
Do Households Value Lower Density:
Theory, Evidence, and Implications for Cities

Chuanhao Lin∗

March 17, 2023

Abstract

A substantial literature demonstrates that zoning restrictions on building height or
density lower supply and increase housing prices. However, negative externalities
due to household preferences for lower neighborhood density could justify restric-
tions on private developers. Thus building density in a laissez-faire city may be
above the welfare maximizing level. The potential external costs of height and
density are tested here and found to be substantial. Increased building separation
appears to mitigate the external cost of height. This implies that some level of
density or floor regulation (FAR) regulation is welfare-enhancing, and that the gap
between price and marginal construction cost overstates the social cost of zoning
because households value lower density.
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1 Introduction

Do households value lower density? There are many studies showing that lower density

is associated with higher neighborhood house price. McConnell and Walls (2005) provide

a nice summary of studies finding that there is a positive price premium associated

with access to parks and open space. Saphores and Li (2012) find that single family

properities were valued higher with additional irrigated grass on the parcels and in the

neighborhood. Chintantya and Maryono (2018) show that there is higher willingness to

pay for proximity to urban green space. Lin, Jensen, and Wachter (2022) conclude that

even small vacant unimproved lots raise adjacent property values in Philidephia. To the

extent that open space is the opposite of development density, the positive open space

premium is consistent with the hypothesis that households value low density and access

to light and views.

There is growing evidence that residents are willing to pay more for space that is less

obstructed by neighboring structures. First, Liu, Rosenthal, and Strange (2018) find that

rents vary directly with floor level in commercial buildings in the United States, suggesting

that consumers are willing to pay more for height-based amenities. Danton and Himbert

(2018) report a similar pattern in residential buildings in Switzerland. Fleming et al.

(2018) find that an extra hour of sunshine falling directly on a unit is associated with a

higher asset price for housing in New Zealand. If households value height-based amenities

such as views and sunlight, nearby building heights and density should have disamenity

effects. Davidoff (2016) reports that topographic barriers have amenity effects that raise

house prices. Borck and Schrauth (2021) show that local air quality, measured by the

concentrations of NO2 and O3, decreases with local population density in Germany.

Shoag and Veuger (2019) demonstrate that planning regulation is positively correlated

with local restaurant quality; and Kuang (2017) shows that a higher quality of local

restaurants increases local house price valuation. Together, these two papers suggest that

planning regulation may increase households’ willingness to pay for housing. Davidoff,

Pavlov, and Somerville (2022) find that increased densification by “laneway homes” lowers

nearby property values.

As noted in Quigley and Rosenthal (2005), urban planners implement many different

types of regulations1. This reserach is concerned only with zoning controls that limit

1Among the planning regulations reviewed in Quigley and Rosenthal (2005), many have a problem-
atical relation to economic efficiency. Local homeowners may vote for supply restrictions in order to raise
house values. Alternatively, restricting access to smaller housing units or housing and building codes
may be motivated by a desire to exclude lower income households for government fiscal reasons.

1



building density. Some regulations directly control building height. Others regulate

density through requirements for open space and building setbacks. Regulations targeting

floor area ratio(FAR) are most common. Planners argue that limiting density raises

surrounding house prices but that indicates an increase in urban aesthetic value and

makes neighborhoods more attractive.

Alternatively, a significant literature2 argues that zoning raises the cost of housing

production by requiring more land per unit of interior space. If this is true, then zoning

reduces the supply of housing and increases housing costs without raising urban amenity,

potentially distorting the location of labor and production3.

Many empirical tests have found a positive relation between the stringency of zoning

regulation and the price of housing. Generally, researchers attribute these price increases

to density limits raising the cost of producing housing rather than raising the quality of

the built environment. Examples of this literature include Segal and Srinivasan (1985),

Malpezzi (1996), Green, Malpezzi, and Mayo (2005), Glaeser and Gyourko (2018), Saiz

(2010), and Turner, Haughwout, and Klaauw (2014). These papers estimate the relation

between the amount of land use regulation, measured by a citywide index, and housing

price or rates of new housing construction. The general finding is that zoning is associ-

ated with higher prices per housing unit and lower amounts of new construction4. Rose

(1989) and Saiz (2010) show that natural topographic restrictions on the supply of land

for housing raise housing prices and lower the elasticity of supply of housing units. To

the extent that topographic barriers emulate zoning restrictions by reducing the density

of development, this suggests that planning restrictions raise prices. More recent research

by Gyourko, Mayer, and Sinai (2013), Cun and Pesaran (2018), and Parkhomenko (2020)

argues that the increase in zoning restrictions has contributed to increases in the disper-

sion of house prices across cities. Similarily, Song (2021) finds that increasing minimum

lot size zoning increases sales prices. Büchler and Lutz (2021) among others report that

up zoning in small areas, raises supply and lowers area prices.

The current state of the literature is quite curious. There is general agreement that

lowering density below laissez faire raises house prices and lowers supply of interior space.

2See, for example, Glaeser, Gyourko, and Saks (2005), Glaeser and Ward (2009), and Glaeser and
Gyourko (2018) among others.

3See Hsieh and Moretti (2018), Herkenhoff, Ohanian, and Prescott (2018), and Bunten (2017) among
others

4Some research, including Green, Malpezzi, and Mayo (2005) and Saiz (2010), find that zoning also
reduces the elasticity of housing supply measured as the relation between the percentage changes in
housing units and the sale prices of housing units. Recently Liu (2018) noted that effects on housing
space and housing units are not the same.
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But those advocating regulation say this is an amenity effect while others attribute the

rise in price to limitations on supply. The central difference is over the possibility that

zoning increases the willingness to pay for housing5. In the context of building height

regulations, the crucial question is whether that tall buildings have negative spillover

effects on nearby properties because households prefer lower density.

A literature review indicates the lack of formal testing for and quantification of potential

negative externalities of tall buildings on surrounding properties. This paper attempts to

fill that gap. In addition, the paper models the potential effects of density externalities

on the relation between a laissez-faire and an optimal city. Individual developers may

perceive the demand for low density, but they do not bear the cost associated with the

additional height of their structures and have an incentive to choose development density

that is above welfare-maximizing levels. Comparing the planner’s city with a laissez-faire

city shows that the optimum city can be achieved by setting limits on building height,

or by imposing a regulatory tax on housing development whose size reflects the external

damage of the height externality. This means that the market price of additional structure

height should exceed the marginal construction cost of adding height in the optimum city.

