and annotations
We are going to begin with a “simple” line graph. Below I give the example of a “simple” line graph that
took a quite a bit of work to look so simple.

B.1. Look at the final product
Here are the sequential slides that I used in my presentation of this graph. I want the audience to know when
DC’s population declined, when it rebounded and to have sense of the magnitude of the decline.

2

DC Gains Population Through 1950

Population Loses Start with Desegregation

3

Continue A�er Civil Disturbance

Population Turns Up A�er 2000

B.2 Load and prepare data
Now we’ll go through some code to build up to this chart.

Begin by downloading data from here. These are county-level data on population 1910 to 2010 (among other
variables). I created these data for a research project from Decennial Census data.

Use read.csv to grab these data as we’ve done before.
load data
counties <- read.csv("h:/pppa_data_viz/2019/tutorial_data/lecture08/counties_1910to2010_20180116.csv")

4

www.leahbrooks.org/leahweb/teaching/pppa_dataviz/2019/subpages/handouts/tutorials/tutorial08/counties_1910to2010_20180116.csv

Now just limit the data to DC. You could do this in the ggplot call itself. However, in this case when we are
only planning to use DC, this gives us a smaller dataset to work with and that speeds processing. This will
also make the coding easier, since we won’t have to subset in each graph.

Take a look at the data after we subset to DC. Does it have the right number of observations?
get just dc
dct <- counties[which(counties$statefips == 11),]
dim(dct)

[1] 11 68
dct[,c("year","statefips","countyfips","cv1")]

year statefips countyfips cv1
285 1910 11 1 331069
3244 1920 11 1 437571
6314 1930 11 1 486869
9418 1940 11 1 663091
12520 1950 11 1 802178
15626 1960 11 1 763956
18764 1970 11 1 756510
21899 1980 11 1 638333
25039 1990 11 1 606900
28182 2000 11 1 572059
31326 2010 11 1 601723

We have only one state and one county in that state. We observe data from 1910 to 2010. This all looks good.

B.3. Make the simplest line graph
Now that you know many ggplot commands, it will not be a shock to hear that you make a line graph using
geom_line(). As for all ggplot graphs, you should specify a dataframe and x and y variables. Below we
make the simplest possible line graph.
b3 <- ggplot() +

geom_line(data = dct,
mapping = aes(x = year, y = cv1))

b3

5

4e+05

5e+05

6e+05

7e+05

8e+05

1925 1950 1975 2000
year

cv
1

Note that line graphs do not default to a y-axis baseline of zero.

B.4. Make some improvements
The line graph above is great for getting a sense of the data. It’s not so good for communicating. The x-axis
labels don’t line up with the years in the data. The vertical axis labels are hard to read. And the grey
background does not help tell the story.

We fix the horizontal axis to put 20-year labels with
scale_x_continuous(limits= c(1910, 2010), breaks = c(seq(1910,2010,20)))

This tells R to start in 1910, and stop in 2010 (limits= c(1910, 2010)). It also tells R to make breaks on
the axis at 1910 and every 20 years until 2010 (breaks = c(seq(1910,2010,20))).

We fix the vertical axis with
scale_y_continuous(labels = comma, limits = c(0, 825000), breaks = c(seq(0,800000,200000)))

This tells R to use commas in the numbers, to start at 0 and end at 825,000, and to make value labels every
200,000.

Generally, ggplot line graphs are easier to read when lines are thicker. We adjust the line width with the
geom_line() option of size = 1.5. Note that this goes outside of the aes() command. Things inside the
aes() describe how “variables in the data are mapped to visual properties (aesthetics) of geoms” (see cite).
Things outside of the aes() command are for more general settings.

In addition, we modify the theme to do the following:

• omit major gridlines: panel.grid.major = element_blank()

6

https://ggplot2.tidyverse.org/reference/aes.html

• omit minor gridlines: panel.grid.minor = element_blank()
• (FYI: you can also omit both major and minor at once with panel.grid = element_blank())
• omit panel background: panel.background = element_blank()
• add back in y-axis gridlines: panel.grid.major.y = element_line(color="gray")
• omit legend: legend.position = "none"
• make the x-axis line black: axis.line.x = element_line(color = "black")
• get rid of x- and y-axis ticks: axis.ticks = element_blank()
• change size of axis text: axis.text = element_text(size = 10)

done <-
ggplot() +
geom_line(data = dct,

mapping = aes(x=year, y=cv1), size=1.5) +
scale_y_continuous(labels = comma, limits = c(0, 825000), breaks = c(seq(0,800000,200000))) +
scale_x_continuous(limits= c(1910, 2010), breaks = c(seq(1910,2010,20))) +
labs(x="", y="") +
theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
panel.background = element_blank(),
panel.grid.major.y = element_line(color="gray"),
legend.position = "none",
axis.line.x = element_line(color = "black"),
axis.ticks = element_blank(),
axis.text = element_text(size = 10))

done

0

200,000

400,000

600,000

800,000

1910 1930 1950 1970 1990 2010

Beware that things can look different in the plot window and the final graphics output. To judge, save it in

