Admin

0000000

Origins 0000000000

How and Wh

Multiples 00000 Color

Lecture 8: Scatter Plots and Color

July 6, 2022

Origins 0000000000 How and Whe

lultiples

Color

Course Administration

Good, Bad and Ugly

Scatter Plot Origins

How and When to Use Scatters

Showing Multiple Variables or Variations

Color

R Notes

・ロト ・日本・日本・日本・日本・日本

Course Administration

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

1. Looking forward

Admin

- Lecture 9, July 13: Storytelling and interactive plots
- Lecture 10, July 20: 5 minute presentations
- July 27: policy brief due
- 2. Anything else?

G/B/U

•000000000000

tiples C

Next Week's Assignment

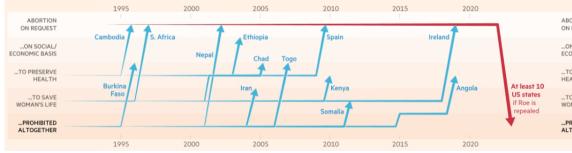
Find a scatterplot. Post link to google sheet by Wednesday noon.

Finder	Commenter
Jarred	Linsi
Sarah	Brandon
Esther	Dayo

G/B/U Origins

How and W

Multiples 00000


This Week's Good Bad and Ugly

Finder	Commenter
Linsi G.	Richa
Brandon	Esnold
Dayo	Esther

・ロト ・日・・日・・日・・ のくの

Richa on Linsi's Graphic

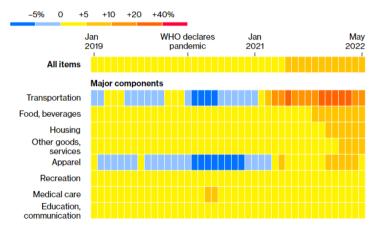
The repeal of Roe vs Wade would buck the global trend of expanding access to abortion, and put millions of US women under tighter abortion restrictions than much of Sub-Saharan Africa

Changes to abortion laws in selected countries since the 1990s

G/B/U

Burn-Murdoch, John, "Repeal of Roe risks exacerbating the US's most shameful statistic," *Financial Times*, May 5, 2022. [link]

G/B/U


Origins

How and Wh

ultiples 0000 000000

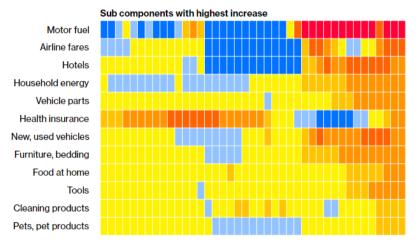
Esnold on Brandon's Chart, 1 of 2

Change from a year earlier

Burgess, Robert et al, "How close are we really to 1970s style inflation?," *Bloomberg Opinion*, June 11, 2022. [link]

lmin

G/B/U

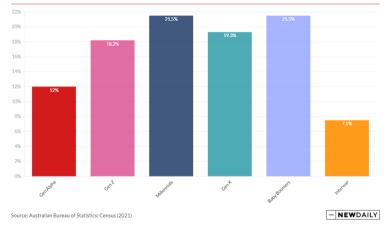

Origins

How and W

/lultiples

Color 0000000

Esnold on Brandon's Chart, 2 of 2



Burgess, Robert et al, "How close are we really to 1970s style inflation?," Bloomberg Opinion, June 11, 2022. [link] nd When Multiples Color R 00000 0000000 0

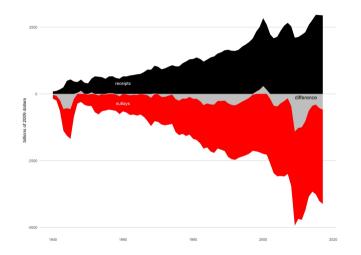
Esther on Dayo's Graphic

Generational shift: Rise of the millennials

G/B/U

Elmas, Matthew and Zara Falkiner-Rose, "These five Census graphs tell a story about a rapidly changing Australia," *The New Daily*, June 28, 2022. [link]

G/B/U ○○○○○○●○○○○○ Origins 0000000000


Multiples

R

My Surplus Chart

My Surplus Chart

Esnold's Terrible NYT Graphic

G/B/U

Zengerle, Jason. "How the Trump Administration is Remaking the Courts," *NYT* August 22, 2018. [link].