In contrast to other cases of urban externalities, the height or density externality mod-

eled here is a local negative externality generated by laissez-faire development. Therefore,

it is different from classical externalities such as traffic congestion and pollution exter-

nalities, or positive agglomeration economies, all of which are functions of total city

population. Because height externalities, if they exist, are more severe in high-density

areas, any downward adjustments of height are concentrated near the center city. Con-

sequently, theory suggests that the optimal city has higher housing price, lower housing

consumption and higher land rent. The city radii are identical provided that the exter-

nality is negligible at the low residential densities found near the edge of the city. These

new results contrast with other externalities considered in the literature, such as unpriced

traffic congestion, open space amenity at city boundary, or general pollution, all of which

motivate the use of anti-sprawl policies such as urban growth boundaries.6

The height or density externality test implemented here is based on the difference

in surrounding rents associated with the height of immediately adjacent buildings. Of

course, height and density can have negative effects on users of the constructed environ-

5There have been a few research attempts to measure the net welfare benefit of zoning, such as
Cheshire and Sheppard (2002), Glaeser, Gyourko, and Saks (2005), Turner, Haughwout, and Klaauw
(2014), and Albouy and Ehrlich (2018), all of which find negligible benefit.

6See, for example, Brueckner (2001) for a discussion of these externalities, and Larson and Yezer
(2015) for the effects of various zoning regulations.
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ment other than the adjacent renters. For example, city streets are used by motorists,

pedestrians, etc., and restrictions on light, air, and appearance are experienced by these

individuals in addition to the occupants of surrounding structures. Accordingly, the ex-

ternality estimate obtained here for rental units does not consider the possibility that

additional amenity effects are produced by building height and density. A crucial aspect

of the empirical research is that zoning must be exogenous. The existence of a height

externality is tested here using data from Washington, DC, where height limits are based

on a 1910 act of the US Congress rather than a locally elected government.

The empirical testing finds that building height generates substantial negative exter-

nalities for surrounding building rents. In addition, the negative effect of nearby building

heights is found to be mitigated by distance to adjacent buildings. This suggests the ex-

ternality depends on both height and building separation and that FAR regulation, which

is currently the basis of many planning restrictions, could be welfare enhancing. The fact

that the price effect is attenuiated by physical distance between buildings measured in

meteres identifies it as related uniquely to development density.

This research develops a new method to quantify a height or density externalities, and

provides a model that demonstrates how to set regulations to achieve a welfare optimum

if such externalities are significant. The testing performed here and the urban modeling

supporting welfare calcuations are new, however, the research does not imply that current

regulation is optimal. In the specific case considered here, actual regulation lowers heights

below the welfare optimum. This is not surprising because the FAR regulations were set

by Congress in 1910. In some cities, planning regulations may be motivated by issues

completely unrelated to externalities, including rent seeking by developers, fiscal or racial

segregation, or limiting congestion of public facilities. Nothing in this research is designed

to test if the criteria used by planners and politicians in setting regulations elsewhere are

optimal. Instead, the effort here is to determine if, based on economic analysis, FAR

regulation in dense urban environments can be welfare enhancing compared to laissez-

faire, and to determine the effects of such regulation on the structure of optimal versus

laissez-faire cities.

This paper is related to a large body of research that studies the effect of zoning on

housing cost, particularly research that attempts to measure the stringency of land use

regulations. One measurement technique, originating with Glaeser, Gyourko, and Saks

(2005), focuses on the difference between the marginal benefit and the marginal cost of

adding floors to existing housing in areas with height or FAR restrictions. The authors

observe that the market prices of apartments in Manhattan are much higher than the
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marginal construction cost. They argue that if the housing market is efficient, building

height should rise to the point where the housing value from an additional floor is equal to

the marginal cost of adding that floor. Based on the same reasoning, Glaeser and Gyourko

(2018) measured the ratios of medium price to minimum profitable construction cost for

single-family homes across the US housing markets. They observed that cities with

high price-to-cost ratios are also the cities with inelastic supply and restrictive planning

regulations. There is an implicit assumption in this research that negative externality

associated with density is negligible. This paper tests the possibility that the price-cost

gap and/or ratio measure overstates the social cost of zoning.

Finally, this paper is also related to recent research by Asquith, Mast, and Reed (2021),

Li (2021), and Pennington (2021) which finds that completion of high-rise apartment

buildings reduce local neighborhood rents. Büchler and Lutz (2021) report that up zon-

ing raises supply and lower rents. These studies argue that the negative effect of new

construction on surrounding rents is due to a “supply effect” mechanism, or that the

reduction in nearby rents is caused by an increased supply of housing. However, it is also

possible for externalities associated with rising height and density to result in lower prices.

A special falsification test is conducted here to distinguish between the neighborhood rent

and the density externality hypotheses.

The plan of the paper is as follows: the next section discusses the general equilibrium

effect of a building height externality; Section 3 then presents evidence of the existence

of height or density externality in Washington, DC; and section 4 estimates prices and

marginal costs and performs a welfare analysis of the current height restrictions.

2 Effects of height externalities on the city

2.1 Housing development in a Laissez-faire city

Households obtain utility from consumption of a composite good (c), housing space (q)

in the unit that they occupy, and nearby building height or density (H). All households

have an identical quasi-concave utility function: U = v(c, q,H).7 This is an open city

model with costless migration of labor and capital producing iso-utility and iso-profit

equilibria. A series of papers from Stull (1974) and Wheaton (1998) through Turner,

Haughwout, and Klaauw (2014) and Larson and Yezer (2015) has established welfare

7The model developed here has some resemblence to Turner (2005) where household preferences are
for open space as opposed to a general preference for lower density which is modeled here.
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maximization in this model is achieved by maximizing aggregate land value. This is the

object of the planning solution adopted here.

Households prefer to live in neighborhoods with low building height (vH < 0) as higher

neighboring buildings block sunlight, air circulation, and views. The price of consumption

goods is normalized to unity, p is the rental price of housing, household income is y, and

distance to the city center is indexed by x. Households commute to work in the CBD and

face a budget constraint that includes the composite good, housing, and transportation

cost t(x).

c+ pq = y − t(x) (1)

The first-order condition for utility maximization is:

vq(y − t(x)− pq, q,H)

vc(y − t(x)− pq, q,H)
= p (2)

Because households are identical, in equilibrium they must have the same level of

utility. This is the household’s no-arbitrage condition:

v(y − t(x)− pq, q,H) = u,∀x (3)

Eqs. 2 and 3 simultaneously determine each households’ bid rent for space, p(x,H),

and housing demand, q(x,H), for a given location x and nearby building height H, with

income y and utility u parameters suppressed. Differentiating Eq. 3 by x and H, and

making use of Eq. 2 yields an expression that has the familiar form of Muth’s equation:

∂p(x,H)

∂x
=

−t′(x)

q(x,H)
< 0 (4)

which implies that, as a household moves further away from the CBD, the increases in

commuting cost must be compensated by a sufficient reduction in housing cost. More-

over, a parametric increase in H will lower willingness to pay for housing, reflecting the

disamenity from nearby height.