7

the proportions you’d like for a final product and then look at in with an image viewer. Here’s code to save
this one.
fn <- "H:/pppa_data_viz/2020/tutorials/tutorial_08/b4_testerv1.jpg"
ggsave(plot = done,

file = fn,
dpi = 300,
units = c("in"),
width = 7,
height = 3.5)

Then I pull in the final image:

Different! When doing final edits, work with the properly-sized graph.

B.5 A few more improvements via annotations
I’d call the above plot functional, but the point of this graph is to point out specific historical moments that
explain the shape of the plot. To do that we add text and lines to the plot.

We add data points on the line via geom_point(). This hints to readers that the data are only actually at
the points. The line between the points is really just made up – or extrapolated if you’d like to be fancier.

To add “stuff” to your graph that is not data, use the annotate command. Until recently, I was under
the incorrect impression that annotate(geom = "text")) and geom_text() did the same thing. I recently
learned that annotate() is much more efficient, as it draws just once. In contrast, geom_text() will draw
as many times as you have data points – again and again in the same place.

The annotate() command has some basic options. The first is geom, which is what you want to show.
Choices include, but are not limited to, “segment”, “rect”, or “text”. You specific the location with x and y
for text, or, for rectangles and the like, xmin, xmax, ymin, and ymax (alternatively, x and xend, etc).

You can also adjust other options such as size (size=) or justification (hjust and vjust; see here). See how
to implement these in the example below. We use both hjust = 0 (left align) and hjust = 1 (right align).

Note that I set the on-graph-text size variable at the beginning (on.g.text.size). I use this for the size of
the text that goes on the annotate command. That way if I don’t like it, I change it once, rather than eight

8

https://stackoverflow.com/questions/7263849/what-do-hjust-and-vjust-do-when-making-a-plot-using-ggplot

times.
on.g.text.size <- 4
done2 <-

ggplot(dct) +
geom_line(dct, mapping = aes(x=year, y=cv1), size=1.5) +
geom_point(dct, mapping = aes(x=year, y=cv1), size=3) +
scale_y_continuous(labels = comma, limits = c(0, 825000), breaks = c(seq(0,800000,200000))) +
scale_x_continuous(limits= c(1910, 2010), breaks = c(seq(1910,2010,20))) +
labs(x="", y="") +
theme(panel.grid.major = element_blank(),

panel.grid.minor = element_blank(),
panel.background = element_blank(),
panel.grid.major.y = element_line(color="gray"),
legend.position = "none",
axis.line.x = element_line(color = "black"),
axis.ticks.x = element_blank(),
axis.ticks.y = element_blank(),
axis.text = element_text(size = 15)) +

annotate(geom = "segment", x=1995, y=0, xend=1995, yend=220000, color="#045a8d") +
annotate(geom = "segment", x=1995, y=360000, xend=1995, yend=825000, color="#045a8d") +
annotate(geom = "segment", x=1968, y=0, xend=1968, yend=450000, color = "#2b8cbe") +
annotate(geom = "segment", x=1968, y=550000, xend=1968, yend=825000, color = "#2b8cbe") +
annotate(geom = "segment", x=1954, y=0, xend=1954, yend=460000, color = "#74a9cf") +
annotate(geom = "segment", x=1954, y=610000, xend=1954, yend=825000, color = "#74a9cf") +
annotate(geom = "text", x=1955, y=575000, label="1954:", color = "#74a9cf",

size=on.g.text.size, hjust=1) +
annotate(geom = "text", x=1955, y=535000, label="School", color = "#74a9cf",

size=on.g.text.size, hjust=1) +
annotate(geom = "text", x=1955, y=495000, label="Desegregation", color = "#74a9cf",

size=on.g.text.size, hjust=1) +
annotate(geom = "text", x=1967, y=525000, label="1968:", color = "#2b8cbe",

size=on.g.text.size, hjust=0) +
annotate(geom = "text", x=1967, y=475000, label="Civil Disturbance", color = "#2b8cbe",

size=on.g.text.size, hjust=0) +
annotate(geom = "text", x=1994, y=325000, label="1995:", color="#045a8d",

size=on.g.text.size, hjust=0) +
annotate(geom = "text", x=1994, y=285000, label="Control Board", color="#045a8d",

size=on.g.text.size, hjust=0) +
annotate(geom = "text", x=1994, y=245000, label="Takes Power", color="#045a8d",

size=on.g.text.size, hjust=0)

save it
fn2 <- "H:/pppa_data_viz/2020/tutorials/tutorial_08/b4_testerv2.jpg"
ggsave(plot = done2,

file = fn2,
dpi = 300,
units = c("in"),
width = 7,
height = 3.5)