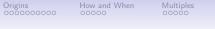
How and When

Multiples 00000

or | 00000

In Table Form

	year	judges	gavel end	gavel top	
	(1)	(2)	(3)	(4)	
Reagan	1980	19	3.5	3	
Bush 1	1988	18	2.875	2.375	
Clinton	1992	18	2.875	2.375	
Bush 2	2000	16	1.75	1.25	
Obama	2008	15	1.125	0.625	
Trump	2016	24	6.375	5.875	

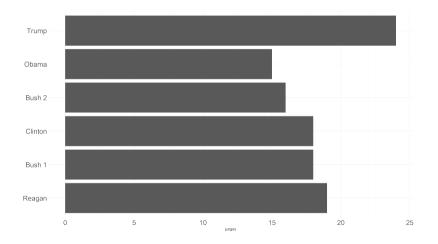


Multiples 00000

Color 00000000

In Table Form

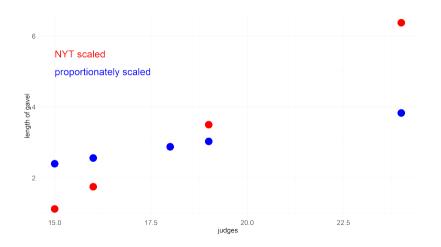
	year	judges	gavel end	gavel top	(3) / (2)	
	(1)	(2)	(3)	(4)	(5)	
Reagan	1980	19	3.5	3	0.18	
Bush 1	1988	18	2.875	2.375	0.16	
Clinton	1992	18	2.875	2.375	0.16	
Bush 2	2000	16	1.75	1.25	0.11	
Obama	2008	15	1.125	0.625	0.08	
Trump	2016	24	6.375	5.875	0.27	


G/B/U ○○○○○○○○●○○○

Color 0000000

In Table Form

	year	judges	gavel end	gavel top	(3) / (2)	(5)*(2) if 18
	(1)	(2)	(3)	(4)	(5)	(6)
Reagan	1980	19	3.5	3	0.18	3.03
Bush 1	1988	18	2.875	2.375	0.16	2.88
Clinton	1992	18	2.875	2.375	0.16	2.88
Bush 2	2000	16	1.75	1.25	0.11	2.56
Obama	2008	15	1.125	0.625	0.08	2.4
Trump	2016	24	6.375	5.875	0.27	3.83


As as a Graphic, 1 of 2

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

As as a Graphic, 1 of 2

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- 1. Scatter plot definition and origins
- 2. How and when to use scatters
- 3. Small multiples
- 4. Color
- 5. R stuff

Admin

Origins •000000000 How and Who

Aultiples

Color

Scatter Plot: Definition and Origins

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 · • ○ へ ⊙

lmin

Origins ○●○○○○○○○○

How and WI

Multiples 00000

000000

What is a Scatter Plot?

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 · • ○ へ ⊙

· Plots values of two different variables on the same chart

What is a Scatter Plot?

- · Plots values of two different variables on the same chart
- Shows correlation between two variables

What is a Scatter Plot?

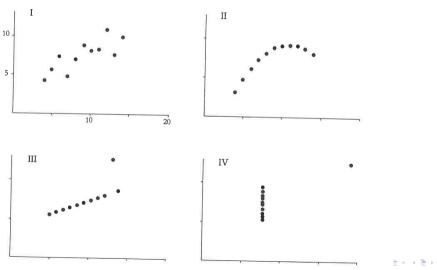
<□> <問> <問> < 目> < 目> < 目> = - のへで

- Plots values of two different variables on the same chart
- Shows correlation between two variables

Origins

• Can also show distribution of each variable

Origins


Same mean, same variance

	I	1	I]	III]	IV
х	Y	x	Y	x	Y	x	Y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

A Reminder and Example: Anscombe's Quartet

Origins

Same mean, same variance

€ 900

What Makes a Scatter Plot Different From All Other Plots?