∂p(x,H)

∂H
=

vH
vcq(x,H)

< 0 (5)

Now consider the builder’s problem, which differs from ordinary models in that height

is an important characteristic. Housing output measured in square feet of floor space
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is the product of the number of stories (h) and land (l)8. Competitive housing builders

maximize profit by choosing h and l. Construction cost is a function of building height

S(h). It is assumed that S ′ > 0, S ′′ > 0. r is the rent per unit of land paid to absentee

landlords. Developers maximize profit per unit land in the laissez-faire city without

considering the height externality:

max
h

p(x,H)h− S(h)− r (6)

The first-order condition to maximize profit implies:

p(x,H) = S ′(h),∀x (7)

Builders choose height where the marginal cost of adding an additional floor equals

the market price of floor space. The second-order sufficient condition is satisfied given

that construction cost is strictly convex in building height. The above equation implicitly

defines the builder’s best response, h(x,H), as a function of adjacent builders’ choices of

H. Implicit differentiation yields: ∂h
∂x

= px
S′′(h)

< 0 and ∂h
∂H

= pH
S′′(h)

< 0.

Competition among builders drives profit to zero, which yields a bid rent function for

land in terms of x and H. Furthermore, nearby height depresses land rent.

r(x,H) = p(x,H)h(x,H)− S(h(x,H)), rx < 0, rH < 0 (8)

So far, house price(p), housing demand(q), land rent(r) are solved in terms of x and

h, but h ultimately depends on x. To solve for h, note that developers in the same

neighborhood have a common distance from the CBD. Symmetry among builders implies

that h = H must hold in equilibrium. Eq. 7 can be rewritten as

p(x, h) = S ′(h),∀x (9)

Because pH−S ′′ < 0 and by the implicit function theorem, there is a unique h associated

with every x. Solving the above equation yields the laissez-faire height ĥ(x). Differen-

tiating the above equation with respect to x produces a familiar result that building

8The formulation here follows Glaeser (2008), which is slightly different from the standard presen-
tation where builders combine land and structure input, to produce housing square footage per unite
land. There is no essential difference between these two formulations. Although as noted by Glaeser, the
current formulation relates better to empirical cost estimates for creating space, such as those published
by R.S. Means.
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height falls with distance from CBD. Compared to the laissez-faire city without a height

externality, the term pH < 0 in the denominator indicates that the building height falls

at a lower rate with distance x.

ĥ′(x) =
−px

pH − S ′′ < 0 (10)

Once ĥ(x) is determined, the other key variables that describe the internal charac-

teristics of a city can be rewritten in terms of location x: p̂(x) = p(x, ĥ(x)), q̂(x) =

q(x, ĥ(x)), r̂(x) = r(x, ĥ(x)). Differentiating the housing price equation yields Muth’s

Equation in a laissez-faire city with a height externality:

p̂′(x) = −t′

q

( −S ′′

pH − S ′′

)
< 0 (11)

The first term −t′/q is Muth’s original term. The second term −S′′

pH−S′′ is positive but

less than one, implying that the house price gradient depends on household preferences

regarding neighborhood height. The larger the nearby height effect is, the flatter the

price gradient. Intuitively, given that height is falling with distance, there is now a

gain from moving out in the form of lower height which compensates, in part for the

rise in transportation cost associated with moving out. If households do not care about

neighboring height, the expression is reduced to Muth’s original equation.

Similarly, the height externality also flattens the land rent gradient.

r̂′(x) = rx(x, h) + rH(x, h)ĥ
′(x) = rx(

−S ′′

pH − S ′′ ) < 0 (12)

Eqs. 10, 11, 12 show how the laissez-faire city responses to a height externality. These

effects are summarized in the proposition below:

Proposition 1 A height externality flattens the gradients of housing price, building height,

and land rent. A stronger aversion to nearby height decreases these gradients.

The height externality is a local externality and is larger in high-density areas. As

building height falls with distance according to Eq. 10, the effect of the lower externality

on house price is correspondingly reduced. The result is flatter house price and land rent

gradients. Figure 1 illustrates this result by depicting a laissez-faire city under different

levels of aversion to nearby height and shows that a higher level of aversion to nearby

height results in lower and flatter gradients.
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Thus, the added assumption that households are adversely affected by nearby height

has not altered the central predictions of the standard urban model(SUM) regarding the

internal structure of cities. In particular, the predictions that the price per square foot

of housing, land rent per unit land, and building height or structures are all decreasing

functions of distance to the CBD. The existence of a height externality flattens these

gradients.

Finally, land rent at the edge of the city must equal agricultural land rent, which can

be used to determine the city radius, x̄:

r̂(x̄) = ra (13)

2.2 Optimal city with height externalities

After introducing a height externality to a laissez-faire city, new results regarding the

divergence of the laisse-faire city from the optimal city follow logically. In an open city

model, household utility levels are fixed. The objective of the planner is to maximize

aggregate rent to the land owners9. Unlike builders, the planner reacts to the externality

and perceives that H = h. Formally, the planner chooses h(x) and x̄, to solve the

following problem:

max
h(x),x̄

∫ x̄

0

2πxθ[p(x, h(x))h(x)− S(h(x))]dx+

∫ m̄

x̄

2πxradx (14)

Where m̄ is the geographic boundary of the city. The first part of Eq. 14 is residential land

value, and the second part is agricultural land value. The planner’s first-order necessary

conditions are:

h(x) : pH(x, h(x))h(x) + p(x, h(x)) = S ′(h(x)),∀x (15)

x̄ : p(x̄, h(x̄))h(x̄)− S(h(x̄)) = ra (16)

Comparing Eq. 9 and Eq. 15, it is apparent that, while the laissez-faire builder builds up

to the point where the house price equals marginal construction cost; the planner would

choose a height where housing price exceeds marginal construction cost. The extra term,

pH(x, h)h, is the social cost of an additional floor. Once h(x) is solved from Eq. 15, the

spatial size of the city, x̄, is determined by Eq. 16. The differences between the two cities

are summarized below:

9This approach follows Stull (1974), Bento, Franco, and Kaffine (2006), and Helsley and Strange
(2007), where the settings are open cities.
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Proposition 2 In an open city with a height externality, the laissez-faire equilibrium has

a higher level of residential building height than the social optimum at all locations where

the externality exists. Thus, the imposition of a regulatory tax on building height can be

land rent maximizing.

Proof: The laissez-faire solutions are denoted by hats and the first-best solutions de-

noted by stars. For part (a), suppose that h∗ ≥ ĥ. Then, given S ′′ > 0, S ′(h∗) ≥ S ′(ĥ)

holds, Eq. 9 and 5 imply that pH(h
∗)h∗ + p(h∗) = S ′(h∗) ≥ S ′(ĥ) = p(ĥ) must hold. But

with pH < 0, pH(h
∗)h∗ < 0 and p(h∗) < p(ĥ) must hold. Therefore, pH(h

∗)h∗ + p(h∗) <

p(ĥ). This contradiction rules out the premise of h∗ ≥ ĥ, establishing h∗ < ĥ.

