Lecture 5: Maps 1 of 2

February 27, 2023

Course Administration

- 1. Hopefully comments next week on charts
- 2. Beginning of a three lecture deviation from charts
 - maps 1
 - functions and stories
 - maps 2

- 1. Hopefully comments next week on charts
- 2. Beginning of a three lecture deviation from charts
 - maps 1
 - functions and stories
 - maps 2
- 3. Sign up for consultations!
 - sign up for slots April 11 see link lecture 11
 - sign up once per group
 - let me know if you can't make any of the open times

Course Administration

- 1. Hopefully comments next week on charts
- 2. Beginning of a three lecture deviation from charts
 - maps 1
 - functions and stories
 - maps 2
- 3. Sign up for consultations!
 - sign up for slots April 11 see link lecture 11
 - sign up once per group
 - let me know if you can't make any of the open times
- 4. Next class: come prepared to work on your policy brief storyline

Lecture 5: Maps

Good, Bad, Ugly Maps in general

- 1. What is a map?
- 2. Why maps?
- 3. What are the components of maps?
- 4. When do maps deceive?

Digital maps

- 1. What they are
- 2. What they can do

Lecture 5: Maps

Good, Bad, Ugly Maps in general

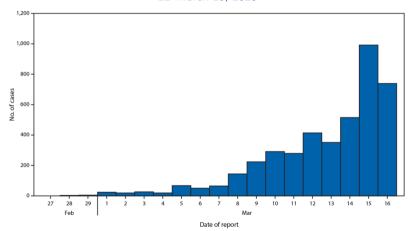
- 1. What is a map?
- 2. Why maps?
- 3. What are the components of maps?
- 4. When do maps deceive?

Digital maps

- 1. What they are
- 2. What they can do

Making Maps in R

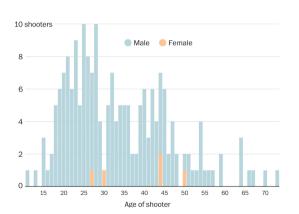
- 1. sf package
- 2. Reading
- 3. Plotting
- 4. Projections
- 5. Spatially combining


Next Week's Assignment

Find a descriptive or choropleth map. Post link to google sheet by Wednesday noon.

Finder	Commenter
Bryan K.	Isabel P.
Tara M.	Gio L.

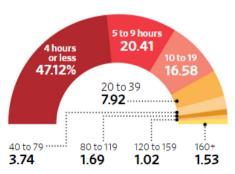
Kristiann on Josh's Example


CDC's Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) // United States, February 12–March 16, 2020

Tara on Morgan's Washington Post Graphic

Tara on Morgan's Washington Post Graphic

Age anOf the 196 1966, only


of 18 and

Kristiann on Josh's Example

"Where New Landlords Go Wrong," WSJ, Feb. 17, 2023

On the Clock

Landlords' time managing rental properties in monthly hours

Lecture 5: Maps 1 of 2

On Maps, Today

- Maps in general
 - 1. What is a map?
 - 2. Why maps?
 - 3. What are the components of maps?
 - 4. When do maps deceive?
 - 5. Save for next map class: Choropleth maps and dot density maps
- Digital maps
 - 1. What they are
 - 2. What they can do (in person)

What and Why of Maps

1. What is a Map?

- Something that tries to describe two-dimensional space
- "scale model of reality" (Monmonier)
- "almost always smaller" than reality

2. Why Maps?

- Use a map if you want to locate something in two-dimensional geographic space
- Use a map when you want to show a **spatial** relationship
- Don't use a map if you want to compare geographic units

1. To show relationship between two geographic things. Examples?

- 1. To show relationship between two geographic things. Examples?
 - metro stops relative to average home prices
 - population density relative to the equator
- 2. To show a geographic pattern in an outcome. Examples?

- 1. To show relationship between two geographic things. Examples?
 - metro stops relative to average home prices
 - population density relative to the equator
- 2. To show a geographic pattern in an outcome. Examples?
 - voting outcomes correlated over space
 - geographic features that change smoothly and sharply over space

- 1. To show relationship between two geographic things. Examples?
 - metro stops relative to average home prices
 - population density relative to the equator
- 2. To show a geographic pattern in an outcome. Examples?
 - voting outcomes correlated over space
 - geographic features that change smoothly and sharply over space

Don't use a map if you can do something simpler!

3. What Do You Have to Decide to Make a Map?

In distilling reality, there are three key choices

- 1. scale
- 2. projection
- 3. symbolization

Projection

- We want to show both
 - equivalence: size proportional to physical size
 - conformality: shape proportional to true shape

Projection

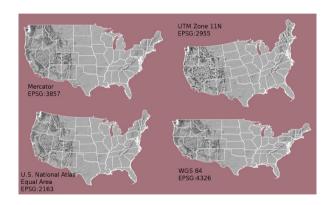
- We want to show both
 - equivalence: size proportional to physical size
 - conformality: shape proportional to true shape
- But you cannot do both!
- When does this matter?