(That We have Studied) - from Friendly and Denis, 2005

What Makes a Scatter Plot Different From All Other Plots? (That We have Studied) – from Friendly and Denis, 2005

• It is fundamentally 2-D

What Makes a Scatter Plot Different From All Other Plots? (That We have Studied) – from Friendly and Denis, 2005

- It is fundamentally 2-D
- A line graph is sort of 2-D, but only really for time

What Makes a Scatter Plot Different From All Other Plots? (That We have Studied) – from Friendly and Denis, 2005

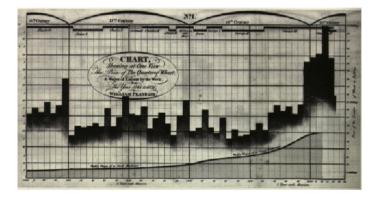
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- It is fundamentally 2-D
- A line graph is sort of 2-D, but only really for time
- Everything else we've studied is either a categorical relationship
 - bar chart

What Makes a Scatter Plot Different From All Other Plots? (That We have Studied) – from Friendly and Denis, 2005

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- It is fundamentally 2-D
- A line graph is sort of 2-D, but only really for time
- Everything else we've studied is either a categorical relationship
 - bar chart
- or 1-D
 - histogram

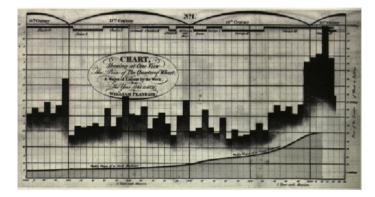

What Makes a Scatter Plot Different From All Other Plots? (That We have Studied) – from Friendly and Denis, 2005

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- It is fundamentally 2-D
- A line graph is sort of 2-D, but only really for time
- Everything else we've studied is either a categorical relationship
 - bar chart
- or 1-D
 - histogram

Map is the closest analogue to a scatter: points in (x, y) space

Scatters Are the Most Modern of Graphs We Study



Origins

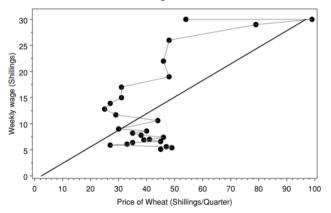
- What is this graph?
 - two y axes
 - wages in line
 - price of wheat in bars
 - horizontal axis is time

• What is the goal of this graph?

Scatters Are the Most Modern of Graphs We Study

Origins

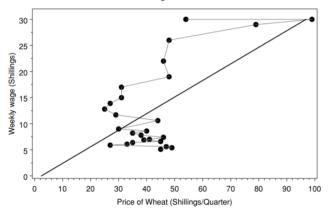
- What is this graph?
 - two y axes
 - wages in line
 - price of wheat in bars
 - horizontal axis is time
- What is the goal of this graph?
 - show that purchasing power increases over time


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

• is it clear?

Connecting line is time

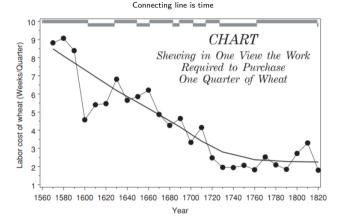
Origins



- What is this graph?
 - price of wheat on x
 - wage on y
 - line connects by time

Connecting line is time

Origins

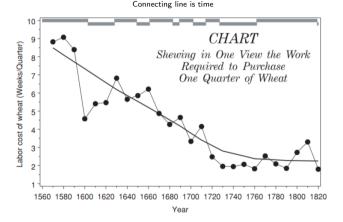


- What is this graph?
 - price of wheat on x
 - wage on y
 - line connects by time
- Why is this graph not too helpful?
 - you don't know when is when

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

no temporal point

Revision of Playfair Makes the Key Point – But is Not a Scatter



- What is this graph?
 - time on x
 - on y, number of weeks required to purchase one quarter of wheat

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

line connects by time

Revision of Playfair Makes the Key Point – But is Not a Scatter

- What is this graph?
 - time on x
 - on y, number of weeks required to purchase one quarter of wheat
 - line connects by time
- Why is this better?
 - line connects time and you can see it

- makes the ratio for you
- the ratio is the point!