Figure 2 illustrates the difference in building height profiles between the two cities.

It shows that the gap between the two height profiles is especially large near the city’s

center. the externality is the product of pH(x, h) and h, and the tallest buildings are

located at the center.

Proposition 3 The laissez-faire equilibrium has a lower level of housing price, higher

level of housing consumption, and a lower level of land rent than the social optimum at

all locations where the height externality exists.

Proof: Note that h∗(x) < ĥ(x) is already established. For housing price, p̂(x) =

p(x, ĥ(x)), p∗(x) = p(x, h∗(x)), pH(x,H) < 0 implies that p̂(x) < p∗(x). For housing

consumption, q̂(x) = q(x, ĥ(x)), q∗(x) = q(x, h∗(x)), and qH(x,H) < 0 implies q̂(x) >

q∗(x). For land rent, r̂(x) = r(x, ĥ(x)), r∗(x) = r(x, h∗(x)), and rH(x,H) < 0 implies

that r̂(x) < r∗(x).

In the planned city, the lower building heights result in a higher housing price, as

households are willing to pay more for the increased amenity. The higher housing price

reduces housing consumption per household and raises land rent.

2.3 Sample solution with specific functions

To illustrate these general theorectical results, specific functional forms for household

preferences and the housing construction cost function are imposed. This allows a solu-

tion for the population density function. Preferences are assumed to take a Cobb-Douglas
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form, and the housing construction cost function is exponential in building height. For-

mally, the functional form assumptions are:

v = c1−aqaH−γ, S(h) = khδ (17)

where the parameters are all positive and satisfy: 0 < γ < a < 1, k > 1, δ > 1. a is

the share of expenditure on housing, and γ is the disutility from nearby height. Solving

household’s problem yields the following:

p(x,H) = (1− a)
1−a
a a(y − tx)

1
au− 1

aH− γ
a (18)

q(x,H) = (1− a)
a−1
a (y − tx)

a−1
a u

1
aH

γ
a (19)

Builders maximize profit per unit land by choosing building height: maxh p(x,H)h −
khδ − r. The private developer’s first order condition is: p(x,H) = δkhδ−1. Developers

at the same distance, x, must choose the same height H = h. Therefore, the laissez-faire

city height can be solved. Unlike private developers, the planner perceives H = h when

choosing building height. the planner maximizes aggregated land rent, and as analyzed

previously, planner’s first order condition is: pH(x, h)h + p(x, h) = S ′(h). Solving this

yields the optimum city’s height. Let the laissez-faire solutions be denoted by hats while

the first-best solutions have stars. A indicates the constant term (1− a)
1−a
a

1
kδ

a
a(δ−1)+γ .

ĥ(x) = A ∗ a
a

a(δ−1)+γ [(y − tx)u−1]
1

a(δ−1)+γ (20)

h∗(x) = A ∗ (a− γ)
a

a(δ−1)+γ [(y − tx)u−1]
1

a(δ−1)+γ (21)

Given that a > γ, the comparison between two solutions is consistent with proposi-

tion 2. Substituting Eq. 20 or Eq. 21 for H in the households’ housing demand func-

tion, yields housing consumption in the two cities. The population density per unit

land is the ratio of height to housing consumption. Let B denote the constant term

(1− a)
(1−a)δ

a(δ−1)+γ ( 1
kδ
)

a−γ
a(δ−1)+γ

D̂(x) = B ∗ a
a−γ

a(δ−1)+γ (y − tx)−1+ δ
a(δ−1)+γ u− δ

a(δ−1)+γ (22)

D∗(x) = B ∗ (a− γ)
a−γ

a(δ−1)+γ (y − tx)−1+ δ
a(δ−1)+γ u− δ

a(δ−1)+γ (23)

Comparing Eq. 22 and 23, it is clear that laissez-faire household density is higher
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than the planned city at all locations. Thus the planner is able to raise land value per

unit land with lower population density and lower total population. Assuming that the

building height externality is negligible at the low height and density near the city edge,

the two cities have identical radii. Because the total population of a city is the integral of

population density over all the distance from CBD, with identical city radius and because

D∗(x) < D̂(x) at all locations, total laissez-faire population is larger than the optimal

city population10. These new findings are summarized as follows.

Proposition 4 The optimal city has a lower level of population density than the laissez-

faire city at all locations where the height externality exists. Consequently, if the ex-

ternality is negligible near the city edge, the optimal city has less population than the

laissez-faire city, has the same radius, and higher aggregate land value.

In sum, the model developed here has two new and perhaps surprising implications for

the building height externality. First, there is a welfare argument for height or density

restrictions or for a regulatory tax on building height. The size of the tax depends on

building height and varies across locations.

Second, under standard preference and cost functions, the optimal city is less dense

than the laissez-faire city. This implies that the planning solution manages to raise land

rent with less population per unit of land. In fact, if there is no height externality at the

low density near the edge of the city, the planned and laissez-faire cities have identical

radii and land area. Thus the welfare gain from the planned city includes higher aggregate

land value generated with a smaller population.

Finally, these results contrast with the literature on the effects of zoning on city spa-

tial size. The empirical finding is that zoning raises housing prices and decreases city

size. The results presented here agree with the empirical literature but suggest that the

planners are raising welfare by increasing land value with a smaller aggregate population.

Also, the empirical finding that local down zoning lowers house value ignores the general

equilibrium result here that overall planning raises aggregate land value in the city. That

is the partial equilibrium effect of density limits on land price of single properties ignores

the possibility of a general equilibrium effect of planning on all land in the city.

10Laissez-faire city’s population is N̂ =
∫ x̄

0
2πθD̂(x)dx and the optimal city’s population is N∗ =∫ x̄

0
2πθD∗(x)dx. Clearly, D∗(x) < D̂(x) implies N̂ > N∗
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3 Testing the existence and size of building height

and density externalities

The analysis in Section 2 relies on the assumption that households care about nearby

height or density. This section tests for the existence and size of a building height exter-

nality in a relatively dense urban area.

3.1 Rental data and building height measure

Housing rent data were collected from zillow.com. Rent is used instead of asset price

because rental value does not involve expectations of future value. This is particularly

important because the height and density of current surroundings may differ from future

expectations. The rent for a unit in a building adjacent to low-rise structures would reflect

the amenity associated with better views, more sunlight, and improved air circulation.

In contrast, the asset price of the same unit would also incorporate the expected use of

that adjacent space in the future.

The testing focuses on multi-story apartments rather than houses or townhouses be-

cause the building height externality is likely more substantial for areas with dense and

tall buildings. The taller the average building height and the narrower the street width,

the more consequential the restriction on amenities such as air circulation and sunlight

is. The data sample includes apartment buildings located in two neighborhoods in Wash-

ington, DC: Navy Yard and Southwest Waterfront.