Projection

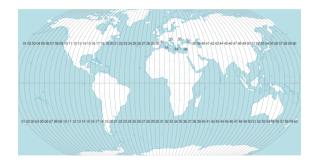
- We want to show both
 - equivalence: size proportional to physical size
 - conformality: shape proportional to true shape
- But you cannot do both!
- When does this matter?
 - This matters for maps of the world
 - It is practically irrelevant for a map of DC
 - For small areas, we care about precision of distance
 - Frequently use a UTM (Universal Transverse Mercator) projection: units in meters

Rules of Thumb for Projections for Medium Areas

- Monmonier (p. 45) suggests for US either
 - Albers equal-area conic
 - Lambert conformal conic
- However, most maps you use should come with a projection defined


An Equal-Area Projection

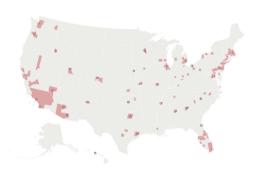
Thanks, Wikipedia.


The USA Four Ways

Thanks to Michael Corey.

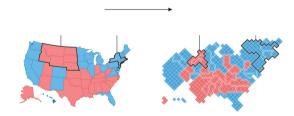
UTM Zones

For small areas, use UTM projection if you need to calculate distances. Each number is a zone.

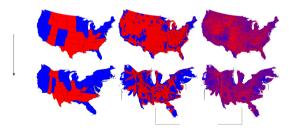

Thanks to Michael Corey.

4. Why Avoid Maps?

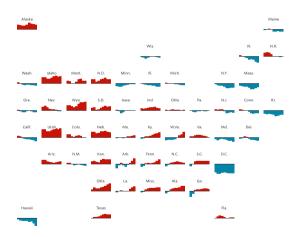
- They add complexity
- Geographic unit size infrequently related to importance
 - but remember that size indicates value
 - problematic!
- Examples?


Red and Grey Areas Have About the Same Number of Votes Cast in 2012

With many thanks to the Washington Post


One Possible Solution

- A "cartogram" sizes locations by something: votes or people or electoral votes
- Five red midwestern states correspond to red block
- Mid-Atlantic corresponds to blue block



Another Possible Solution

- Thanks to U of Michigan physicist Newman
- Columns are state winner, county winner, county shaded by popular vote share
- Top is real map, bottom is cartogram
- Leftmost sized by electoral votes, others by votes cast

And a Quasi Map

Thanks to the Wall Street Journal, here.

Digital Maps

1. Digital Maps Have

- Units defined by coordinates in space
- Data for each unit

Examples of a map unit of observation, please!

Digital Maps

- A map is a representation of space
- A digital map is a file that tells a computer how to do this
- There are many formats, but we'll focus on shapefiles
- Shapefiles are a proprietary ArcInfo format, but can be read in R

Three Major Types of Shapes for Maps

- 1. points
- 2. lines
- 3. polygons

Points in Space

- location 1: (x, y)
- location 2: (x, y)
- location 3: (x, y)

What would you represent with points?

A Points Dataframe Example

LibID	X	Υ	Name	Books
Ana	38.866	-76.980	Anacostia	500
CV	38.889	-76.932	Capitol View	501
Gtn	38.913	-77.068	Georgetown	499

Lines in Space

- location 1: $(x_1, y_1), (x_2, y_2)$
- location 2: $(x_1, y_1), (x_2, y_2)$
- location 3: $(x_1, y_1), (x_2, y_2)$

What would you represent with lines?

A Lines Dataframe Example

Int	X1	Y1	X2	Y2	Name	Condition
495	45	-62	26	-62	1495W	good
695	23	-50	25	-50	1695S	poor
10	15	-23	18	-24	I 10	excellent

Polygons in Space

- location 1: $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4), (x_1, y_1)$
- location 2: $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4), (x_5, y_5), (x_1, y_1)$
- location 3: $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_1, y_1)$

Note that last point is the same as the first point.¹ What would you represent with polygons?

A Polygon Dataframe Example

Triangle	X1	Y1	X2	Y2	X3	Y 3	X4	Y4
а	1	1	1	2	2	1	1	1
b	1	1	1	3	3	1	1	1

But Where Do the Points Go?

- A map file needs some instructions on what the points mean
- Map makers define coordinate systems so that everyone agrees on what $(x_1, y_1), (x_2, y_2)$ means
- Many maps have a geographic/global/spherical system: in latitude/longitude

But Where Do the Points Go?

- A map file needs some instructions on what the points mean
- Map makers define coordinate systems so that everyone agrees on what $(x_1, y_1), (x_2, y_2)$ means
- Many maps have a geographic/global/spherical system: in latitude/longitude
- And to lay flat, if we are not drawing on a globe
 - we need a projected coordinate system
 - have a defined unit of measurement: meters, feet, decimal degrees
 - usually tell you meters/feet/miles from a specific point

Implications for Mapping

- You can't put maps with two different coordinate systems on top of each other
- Easier to calculate distances and areas with projected coordinate systems
- You can go from one projection to another, but use the right command
- Digital maps usually come with a projection defined

R, on Maps

Next Lecture

- Next class: come prepared to work on your policy brief storyline
- Read Knaflic, Chapters 7 and 8