Pulling in the final image:

9

C. Themes
Now we take a detour from line graphs to discuss themes.

C.1. Modifying individual elements of themes
In the previous graph, we substantially changed the look of the graph by modifying elements in the theme()
portion of the command. There are many, many different elements you can change in the ggplot theme, and
you can find the complete list here.

10

https://ggplot2.tidyverse.org/reference/theme.html

C.2. Using ggplot’s built-in themes
In addition to modifying individual elements of a theme, you can use ggplot’s built-in themes to modify a
graph. You can see the full list here, and we’ll do examples with theme_minimal() and theme_bw().

To make sure we understand what the themes are doing, let’s return to our original, somewhat ugly, graph of
DC population over time.
b3 <- ggplot() +

geom_line(data = dct,
mapping = aes(x = year, y = cv1))

b3

4e+05

5e+05

6e+05

7e+05

8e+05

1925 1950 1975 2000
year

cv
1

First, we’ll apply the ggplot’s minimal theme. Notice that instead of retyping the graphing command, we
just add the theme to the basic graph with a plus. You can see that many aspects of the graph’s look are
changed.
c1 <- b3 + theme_minimal()
c1

11

https://ggplot2.tidyverse.org/reference/ggtheme.html

4e+05

5e+05

6e+05

7e+05

8e+05

1925 1950 1975 2000
year

cv
1

We can try a different built-in theme, theme_bw(), for black and white:
c2 <- b3 + theme_bw()
c2

12

4e+05

5e+05

6e+05

7e+05

8e+05

1925 1950 1975 2000
year

cv
1

Finally, you can use a built-in theme and then also modify additional elements, as in
c3 <- b3 + theme_minimal() +

theme(axis.line.x = element_line(color = "red"))
c3

13

4e+05

5e+05

6e+05

7e+05

8e+05

1925 1950 1975 2000
year

cv
1

I don’t recommend this modifcation, but hopefully what it’s changing is clear.

C.3. Other peoples’ themes
Users have also created a variety of pre-packaged themes that you can use if you like. This webpage shows a
variety of examples. To use these additional themes, you usually need to install a package.

C.4. Make your own theme
Finally, it can be quite helpful to create your own theme if you want to make a consistent look across many
graphs.

Written as below, the theme modifies R’s default theme. We declare a function that has no inputs, but which
creates the theme theme_me – you can call it theme_myself or whatever you’d like.
theme_me <- function(){

theme(axis.line.x = element_line(color = "red"),
axis.line.y = element_line(color = "blue"))

}

You could include one of R’s other themes below, too, if you’d prefer, as in
theme_me <- function(){

theme_minimal() +
theme(axis.line.x = element_line(color = "red"),

axis.line.y = element_line(color = "blue"))
}

Then apply your theme to the line graph:

14

https://rfortherestofus.com/2019/08/themes-to-improve-your-ggplot-figures/

c4 <- b3 + theme_me()
c4

4e+05

5e+05

6e+05

7e+05

8e+05

1925 1950 1975 2000
year

cv
1

Bottom line: themes modify the look and feel of a graph. You need to alter them to make decent looking
graphics. Making a custom theme can help create consistency across multiple graphics.

D. Grouped Line Graph: Multiple counties
The section above graphs just DC. In this section, we graph multiple counties and make them distinguishable.

D.1 Keep just a few counties
Here we subset the counties data to just keep DC (state 11), Maryland’s Montgomery and Prince George’s
counties (state 24, counties 31 and 33), and Virginia’s Arlington, Alexandria and Fairfax jurisdictions (state
51, counties 13, 510 and 59).

We also make the year variable numeric for ease of plotting. And then to save space, we get rid of the counties
dataframe with rm(counties). You can use rm() for any objects that you no longer want.
dcm <- counties[which(counties$statefips == 11 |

counties$statefips == 24 & counties$countyfips %in% c(31,33) |
counties$statefips == 51 & counties$countyfips %in% c(13,510,59)),]

dcm$nyear <- as.numeric(dcm$year)
rm(counties)

Finally, to identify a county in ggplot, we need both the state and county variables together. I use paste0
to concatenate the state and county variables. “Concatenate” means stick together. The paste0 command

15

takes as many strings as you like and puts them together.