There are several reasons why the analysis here focuses on these two neighborhoods.

First, zoning is exogenous–based on the passage of the Height of Building Acts of 1910.
11 Second, many buildings were recently constructed in these two neighborhoods after

the area was selected as the location of the baseball stadium Nationals Park and federal

employment was relocated to the area 12. Some buildings were built before the rise in rent,

and some were built after, which pushed construction to the 14 story height limit. Third,

residential buildings in the areas are similar in terms of style and amenities. Fourth,

differences in topography and construction cost are negligible. The area is essentially

flat and uniform. Therefore, building heights equal building elevation above sea level.

11This federal law imposes maximum heights on buildings within Washington, DC based upon the
width of the street, to a maximum height of 130 feet (commercial streets) and 90 feet (residential streets),
and 160 feet for parts of Pennsylvania Avenue, NW.

12See Schuetz (2020), Navy Yard and Southwest Waterfronts are among the several neighborhoods
with the largest amount of new housing.
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If building elevations were different then building height would not reflect differences in

the elevation of the top floors and height externality should be based on differences in

elevation.

For each apartment unit, monthly rent and primary physical attributes such as floor

area and the number of rooms were collected from Zillow. These data were collected in

early Feburary 2021. Building characteristics such as distance to nearest public housing,

rivers, etc., were calculated using GIS software. Table A.1 provides summary statistics

of these attributes. The average monthly rent in the data is $2903 with a standard

deviation of $899. The median unit has 719 squared feet floor space, with 1 bedroom

and 1 bathroom and locates at 7 floor. Adjacent heights range from roughly 3 stories to

13 stories and the average is around 9 stories.

The height of each building and the adjacent buildings were collected. Height is mea-

sured in terms of the number of stories. For each apartment building, data on the length

of each side, its adjacent height, and the distance to adjacent buildings were collected.

The adjacent height measure, Hb, is the average of adjacent buildings’ height weighted

by the length of each side of the building.

Hb =
n∑

s=1

Heights ∗ Lengths

Perimeter
(24)

To construct this measure, it is necessary to define the maximum distance between two

buildings considered to be adjacent. The definition of an adjacent building used here

requires that the neighboring structure be within 200 feet. In cases where there was

no building within 200 feet on one side of a building, that side is treated as facing open

space, i.e. as not having an adjacent building. Using a similar method, distances between

adjacent buildings were recorded for each side with an adjacent building, and calculated

as the weighted average based on the side length.

3.2 Stochastic specification

To estimate the relation between rental cost and adjacent heights, the following hedonic

model specification was adopted:

lnribn = µ+ λn + γHb + β1hb + β2Zb + β3Xibn + εibn (25)

where lnribn is the logarithm of monthly rent for unit i in building b and neighborhood
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n. γ is the coefficient of interest. If a height externality exists, then it is expected that

γ < 0. Hb is the average height of adjacent buildings. hb is the height of the building itself.

While the theory developed above assumes that households care about nearby buildings

rather than the height of their own building, the own building height is inserted to test

whether that is really the case and forms part of the falsification test discussed below.

Xi is a vector of unit characteristics that include standard hedonic controls such as the

number of bathrooms, floor level, and the log of interior squared feet. Zb is a vector

of building characteristics, including building age, age squared, and its distance to the

nearest grocery stores and nearest public housing complex. The λn are census block

group dummies.

3.3 The role of building separatation

An implicit assumption associated with Eqs. 25 is that the effect of nearby building height

on rent is additive independent and that pH(x,H) does not vary with distances between

buildings. However, spaces between buildings should help to mitigate the negative height

externality. Building designers generally favor wider separation to allow the admittance

of sunlight, air circulation, and views. Planners often regulate floor area ratio(FAR)

rather than building height. In Washington, D.C., the 1910 Height of Buildings Act set

limits on height based on the width of the street on which a building is situated. In

New York City, builders are allowed to build further upward, but successive setbacks are

required. This pattern of regulation suggests planners believe that the relation between

height and rent could depend on building separation or that D is an important parameter

hidden inside pH(x,H). This suggests an alternative to Eq. 25 is13:

lnribn = µ+ λn + ρ1Hb + ρ2HbDb + ρ3Db + β1hb + β2Zb + β3Xibn + εibn (26)

where Db is the distance to adjacent buildings. If there is a density externality, the

expectation is that ρ1 < 0 and ρ2 > 0

13The comparison between height and density is also similar to foreclosure externalities, where Liu
and Yezer (2019) finds that it is the ratio of seriously delinquent or foreclosed units to total housing
units, rather than the number of foreclosure units alone, that has negative effects on property value.
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3.4 Identification

The hedonic specification used here is directly comparable to the approach used in pre-

vious studies of the effects of nearby neighborhood conditions on willingness to pay for

housing. It is not uncommon to relate housing value to visibility of surrounding territory

or to the amount of light received, as in Fleming et al. (2018). The specification here

simply measures the externality created when buildings block light and views rather than

measuring the positive amenity of light and view. Rather than measuring the positive

light and view, the size of the obstruction is measured. There may be several reasons

for this effect based on general amenity. Hedonic coefficient estimates are commonly

used to measure the willingness to pay for proximity to urban amenities, such as open

space, views, restaurants, better schools and lower crime. In sum, the hedonic approach

to measuring externalities induced by neighborhood amenity is well established in the

literature.

The identification challenge in estimates of Eq. 25 is that building rents could motivate

the construction of taller buildings. This is certainly a possibility in areas where the

regulatory ceiling is not currently met, but the positive effect of rent on surrounding

building heights would bias estimates of the effect of height on rent in Eq. 25 upward and

work against the finding of a negative height externality. For this reason, the estimates of

the size of the externality should be regarded lower bounds. This is consistent with the

fact that externalities experienced by non-renters are also not being measured to ensure

that amenities associated with planning are not overstated.

Another possible identification problem raised by referees is based on a literature, in-

cluding Asquith, Mast, and Reed (2021), Li (2021), and Pennington (2021), that finds

new construction lowers nearby rents. This is interpreted as the result of a rise in lo-

cal supply rather than a fall in a amenity due to the added density. Concern over this

possible supply effect is addressed by constructing and adding another height measure.

The new variable, “further block height,” is the height of buildings that are adjacent to

the buildings that are immediately adjacent to the object building. In effect the own

building height, the adjacent building height and the further building height variables lie

in a series of small concentric circles with own building at the center. If there is a local

supply effect, it should be manifest in the estimated coefficients of the own and further

building height variables and not just the adjacent building height. The density exter-

nality hypothesis tested here requires that the estimated coefficient of adjacent height

be negative while those of own and further building height be non-significant or posi-
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tive. A further falsification test based on Eq 26 specification requires that the estimated

coefficient of adjacent building height be negative and of distance to adjacent structure

be positive, while own and further building height effects are non significant or positive

(higher rent generate taller buildings). In addition, local housing market differences are

further represented by the inclusion of census block group dummies.