<□> <同> <同> < 目> < 目> < 目> < 目> < 目> □ ○ ○ ○

One of the First Scatterplots: 1886

The Graph

- aims to predict one variable from the other
- has no time dimension
- notes density of observations

One of the First Scatterplots: 1886

The Graph

• aims to predict one variable from the other

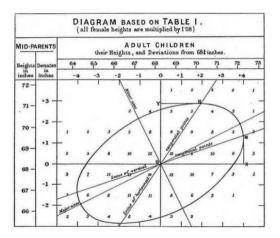
Origins

- has no time dimension
- notes density of observations

The Author: Francis Galton

- a measurer of all things: weather, height, etc
- invented or first described
 - the questionnaire
 - standard deviation
 - regression to the mean
- and the developer of eugenics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00


U Origins 000000000

How and Who

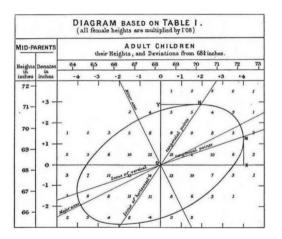
oooo

lor 00000

Galton's Scatter

- What is this graph?
 - height of adult children on x
 - height of parents on y
 - numbers are the number of observations at each point

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▶ ▲□▶


G/B/U 0000000000000000 Origins

How and Whe

oooo

0000000

Galton's Scatter

- What is this graph?
 - height of adult children on x
 - height of parents on y
 - numbers are the number of observations at each point
- This is an early scatter
- Scatters are nor prevalent until the 1920s
- Still usually too complicated for most layperson communications

Galton, 1886.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Admin

Origins 0 000000000 How and When

Multiples 00000

Color

How and When to Use Scatters

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 · • ○ へ ⊙

How and When

ultiples 0000

Pros and Cons of Scatters

Most common type of graph for academic presentation

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Pros and Cons of Scatters

How and When

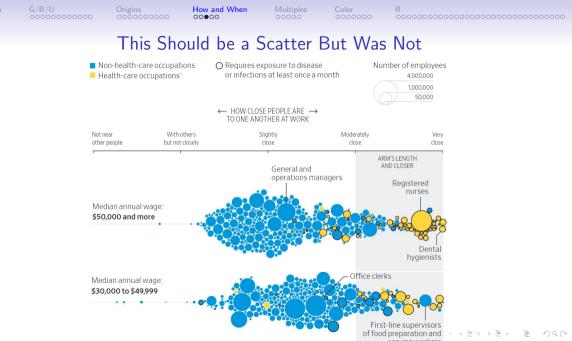
Most common type of graph for academic presentation

Pros

- Can clearly and compellingly show a bivariate relationship
- Shows relationship throughout the distribution

How and When

Most common type of graph for academic presentation

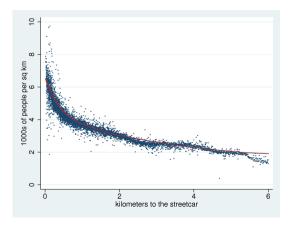

Pros

- Can clearly and compellingly show a bivariate relationship
- Shows relationship throughout the distribution

Cons

- Requires the audience to think about the relationship
- Sometimes too complicated for policy communication
- Can obscure relationships that do exist

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00


dmin

Origins

How and When

ultiples 2000 0000000

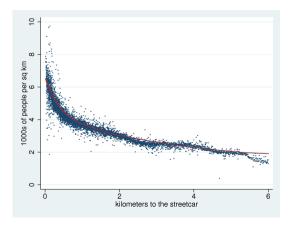
My Best Ever Scatter

What is it?

- Each point is
- average population density near about 400 land plots
- at a given distance from an old streetcar

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• red line is a flexible regression line


dmin

Origins 00000000 How and When

ultiples 0000 0000000

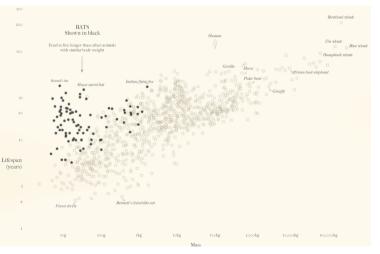
≪ ⊃०००००००००००००००००००००००००००००

My Best Ever Scatter

What is it?

- Each point is
- average population density near about 400 land plots
- at a given distance from an old streetcar

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00


• red line is a flexible regression line

Data show the point

How and When

lultiples

How Can You Annotate a Scatter?