Here is a small example of what paste0 does. The first use of paste0 below just sticks strings s1 and s2
together. The next two examples, where we create p2 and p3, use different separators.
ex.df <- data.frame(s1 = c("fred","ted","pj"),

s2 = c("dog","cat","pig"))
ex.df$p1 <- paste0(ex.df$s1,ex.df$s2)
ex.df$p2 <- paste0(ex.df$s1,ex.df$s2, sep = "XX")
ex.df$p3 <- paste0(ex.df$s1,ex.df$s2, sep = " is a ")
ex.df

s1 s2 p1 p2 p3
1 fred dog freddog freddogXX freddog is a
2 ted cat tedcat tedcatXX tedcat is a
3 pj pig pjpig pjpigXX pjpig is a

And here we use this paste0 command to stick the state and county identifiers together:
make a state+county variable
dcm$stc <- paste0(dcm$statefips,dcm$countyfips)

D.2. Plot all counties
To plot multiple counties at one time, we use the group() command and tell R that the groups are by the
stc variable. Note that the group = goes inside the aes() because it is telling R to do something based on
the data. For legibility, I add commas in the y-axis values.
all counties
ac <- ggplot() +

geom_line(data = dcm, aes(x=year, y=cv1, group = stc)) +
scale_y_continuous(labels = comma)

ac

16

0

300,000

600,000

900,000

1925 1950 1975 2000
year

cv
1

Of course, without a legend or identifying features, this graph is very hard to interpret. We add color =
stc, again inside aes(), so that we can see which counties are which on the graph.
color by state
ac <- ggplot() +

geom_line(data = dcm, aes(x=year, y=cv1,
group = stc,
color = stc)) +

scale_y_continuous(labels = comma)
ac

17

0

300,000

600,000

900,000

1925 1950 1975 2000
year

cv
1

stc

111

2431

2433

5113

51510

5159

18

This graph is an improvement, but it has the very unfortunate feature that it presents the county code as if
it were a continuous variable. I use as.factor() around the county variable to let R kow it is categorical.
color by state, itemized legend
ac <- ggplot() +

geom_line(data = dcm, aes(x=year, y=cv1,
group = as.factor(stc),
color = as.factor(stc))) +

scale_y_continuous(labels = comma)
ac

0

300,000

600,000

900,000

1925 1950 1975 2000
year

cv
1

as.factor(stc)

111

2431

2433

5113

51510

5159

There are still many improvements we could make to this graph. For basic legibility, we should made the
county codes names rather than numbers. We can do this by making stc a factor variable and assigning
names to its levels. (We have done this is in a previous tutorial.) Even better, and depending on the point of
the graph, omit the legend and put the jurisdiction names directly on the graph using annotate().

E. Preparing Data for Line Graphs
E.1 Capital Bikeshare data
This section walks you through the kind of prep work you might need to do to get to a line graph. Specifically,
we

• practice with functions
• work with date variables
• summarize data

First, download the 2019/02 Capital bikeshare data from here. These data are individual bike trips on Capital

19

https://s3.amazonaws.com/capitalbikeshare-data/index.html

Bikeshare for 2019. These data are provided for public use by Capital Bikeshare; you can download more
recent data if you would like here.

Use read.csv() to load the data.
cabi.201901 <- read.csv("H:/pppa_data_viz/2019/tutorial_data/lecture08/201902-capitalbikeshare-tripdata/201902-capitalbikeshare-tripdata.csv")

head(cabi.201901)

Duration Start.date End.date Start.station.number
1 206 2019-02-01 00:00:20 2019-02-01 00:03:47 31509
2 297 2019-02-01 00:04:40 2019-02-01 00:09:38 31203
3 165 2019-02-01 00:06:34 2019-02-01 00:09:20 31303
4 176 2019-02-01 00:06:49 2019-02-01 00:09:45 31400
5 105 2019-02-01 00:10:41 2019-02-01 00:12:27 31270
6 757 2019-02-01 00:12:37 2019-02-01 00:25:14 31503
Start.station End.station.number
1 New Jersey Ave & R St NW 31636
2 14th & Rhode Island Ave NW 31519
3 Tenleytown / Wisconsin Ave & Albemarle St NW 31308
4 Georgia & New Hampshire Ave NW 31401
5 8th & D St NW 31256
6 Florida Ave & R St NW 31126
End.station Bike.number Member.type
1 New Jersey Ave & N St NW/Dunbar HS W21713 Member
2 1st & O St NW E00013 Member
3 39th & Veazey St NW W21703 Member
4 14th St & Spring Rd NW W21699 Member
5 10th & E St NW W21710 Member
6 11th & Girard St NW W22157 Member

These data show us one row per CaBi trip.