3.5 Empirical results

Table 1 reports estimates of Eq. 25 where Hb measures adjacent building height. In

both specifications, standard errors are clustered at the building level to account for

potential error correlation across units within the same building. Column 1 in Table 1

contains estimates of a limited version of Eq. 25 that does not include census block group

dummies. Column 2 includes census block group dummies to control for unobserved local

characteristics. Consistent with the literature on the value of light and air, the positive

and statistically significant coefficient of floor level indicates that there is a positive

premium associated with floor level or that residents are willing to pay more to live on

a higher floor. Other standard hedonic variables such as the number of bathrooms, log

of interior floor space, building age, building age squared, and log of building area yield

coefficient estimates with expected signs. The estimated coefficient for own height is

negative but is not statistically significant, The results also suggest that residents value

proximity to local amenities such as the river and grocery stores. While buildings in the

sample are market-rate housing, Navy Yard and Southwest waterfront also have a few

affordable housing units. Rent appears to be higher for apartment buildings that are

further away from complexes that include affordable housing.

Importantly, in both specifications, there is a statistically significant negative effect

of adjacent height on rent. In column 2, adjacent height has a statistically significant

semi-elasticity of -1.50%, implying that adding an additional floor to existing adjacent

buildings is associated with a 1.50% reduction in surrounding rent. At the sample mean

of rent, this translates into approximately $44 in rent per month. Overall, the results

here indicate that pH(x,H) < 0, implying that households prefer to live in buildings with

lower adjacent heights.

Column 1 in Table 2 contains estimates of Eq. 26. In column 2, distance to adjacent

buildings is inserted. By itself, distance is not statistically significant. In column 3,

the interaction term between adjacent height and distance to adjacent buildings Hb ∗Db

is inserted to test the effect of distance to adjacent buildings on negative nearby height
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effects. The estimated coefficient of the interaction term is positive and highly statistically

significant, consistent with the expectation that distance between buildings mitigates the

negative height effect. The coefficient of 0.061 implies that the height effect continues for

an average of 114 feet based on the current heights of the buildings.

Column 4 presents an alternative specification that gives finer detail on the external-

ity mechanism. First, an interaction between adjacent height and a dummy indicating

whether adjacent height is taller than the building’s own height is inserted. The co-

efficient of this height × higher height dummy interaction is negative and statistically

significant at -0.086, implying that the negative effect of height is more pronounced if

the adjacent buildings are on average taller than the own building height. Furthermore,

distance × height × higher height dummy is also introduced, and the coefficient for this

term is positive and statistically significant. This indicates that distance mitigates the

externality, and the mitigating effect is especially large for buildings where the building

height is lower than the height of adjacent buildings.

3.6 Identification test

This test requires forcing the further building height variable into the specification. These

results are shown in Table 3. In all specifications, the coefficient estimates for adjacent

height remain negative and statistically significant. The coefficients for both own and

further block height are generally not statistically significant except in the most elabo-

rated model shown in the last column, where both the coefficents of further block height

and own height are positive and statistically signficant while adjacent height remain neg-

ative and statistically significant. The positive coefficents on further block height and

own height are consistent with standard urban model’s prediction that developers tend

to build taller buildings where rents are higher. A further test forcing further block

height into Eq 26 shown in the final two columns of Table 3, produces the same pat-

tern of results with adjacent height effects mitigated by distance. Overall these results

suggest that finding that additional housing supply lowers local housing markets may be

confusing negative amenity whith housing supply effects on price changes.

4 Do current height limits maximize land value?

The previous results suggest that a negative height externality exists, and increased dis-

tances between adjacent buildings can mitigate it. These results support the assumption
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that households care about surrounding height (vH < 0). However, these results tell us

nothing about whether the current height limits in Washington, DC14 are optimal. The

existence of a height externality indicates that the laissez-faire height is above optimal,

but current restrictions on height may not be an optimal response to the externality.

To answer this, recall that the planner’s land rent maximizing solution Eq. 15 equates

the cost of the externality to the margin between the rental price and marginal cost of

building upward. Theory suggests that increased building density raises land value if and

only if:

−pH(x, h) ∗ h < p− S ′(h) (27)

The term on the left-hand side of the inequality, pH(x,H) ∗ H, is the size of the

external cost of building height, which equals the optimal regulatory tax. The size of the

externality is the product of the height effect on rent and the number of floors influenced

by the externality. The linear distance specification in table 2’s column 3 suggests that
∂lnp
∂H

= −0.070 + 0.061 ∗D. Together, this implies:

External Cost of Height = pH(x,H) ∗ h =
∂lnp

∂H
∗ h ∗ p (28)

The term on the right-hand side of inequality 27, p−S ′(h), is the difference between the

market price per square foot and the marginal construction cost of height. In a laissez-

faire environment, private developers add height until this gap diminishes to zero. It is

common to use this price-cost gap as a measure of the stringency of land use regulation.15

In the absence of externalities, any price-cost gap caused by zoning generates a welfare

loss.

To compute the two arguments of Eq. 27, an estimate for rental price per square foot

and an estimate for the marginal construction cost of height is required. The median

rent per square foot in the empirical analysis is $3.78 per month, or $45.36 annually.

Consistent with studies of the vertical rent gradient Liu, Rosenthal, and Strange (2018)

and Danton and Himbert (2018), the top rows of the Table 4 show that prices tend to rise

with the floor level. The coefficient of floor level in Table 1 suggests that rent increases

14The federal law imposes maximum height limits on buildings within Washington, DC are based upon
the width of the street, to a maximum height of 130 feet (commercial streets) and 90 feet (residential
streets), and 160 feet for parts of Pennsylvania Avenue, NW. For much of the Navy Yard and SouthWest
Waterfront neighborhood, the maximum height is 130 feet, which is approximately 13 to 14 floors

15See Glaeser, Gyourko, and Saks (2005) and Glaeser and Gyourko (2018)

19



by about 1% when moving one floor upward in the Navy Yard. The median unit in

the sample is on the seventh floor with a rent of $3.78 per square foot. An estimate of

45.36 ∗ [1 + (h − 7) ∗ 0.01] for annual rent is used here for the value of adding a new

floor. At the maximum height of 14 floors in the sample, this price estimate is $48.54 per

square foot.16

The second step is to estimate an annualized flow value of marginal height construction

cost, S ′(h). Estimates of construction cost per square foot for the Washington, DC

area reported by Means17 are shown in the table 5. Consistent with the architectural

engineering literature18, the table shows that the construction cost per square foot is

increasing and convex in building height: average cost per square foot increases by about

$8.70 when adding a new floor between 3rd and 6th floors, but increases by $9.30 per

story between 6th to 15th floors. The increasing and convex relation is a result of the

more expensive materials and construction techniques required for taller buildings. Fire

safety codes in DC also mandate that buildings over six stories use heavy frames, while

low-rise buildings with less than six floors use light frames or wooden material. The cost

of installing elevators also increases with building height in a non-linear fashion, as the

area allocated for elevators at each floor increases with building height.