- best fit lines
- ovals
- colors
- call out individual items

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Admin

00000 0

Origins 0000000000

How and Who

Multiples •0000

R 000 0000000

Showing Multiple Variables or Variations

1. If they are in the same units?

1. If they are in the same units? graph on the same scale

- 1. If they are in the same units? graph on the same scale
- 2. If they are in different units?

- 1. If they are in the same units? graph on the same scale
- 2. If they are in different units?
 - can use two axes, but rarely a good idea why?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

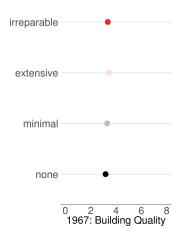
- 1. If they are in the same units? graph on the same scale
- 2. If they are in different units?
 - can use two axes, but rarely a good idea why?
 - plot on two charts side-by-side
 - do you want side-by-side vertical or horizontal?

- 1. If they are in the same units? graph on the same scale
- 2. If they are in different units?
 - can use two axes, but rarely a good idea why?
 - plot on two charts side-by-side
 - do you want side-by-side vertical or horizontal?
- 3. If you have many different variables to show?
 - see the next slide..

When do you use them?

- Multiple variables to show
- Too much for one graph
- In presentations, usually helpful to explain one part first

There is an implicit assumption that all graphs use the same scale.


00000 00

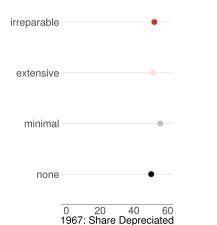
Origins 0000000000 How and Whe

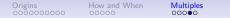
Multiples 0

My Small Multiples

Destruction Roughly Even by 1967 Quality 14th Street

/U

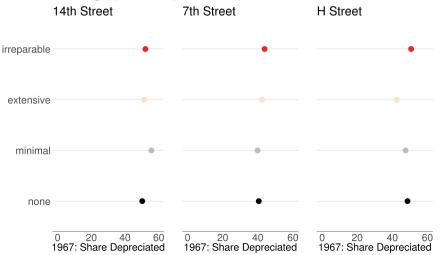

Origins 0000000000 How and When


Multiples

r R 0000 000

My Small Multiples

Destruction Roughly Even by 1967 Depreciation 14th Street



Color

My Small Multiples

Destruction Roughly Even by 1967 Depreciation

How Beyonce Exploits the Power of Small Multiples

Multiples

Origins

With thanks to Vibe.

Admin O G/B/U Origins

How and

Multiples 00000 Color ●000000

Color

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

• Preattentive processing

Why Color?

- Preattentive processing
- Allows you to avoid labels
 - put the name in the same color as the bar or line
- Allows you to make subtle connections across graphics

Why Color?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Preattentive processing
- Allows you to avoid labels
 - put the name in the same color as the bar or line
- Allows you to make subtle connections across graphics

But don't use too many colors! We can't remember them.

lmin

Origins 00000000 How and Whe

tiples Color

Color Definitions

1. Hue

- color or shade
- based on perception
- Ex: difference between ripe and not-so-ripe bananas

lmin

Origins 000000000 How and Whe

tiples Color

Color Definitions

1. Hue

- color or shade
- based on perception
- Ex: difference between ripe and not-so-ripe bananas

2. Saturation

- Mix of hue with white
- Ex: colors of chocolate milk

dmin

Origins 0000000 How and Whe

ltiples 000

Color

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

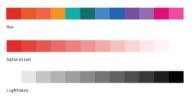
Color Definitions

1. Hue

- color or shade
- based on perception
- Ex: difference between ripe and not-so-ripe bananas

2. Saturation

- Mix of hue with white
- Ex: colors of chocolate milk
- 3. Brightness/Luminosity/Lightness
 - Mix of hue with darker shading
 - Ex: toast vs burned toast


Color 000000

Color Definitions

1. Hue

- color or shade
- based on perception
- Ex: difference between ripe and not-so-ripe bananas
- 2. Saturation
 - Mix of hue with white
 - Ex: colors of chocolate milk
- 3. Brightness/Luminosity/Lightness
 - Mix of hue with darker shading
 - Ex: toast vs burned toast