To get these data ready for a line chart, we need to get the time variable into a useful format. Currently the
time data are text. Text variables are categorical, not quantitative, so they will not line up properly along
the x axis.

We also need to shrink the size of these data through summary statistics since 150,000 is too many to plot.
We’ll do each of these in turn.

E.2. Prepare bikeshare data
Let’s begin with calculating date variables. Date variables are a special kind of variable. They store time and
date as the number of days since January 1, 1970. To convert the string variables Start.date and End.date,
we use the as.POSIXct command, which takes character variables and makes a R date.

We also use strptime() which makes appropriate character variables (to get ready for as.POSIXct) from a
date and time string. For strptime, you tell R what parts of the string correspond to which parts of the
date.
cabi.201901$time.start <- as.POSIXct(strptime(x = cabi.201901$Start.date,

format = "%Y-%m-%d %H:%M:%S"))
cabi.201901$time.stop <- as.POSIXct(strptime(x = cabi.201901$End.date,

format = "%Y-%m-%d %H:%M:%S"))

Date variables are very useful for making calculations and graphs over time.

20

https://www.capitalbikeshare.com/system-data
https://www.rdocumentation.org/packages/base/versions/3.5.3/topics/as.POSIX*

E.3. Use date variables for duration calculation
Now that we have two date variables, we can make our own measure of duration and check the bikeshare’s
measure.
my duration calculation
cabi.201901$my.duration <- cabi.201901$time.stop - cabi.201901$time.start

comparing my results to built-in results
summary(cabi.201901$my.duration)

Length Class Mode
158130 difftime numeric

Wait – this variable is not returning a normal summary output. We need to tell R that is is a numeric
variable in the summary() command.
summary(as.numeric(cabi.201901$my.duration))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.817 9.633 14.939 15.967 1435.000
summary(as.numeric(cabi.201901$Duration))

Min. 1st Qu. Median Mean 3rd Qu. Max.
60.0 349.0 577.0 895.9 957.0 86100.0

This looks similar, but our calculated duration measure is in minutes and the bikeshare’s measure is in
seconds. I could divide cabi$Duration by 60 to see if they are the same. I can also look at the correlation
between the two measures using cor(). Here is the correlation method:
look at the correlation -- looks like 1
cor(x = as.numeric(cabi.201901$my.duration),

y = as.numeric(cabi.201901$Duration),
method = c("pearson"))

[1] 1

I find that the correlation between the two measures is 1. This makes we suspect that the bikeshare people
calculated the duration in the exact way we did.

Now I do the other check: divide our measure by 60.
cabi.201901$Duration.minutes <- cabi.201901$Duration / 60
summary(cabi.201901$Duration.minutes)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.817 9.617 14.931 15.950 1435.000

OK – it’s the same.

E.4. Make hour level summary statistics
The trick to successfully plotting these data is to reduce their dimensionality. “Dimensionality” means size,
or the number of observations by the number of variables. Our dataframe has about 150,000 observations –
way too many to show on any plot.

One way to shrink what we show is to show data by hour, rather than by ride. Therefore, for each hour, we
will find the average number of rides and the average duration of rides.

To do this, we first need a variable that tells us the hour of the trip. We extract the hour component from the
date variable using the date notation. We can use the format() function because we already created a date

21

variable called time.start. We write format(df$varname, "%H") to get the hour from the time variable.
(This is the benefit of the time variable!) We then check the output using both summary() and table().
get the hour out of the date variable
cabi.201901$start.hour <- as.numeric(format(cabi.201901$time.start, "%H"))
summary(cabi.201901$start.hour)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 9.00 14.00 13.63 17.00 23.00
table(cabi.201901$start.hour)

##
0 1 2 3 4 5 6 7 8 9 10 11 12
949 539 383 162 284 1369 3931 9314 15908 9409 6123 6818 8025
13 14 15 16 17 18 19 20 21 22 23
8304 8311 9728 12994 18785 13846 8570 5713 4082 2904 1679

From the summary command, we see that mean start hour is about 1:30 (13.6 hours). That seems fine, as
does the max start hour of 11 pm (23 hours) and the min start hour of 0 (midnight).

Looking at the table output, the hour with the single largest number of rides is 17 – or 5 pm. This also seems
reasonable.