At this point, it is useful to relate the different notions of cost back to the theory section.

In the SUM, S(h) is the total construction cost per square foot; the average cost per square

foot is total cost divided by the number of floors, or S(h)/h. Because Means’ estimates

exclude land cost, they correspond to S(h)/h nicely. The cost per square foot of adding

an extra story is the marginal cost of height, or S ′(h). In the absence of height limits

(and regardless of whether a height externality exists), buildings rise to the point where

marginal cost equals price, or p = S ′(h). With a binding maximum height limit, p >

S ′(h), the private benefit of adding an extra floor is simply the difference. Accordingly,

the marginal cost of adding an additional story in Washington, DC is estimated by

fitting an average cost function to the R.S. Means data and solving for the marginal cost

16It is important to note that, as building density rises, a small density effect on rents produces a
large aggregate effect. For example, Büchler and Lutz (2021) report that, for housing in “raster” cells
that are 100 meters square, raising density limits by 20% results in approximately 10% more housing
space in the raster. The fall in own raster price compared to untreated rasters is only 0.5 to 1 percentage
points and this effect is often not statistically significant. But consider that even a 0.5% fall in raster
prices means that adding 10% to housing density produced a 0.5% externality on the original 90% of
units. Thus adding 10% to the housing stock of a raster only increased willingness to pay for the entire
stock by 10% - 90% (0.5%) = 5.5%, placing the size of the density externality approximately half the
value of the space added to the stock. In dense areas, very small density effects on rents aggregate to
large density externalities.

17RS Means Construction Cost dataset https://www.rsmeans.com/products/online
18See, for example, Picken and Ilozor (2003) and Blackman and Picken (2010)
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function. Two alternative functional forms for S(h) are considered here. The first case is

a quadratic average cost function. This is often assumed in the architectural engineering

literature. Fitting S(h)/h = ah2 + bh + c to the Means data yields the marginal cost

function: S ′
q(h) = 0.1372h2 + 16.6233h + 111.3533. The second case is to assume an

exponential total cost function: S(h) = a + bhc, which is attractive for the analytical

solution of the SUM. The fitted total cost is S(h) = 117.9679 + 52.8395 ∗ h1.5565 and the

marginal cost is S ′
e(h) = 82.2426 ∗ h0.5565.

Following Phillips (1988)’s approach for estimating capitalization rates, a pooled-

tenured hedonic model is estimated. See Appendix A.4 for the discussion of the technique

and results. The estimated coefficient of 2.8 for the tenure dummy variable implies a cap-

italization rate of 6.2%. Lastly, because the Means data is in 2012 dollars and the Zillow

price estimates are in 2020 dollars, the estimated marginal construction cost is adjusted

using the Consumer Price Index.

Figure 3 shows the optimal regulatory tax and the price-marginal cost gap. The figure

is based on the median rent of $3.78 per square foot per month and the median distance to

adjacent buildings of 91 feet. The horizontal axis is the hypothetical height of buildings

in the Navy Yard area. The price-cost curves, p − S ′(h), are downward sloping. In

the absence of height limits, private developers will build up to the point where this

gap diminishes to zero. Laissez-faire heights can be found where p − S ′(h) touches the

horizontal axis. The quadratic average cost function predicts that laissez-faire building

heights should rise to 27 floors, while exponential cost predicts the laissez-faire height of

42 floors. Both estimates are well above the current height limit.

To identify the optimal height, the size of externality, −ph(x, h) ∗ h is plotted. The

curve is upward sloping as the size of the externality grows proportionally to building

height. At the current zoning limit of 14 floors, the estimated price-cost difference is

above the optimal regulatory tax, indicating that the current zoning is too restrictive.

The intersection between the externality and the p−S ′(h) based on the quadratic average

cost function implies that the optimal height is around 16 stories. The optimal height

under the exponential cost function occurs at 18 stories. These predicted optimal heights

are well below the laissez-faire heights. Still, they exceed the 14-floor maximum height

in Washington, DC, implying that the current density is slightly below the efficient level.

In addition, the figure also provides a means to measure welfare loss. The triangular

area between the optimal height level and the vertical line of the 14-floor maximum

indicates the potential welfare gain by adjusting the current limit to the optimal level.
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The triangular areas between the optimal heights and the laissez-faire heights represent

the welfare loss of departing from the optimal under laissez-faire.

To examine the sensitivity of these results to different price estimates, a lower $2.75 per
square foot monthly rent and a rent estimate based on a 1% vertical price gradient are

used while the distance to adjacent buildings is kept at the sample median. These results

are shown in figures A.2. For the $2.75 square foot monthly rent, under the two cost

functions, the efficient heights are around 16 to 18 floors. For the vertical rent estimates,

the optimal heights are around 25 to 34 floors.

In the next table, different distances to adjacent buildings are considered. Increased

distances flatten the externality curve. These results are shown in figure A.4. Reducing

the median distance by 20% to 72 feet lowers the optimal heights to around 16 floors

for both cost functions. Increasing building separation by 20% raises the optimal heights

to 25 and 34 floors. These results highlight the trade-off between height and the extra

space surrounding buildings. Both the height and proximity of structures are important

determinants of the justification for planning restrictions on FAR. In the example from

Washington, DC studied here, the height limits are more restrictive than the optimum

computed using the estimates of the FAR externality.

5 Conclusion

Using data from a relatively dense area in Washington, DC, empirical testing shows

that the relation between housing rent and adjacent building height and density is nega-

tive. Raising the average height of surrounding structures by one floor lowers rent in the

preferred specification by about 1.5%. These estimates are both economically and sta-

tistically significant, confirming that households care about the nearby building height.

In addition, the externality appears to be based on building density rather than building

height alone, as a larger distance to adjacent buildings reduces the size of the externality.

Identification tests that force further building heights into the equation show that the

effecyt of adjacent height is not due to a local supply effect. While the substantial height

externality suggests that some level of FAR regulation could enhance welfare, the optimal

height appears to be slightly above the current height limit in Washington, DC.

The existence of substantial structure density externalities has several implications.