Thank you to this helpful article for thoughts and pic; and to Amit Agarwal for examples.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Computer mixes red, blue, green in a pixel
- Computer screens cannot generate all the colors you can see

- Computer mixes red, blue, green in a pixel
- Computer screens cannot generate all the colors you can see
- Colors look different on different screens

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Computer mixes red, blue, green in a pixel
- Computer screens cannot generate all the colors you can see
- Colors look different on different screens
- Represented multiple ways
 - RGB: (xxx,xxx,xxx). Aqua: (0, 255, 255)
 - Hex: #XXXXXX. Aqua: #00FFFF

Thank you NASA! [link]

Color

Types of Color Schemes

1. Qualitative/Categorical

2. Sequential

Types of Color Schemes

For what?

1. discrete things

Color

Types of Color Schemes

 $1. \ \ Qualitative/Categorical$

2. Sequential

Types of Color Schemes

For what?

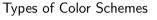
1. discrete things

Color

- maps with categories
- lines by type

 $1. \ \ Qualitative/Categorical$

2. Sequential


Types of Color Schemes

For what?

1. discrete things

Color

- maps with categories
- lines by type
- 2. continuous values

 $1. \ \ Qualitative/Categorical$

2. Sequential

G/B/U 0000000

Origins

How and Whe

tiples Color

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Types of Color Schemes

2. Sequential

3. Divergent

For what?

- 1. discrete things
 - maps with categories
 - lines by type
- 2. continuous values
 - dollar amounts
 - shares of population

Color

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Types of Color Schemes

Types of Color Schemes 1. Qualitative/Categorical 2. Sequential

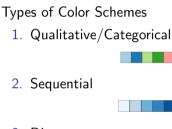
Divergent 3.

For what?

1. discrete things

0000000

- maps with categories
- lines by type
- continuous values
 - dollar amounts
 - shares of population
- 3. continuous values where we care about breakpoint


dmin

G/B/U 00000000000 Origins 0000000000 How and Whe

Itiples Color

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Types of Color Schemes

3. Divergent

For what?

- 1. discrete things
 - maps with categories
 - lines by type
- 2. continuous values
 - dollar amounts
 - shares of population
- 3. continuous values where we care about breakpoint
 - up or down
 - high or low
 - hot or cold

Origins

How and When 00000

iples Color 00 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

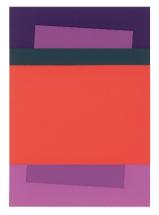
How to Choose?

Recommendations

- ColorBrewer
- Data Color Picker
- Chroma.js Color Palette Helper
- Color Thief: makes palettes from images!
- Viz Palette: see your colors in fake graphics

How and Whei 00000 iltiples

Color


Words of Warning: Color is Relative

• Culturally relative

- Culturally relative
- Optically relative

Color

Interaction of Color, Josef Albers, Plate 4.4

Admin O G/B/U Origins

How and W

Multiples 00000

Color

R Notes

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Today in R: Scatter Plots, Segments, Small Multiples and Vector Power

- 1. Scatter plots: geom_point()
- 2. Segments: geom_segment()
- 3. Small multiples
- 4. Instead of a loop: Use vector power

1. Scatter plots

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Scatter plots: Shapes

Scatter plots: Shapes

Scatter plots: One color

Scatter plots: Colors by Group

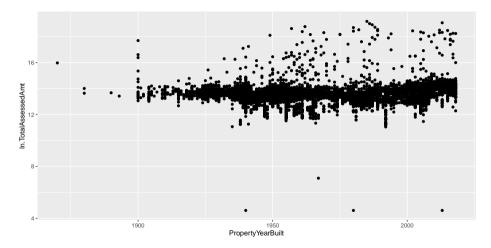
Scatter plots: Colors by Group

To show colors by a variable

You can specify colors in

Scatter plots: Calling out Regions

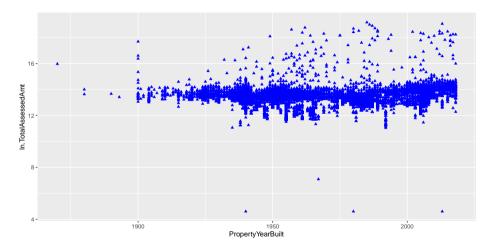
```
best fit line: use cautiously
geom_smooth(method = lm, se = FALSE)
best fit curve: same
geom_smooth(se = FALSE)
best fit curve: with shaded error region
geom_smooth()
annotations
geom_rect() geom_segment()
```


▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 亘 - のへで

Some Examples With Property Data from Arlington, VA

- property data for Arlington County, VA
- observe attributes about properties
 - assessed value
 - year built
 - many other things

Some Examples With Property Data from Arlington, VA


Some Examples With Property Data from Arlington, VA

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Colors and Shape for Property Data from Arlington, VA

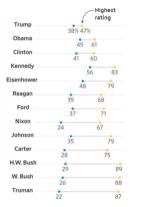
Colors and Shape for Property Data from Arlington, VA

◆□▶ <圖▶ < ≧▶ < ≧▶ ≧ のQ@</p>

Colors by Value for Property Data from Arlington, VA

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Colors by Value for Property Data from Arlington, VA


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

2. Drawing Segments

This is a scatterplot with segments!

・ロト ・ 御 ト ・ モト ・ モト

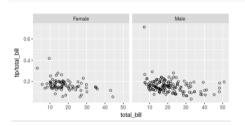
æ

Thanks to WSJ.

Code Segments

Code Segments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

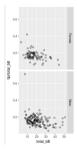

There is also geom_curve for brave people

3. Small Multiples, or Facets

facet_grid(rows = vars(VARIABLE))

(日) (部) (注) (注) (注)

3. Small Multiples, or Facets

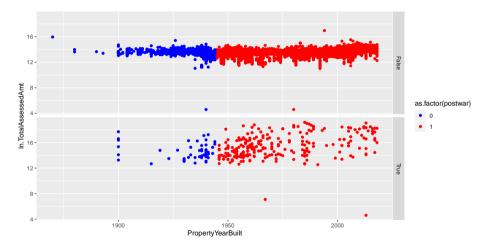

facet_grid(rows = vars(VARIABLE))

Thanks to Winston Chang.

Facet Columns

facet_grid(cols = vars(VARAIBLE))

・ロト ・母ト ・ヨト ・ヨト ・ヨー うへで



Or both.

Faceting for Arlington

```
print(table(arl.samp$CommercialInd))
##
## False True
## 11976
         307
p2 <-ggplot() +
  geom point(data = arl.samp,
            mapping = aes(x = PropertyYearBuilt,
                          v = ln.TotalAssessedAmt.
                          color = as.factor(postwar))) +
  scale color manual(values = c("blue", "red")) +
  facet_grid(rows = arl.samp$CommercialInd)
```

Faceting for Arlington

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

4. Avoiding a Loop

Suppose you want to do this many times

・ロト ・母ト ・ヨト ・ヨト ・ヨー うへで

dfln.x <- log(df\$x)

4. Avoiding a Loop

```
Suppose you want to do this many times
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

```
dfln.x <- log(df$x)
```

This does not work!

```
tolog <- c(x,y,z)
for(i in tolog){
    df$ln.i <- log(df$i)
}</pre>
```

The Elegant Solution

```
tolog <- c("x","y","z")
df[paste0("ln.",tolog)] <- log(df[tolog])</pre>
```

・ロト ・日ト ・ヨト ・ヨト ・ヨー うへで

The Elegant Solution

```
tolog <- c("x","y","z")
df[paste0("ln.",tolog)] <- log(df[tolog])</pre>
```

・ロト ・日ト ・ヨト ・ヨト ・ヨー うへで

The Elegant Solution in Action

The Elegant Solution in Action

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

df

 ##
 x
 y
 z

 ##
 1
 1
 10
 100

 ##
 2
 2
 20
 200

 ##
 3
 3
 30
 300

The Elegant Solution in Action

x y z ln.x ln.y ln.z
1 1 1 10 100 0.0000000 2.302585 4.605170
2 2 20 200 0.6931472 2.995732 5.298317
3 3 30 300 1.0986123 3.401197 5.703782

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 亘 - のへで

- Presentations due online a few hours before you present
- More detailed instructions next week
- Final paper due July 27
- Office hours available can schedule more as needed