Now that we are reassured the times are ok, we use group_by() and summarize() to find hourly traveling
information. We calculate both the number of rides (no_rides) and the average duration of those rides
(mean_dur).
summarize to hourly data
cabi.201901 <- group_by(cabi.201901, start.hour)
cabisum <- summarize(.data = cabi.201901, no_rides = n(), mean_dur = mean(Duration))
dim(cabisum)

[1] 24 3

E.5. Plot of number of rides and mean duration
Now we’ll plot the results, which is another reasonability check on the data. To plot both variables the same
way, it is a good idea to make a function. However, the first rule of writing functions is to get the code
working outside of a function first.

Following this commandment, we plot the number of rides by hour.
get it to work outside of a function
c3 <- ggplot() +

geom_line(data = cabisum, mapping = aes(x = start.hour, y = no_rides)) +
labs(title = "Total number of rides by hour")

c3

22

0

5000

10000

15000

0 5 10 15 20
start.hour

no
_r

id
es

Total number of rides by hour

This seems to have gone smoothly. We see morning and afternoon peaks, which seems entirely reasonable.

For making multiple graphs, we’d prefer not to copy and paste this code for reasons we discussed in class.
Instead, make a function. The below shows you how to iterate through ggplot with a function. This
document explains the why this is not as straightforward as you might think.

Importantly, ggplot() uses non-standard evaluation, so it takes in text in a different way than base R
commands. Thus, to replace text in a ggplot command, you need to input it with quo() and get rid of the
quo() with !! before the new text.
write a simple function for two variables
see examples here
https://dplyr.tidyverse.org/articles/programming.html
c3func <- function(varin,vardescp){

c3 <- ggplot() +
geom_line(data = cabisum, mapping = aes(x = start.hour, y = {{varin}})) +
labs(title = vardescp)

print(c3)
}

c3a <- c3func(varin = no_rides,
vardescp = "Total number of rides by hour of the day")

23

https://dplyr.tidyverse.org/articles/programming.html
https://dplyr.tidyverse.org/articles/programming.html

0

5000

10000

15000

0 5 10 15 20
start.hour

no
_r

id
es

Total number of rides by hour of the day

c3a <- c3func(varin = mean_dur,
vardescp = "Average duration of ride by hour of the day")

24

750

1000

1250

1500

0 5 10 15 20
start.hour

m
ea

n_
du

r
Average duration of ride by hour of the day

F. Stacked lines, useful for money
The final type of line graph we’re trying today is a stacked line chart, which can sometimes be very helpful to
convey change over time along with the relative importance of categories.

F.1. Load data
Since this is a policy class, it seems fitting to graph at least some budget data. We are introducing a new
dataset: US federal budget statistics. You can find the data from the Office of Management and Budget here.
Download the zip file from the top of the page and unzip it.

I am not prepping these data for you, since I want to make sure you learn how to put raw data into R. You
will find that there are many small issues that cause trouble. This is not atypical, so it is helpful to show how
to handle them.

Unzip the file you downloaded, and you’ll see a bunch of files in this new folder. They follow the naming
convention on the page from which you downloaded. Open up Tables 1.3 (hist01z3.xls; for homework) and
2.3 (hist02z3.xls; for now) in Excel.

From Table 2.3, we want the year and columns B, C, D, G, H and I. Create a new excel document with just
this information, and make one row at top with names that you’ll understand. Keep just through 2017, and
make sure that you don’t have any junk at the bottom of the table. Save this file as csv (file, save as, choose
“csv” option for file type). If there are numeric variables that take the value *, make them “.”, which is code
for missing.

Load the csv file you just created into R.

25

https://www.whitehouse.gov/omb/historical-tables/

makeup of receipts
hist02z3 <- read.csv("H:/pppa_data_viz/2018/tutorials/lecture05/omb_data/hist02z3.csv")
str(hist02z3)

'data.frame': 91 obs. of 7 variables:
$ year : chr "1934" "1935" "1936" "1937" ...
$ income.taxes: num 0.7 0.7 0.8 1.2 1.4 1.1 0.9 1.1 2.2 3.5 ...
$ corp.taxes : num 0.6 0.8 0.9 1.2 1.4 1.2 1.2 1.8 3.2 5.2 ...
$ social.ins : chr "." "." "0.1" "0.7" ...
$ excise : num 2.2 2 2 2.1 2.1 2.1 2 2.2 2.3 2.2 ...
$ other : num 1.3 1.5 1.1 0.9 0.9 0.7 0.7 0.7 0.5 0.4 ...
$ total : num 4.8 5.1 4.9 6.1 7.5 7 6.7 7.5 9.9 13 ...

Begin by making sure that what you’ve imported into R is what you expect. We run through the problems I
encountered – your problems may differ! The goal here is to give you enough tools that you know how to
look for problems and how to fix them once you find them.

We’ll start with the year variable, using tables().
make sure year is always ok
table(hist02z3$year)

##
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2013 2014 2015 2016 2017 TQ
1 1 1 1 1 1

Notice that there are some odd things here. A few observations with no year at all, and one observation
where year is “TQ”. Let’s fix this.

We use subset the data to get rid of the strange years.
hist02z3 <- hist02z3[which(hist02z3$year != ""),]
hist02z3 <- hist02z3[which(hist02z3$year != "TQ"),]

Strangely, in previous years hist02z3$year loaded as a factor variable. When it did, I used this code to
make it numeric – code I am not using this year :
hist02z3$nyear <- as.numeric(levels(hist02z3$year))[hist02z3$year]
summary(hist02z3$nyear)

This year, hist02z3$year loaded as a character variable. So make a numeric year and check the values, I
use as.numeric:
hist02z3$nyear <- as.numeric(hist02z3$year)
summary(hist02z3$nyear)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1934 1955 1976 1976 1996 2017

26

Good – the year variable now seems to have just numeric years and the values are non-crazy.

F.2. Make data long
To make a stacked line (or really, any multiple line), the data need to be long, not wide. As a refresher, wide
data look like this, with one observation per unit:
wide <- data.frame(state = c("6","36","48"),

female_pop = c("10","12","14"),
male_pop = c("11","13","12"))

wide

state female_pop male_pop
1 6 10 11
2 36 12 13
3 48 14 12

Long data look like this, with one observation per unit and type:
long <- data.frame(state = c("6","36","48","6","36","48"),

pop = c("10","12","14","11","13","12"),
sex = c("female","female","female","male","male","male"))

long

state pop sex
1 6 10 female
2 36 12 female
3 48 14 female
4 6 11 male
5 36 13 male
6 48 12 male

Note how this dataset requires a variable that tells you which type of population the row contains.

Neither data format is “right.” If you were doing a regression and wanted to control for male and female
population, you’d need the wide format. However, to make a line graph with multiple lines in R, you need a
long dataset.

To make the data long, first I tried the code below
make this wide dataset long
head(hist02z3)
r.long <- pivot_longer(data = hist02z3,

cols = c("income.taxes","corp.taxes","social.ins","excise","other","total"),
names_to = "revenue_type",
values_to = "revenue")

r.long[1:15,]

This code delivers this error message: Error: No common type for ‘income.taxes‘ <double> and ‘social.ins‘
<factor<1c022».

This error message is telling us that not all our income variables are the same type. Check this:
str(hist02z3)

'data.frame': 84 obs. of 8 variables:
$ year : chr "1934" "1935" "1936" "1937" ...
$ income.taxes: num 0.7 0.7 0.8 1.2 1.4 1.1 0.9 1.1 2.2 3.5 ...
$ corp.taxes : num 0.6 0.8 0.9 1.2 1.4 1.2 1.2 1.8 3.2 5.2 ...
$ social.ins : chr "." "." "0.1" "0.7" ...

27

$ excise : num 2.2 2 2 2.1 2.1 2.1 2 2.2 2.3 2.2 ...
$ other : num 1.3 1.5 1.1 0.9 0.9 0.7 0.7 0.7 0.5 0.4 ...
$ total : num 4.8 5.1 4.9 6.1 7.5 7 6.7 7.5 9.9 13 ...
$ nyear : num 1934 1935 1936 1937 1938 ...

Sadly, it seems that social.ins is a factor variable – all other taxes are numeric. So let’s fix this.

We fix social.ins by doing
hist02z3$social.ins <- as.numeric(as.character(hist02z3$social.ins))

Warning: NAs introduced by coercion
str(hist02z3$social.ins)

num [1:84] NA NA 0.1 0.7 1.7 1.8 1.8 1.7 1.7 1.6 ...

The new structure says social.ins is now a numeric variable.

Now try the pivot_longer() command again:
make this wide dataset long
r.long <- pivot_longer(data = hist02z3,

cols = c("income.taxes","corp.taxes","social.ins","excise","other","total"),
names_to = "revenue_type",
values_to = "revenue")

r.long[1:15,]

A tibble: 15 x 4
year nyear revenue_type revenue
<chr> <dbl> <chr> <dbl>
1 1934 1934 income.taxes 0.7
2 1934 1934 corp.taxes 0.6
3 1934 1934 social.ins NA
4 1934 1934 excise 2.2
5 1934 1934 other 1.3
6 1934 1934 total 4.8
7 1935 1935 income.taxes 0.7
8 1935 1935 corp.taxes 0.8
9 1935 1935 social.ins NA
10 1935 1935 excise 2
11 1935 1935 other 1.5
12 1935 1935 total 5.1
13 1936 1936 income.taxes 0.8
14 1936 1936 corp.taxes 0.9
15 1936 1936 social.ins 0.1

This looks like what we want. Notice that there are NA values for social insurance spending in the 1930s. If
you go back to your original download, you can see that this isn’t a mistake. In 1935, there was no social
insurance spending.

F.3. Graphs
Let’s start with total tax revenue over time. As in the previous section, we need to note group=1, and recall
that total is r.long$rtype == 6.
line chart of total receipts
g4.1 <-

ggplot() +
geom_line(data = r.long[which(r.long$revenue_type=="total"),],

28

mapping = aes(x=nyear, y=revenue, group=1))
g4.1

5

10

15

20

1950 1975 2000
nyear

re
ve

nu
e

29

Now we’ll modify the chart to have all the categories but the total. I do this by subetting r.long into all
record types that are not total revenue. In addition, I tell R that the group by which we want to make the
graph is a variable called revenue_type, which R should treat as a factor. We also tell r to color the lines by
revenue_type, taken as a factor.
line chart of total receipts by type
g4.2 <-

ggplot() +
geom_line(data = r.long[which(r.long$revenue_type != "total"),],

mapping = aes(x=nyear, y=revenue,
group=as.factor(revenue_type),
color=as.factor(revenue_type)))

g4.2

Warning: Removed 2 row(s) containing missing values (geom_path).

0.0

2.5

5.0

7.5

10.0

1950 1975 2000
nyear

re
ve

nu
e

as.factor(revenue_type)

corp.taxes

excise

income.taxes

other

social.ins

30

This graph is very hard to read. There are too many lines, and we don’t get a sense of the total, which may
be a key point. An alternative is a stacked line. Stacked likes highlight the total amount, and give readers
some sense of the relative share of different categories.
stacked chart of total receipts by type
without factor() this doesnt work
g4.3 <- ggplot() +

geom_area(data = r.long[which(r.long$revenue_type != "total"),],
mapping = aes(x=nyear, y=revenue,

group=factor(revenue_type),
fill=factor(revenue_type)),

position="stack") +
labs(x="", y="share of GDP")

g4.3

Warning: Removed 2 rows containing missing values (position_stack).

0

5

10

15

20

1950 1975 2000

sh
ar

e
of

 G
D

P

factor(revenue_type)

corp.taxes

excise

income.taxes

other

social.ins

If you do this, it is freqently wise to put labels on the area portions of the graph and omit the legend. If the
areas are too small to label, consider whether you need then individually.

These charts have the same downsides of stacked bars: the numbers for only the bottom category are directly
legible from the graph.

F. Homework
1. In my example of DC population over time in section B.1., I present the graph of three steps. Modify

your code to make these same three steps.

31

2. Using the bikeshare data,

(a) Re-do one of the by-hour pictures as a minute-by-minute picture showing total ridership
(b) Use one of the y variables we used or an alternative one. Add some annotations to your graph to point

out salient features.

3. More stacked areas

Now you try to load your own budget data!

Use Table 1.3 (his01z3.xls), from which we want the year and columns E, F, G and columns I, J and K.
Create a new excel document with just this information, and make one row at top with names that you’ll
understand. Keep just through 2017, and make sure that you don’t have any junk at the bottom of the table.
Save this file as csv (file, save as, choose “csv” option for file type).

Load it into R and make a stacked area graph of receipts, outlays and deficits over time.

Having done this myself, here are a few suggestions

• make long data, as we did above
• make year numeric, as we did for the social insurance revenue above
• get rid of commas in the data. My command to do this, for one variable, is

hist01z3$b1 <- as.numeric(gsub(",", "", hist01z3$cd.receipts, fixed = TRUE))

32

	A. Load packages
	B. Basic line graph and annotations
	B.1. Look at the final product
	B.2 Load and prepare data
	B.3. Make the simplest line graph
	B.4. Make some improvements
	B.5 A few more improvements via annotations

	C. Themes
	C.1. Modifying individual elements of themes
	C.2. Using ggplot's built-in themes
	C.3. Other peoples' themes
	C.4. Make your own theme

	D. Grouped Line Graph: Multiple counties
	D.1 Keep just a few counties
	D.2. Plot all counties

	E. Preparing Data for Line Graphs
	E.1 Capital Bikeshare data
	E.2. Prepare bikeshare data
	E.3. Use date variables for duration calculation
	E.4. Make hour level summary statistics
	E.5. Plot of number of rides and mean duration

	F. Stacked lines, useful for money
	F.1. Load data
	F.2. Make data long
	F.3. Graphs

	F. Homework