The theoretical analysis suggests that the laissez-faire city’s structure densities are too

high compared to the optimal city. Because the height externality is more severe in

22



high-density areas, the optimum city has a much lower density in its center. In addition,

assuming that the height externality goes to zero at the edge of the city, the optimal

city has lower housing and population density, higher housing prices, higher aggregate

land rent, and lower total population than the laissez-faire city. This result agrees with

the finding common in the empirical literature that more intensive zoning raises housing

prices, and lowers housing and population density. But the theoretical model regards

these effects of regulation as potentially welfare-enhancing to the extent that they raise

overall land rent with a smaller population and identical land area. The difference in

interpretation is that, while limits on density raise nominal housing price, they also raise

neighborhood quality. Furthermore, while the local effect of downzoning a given plot of

land may be to lower land rent, the general equilibrium effect of efficient FAR limits is

to raise surround rents and hence the aggregate land value in the city.

Because the implications of other externalities are quite different from those motivated

by the density externality, optimal city structure would also depend on these other factors

if they could be quantified. Nevertheless, the result shown here regarding the density

externality, which is concentrated near the city center, should be addressed with a specific

density or height tax to deal with the unique spatial pattern of the externality.

The results also imply that the gap between housing price and marginal cost(often

referred to as “regulatory tax”) is not a perfect indicator for measuring whether zoning

is too restrictive. Because a proportion of this gap can be justified by building density

externality, such difference overstates the social cost of zoning. The analysis here in-

dicates that a substantial share of the price and marginal cost gap is justified by the

height externality in Washington, DC. A better measure for the excessive cost of zoning

should take account of the external cost of height and density. In addition, the effects on

surrounding rents only capture the externality of height and density for renters. Other

users of the same space, motorists, pedestrians, etc., also experience restrictions on light,

air, and views associated with density. The value of these additional externalities is also

external to the private development decision and could provide an additional element of

external cost that justifies restrictions on FAR.

Finally, this study concerns the local neighborhood effects of structure density. There

are many other features of the built environment that may influence neighborhood amenity.

Some of these, such as building design and the character of open spaces, may be the ob-

ject of planning but have not been considered here. The results here apply to structure

height and spacing and not the design features of the buildings or the spaces between

them.
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Figure 1: Laissez-Faire Cities with different levels of height externality

Note: This figure illustrates how a laissez-faire city responses to different level of height exter-
nality. It depicts the three laissez-faire cities with different strength of height externality(solid
line being strongest, dashed line being medium, and the dotted lines represent the weakest).
It illustrates that city with households that are more aversely affected by nearby height has
flatter graidents of height, housing price, and land rent. The SUM here is simulated with a
Cobb-Douglas utility function: v = c0.76q0.24H−w. w is the aversion to nearby height, takes
on the values of 0.01, 0.15, and 0.02. Larger w represents stronger height externality.
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Figure 2: laissez-faire City vs. First Best City

Note: This figure depicts the two different building height profiles in a laissez-faire city with
a height externality and a optimal city. It illustrates that the optimal height is lower at
every distance from the CBD and that the optimal city has a large city size. The SUM here
is simulated with a Cobb-Douglas utility function: v = c0.76q0.24H−0.02 and an exponential
housing production function: c(h) = c0h

1.04.
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Figure 3: Actual Price-Cost Difference vs Optimal Regulatory Tax

Note: Both rental price and cost estimates are based on the sample median of monthly rent

($3.78 per sqft) and distance to adjacent buildings (27.78 meters). Solid and long dashed

lines plot the estimated difference between price and marginal construction cost of additional

height, p − S′(h). The dash line indicates the optimal regulatory tax, ph(x, h) ∗ h, which

equals the size of the externality. At the current zoning limit of 14 floors, the actual price-cost

difference is above the optimal regulatory tax, indicating that the current zoning restriction

is too restrictive. The intersection points suggest the optimal height is around 18 to 21 floors.

The intersection of p−S′(h) curves with the horizontal axis indicates the laissez-faire height(27

and 42 floors).
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Table

Table 1: Estimating the Building Height Externality

Dependent Variable: Log(rent)
(1) (2)

Adjacent Height -0.014*** -0.015**
(0.004) (0.006)

Floor level 0.009*** 0.009***
(0.002) (0.002)

Number of bathrooms 0.092*** 0.094***
(0.029) (0.031)

Log of Interior Floor Space (sqft) 0.642*** 0.649***
(0.055) (0.055)

Building age -0.011 0.000
(0.012) (0.013)

Building age squared 0.001 -0.000
(0.001) (0.001)

Own Height (Story) -0.008 -0.008
(0.009) (0.006)

Log of building footprint area 0.124*** 0.110***
(0.028) (0.035)

Distance to public housing (mile) 0.296*** 0.545***
(0.071) (0.146)

Distance to grocery store (mile) -0.066 -0.173
(0.081) (0.115)

Constant 2.678*** 2.702***
(0.397) (0.392)

CBG dummies No Yes
Observations 913 913
R squared .857 .868

Note: Dependent variable is log of monthly rent. Adjacent height are measured in story, and is con-
structed as the average adjacent buildings’ height weighted by the length of sides that face adjacent
buildings.
*p < 0.10, **p < 0.05, ***p < 0.01. Buildings are weighted equally, standard error clustered at the
building level are in parentheses.
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Table 2: Does Distance to Adjacent Buildings Mitigate the Height Externality?

Dependent Variable: Log(rent)
(1) (2) (3) (4)

Adjacent Height -0.015** -0.016*** -0.070*** -0.161***
(0.006) (0.005) (0.018) (0.032)

Adjacent Height × Dist to Adjacent bldg(feet/100) 0.061** 0.169***
(0.022) (0.036)

Adjacent Height × Dummy(AH > OH) -0.086***
(0.020)

Adjacent Height × Dummy(AH > OH) × Dist to Adjacent bldg(feet/100) 0.110***
(0.027)

Dist to Adjacent bldg(feet/100) -0.066 -0.744*** -2.309***
(0.067) (0.249) (0.508)

Floor level 0.009*** 0.010*** 0.009*** 0.009***
(0.002) (0.002) (0.002) (0.002)

Number of bathrooms 0.094*** 0.089*** 0.091*** 0.075***
(0.031) (0.030) (0.029) (0.026)

Log of Interior Floor Space (sqft) 0.649*** 0.657*** 0.655*** 0.701***
(0.055) (0.053) (0.050) (0.042)

Building age 0.000 0.003 0.003 -0.054***
(0.013) (0.014) (0.014) (0.011)

Building age squared -0.000 -0.000 -0.000 0.003***
(0.001) (0.001) (0.001) (0.001)

Own Height (Story) -0.008 -0.011 -0.011* 0.021*
(0.006) (0.007) (0.006) (0.012)

Log of building footprint area 0.110*** 0.118*** 0.148*** 0.220***
(0.035) (0.032) (0.034) (0.039)

Distance to public housing (mile) 0.545*** 0.512*** 0.477*** 0.523***
(0.146) (0.147) (0.133) (0.126)

Distance to grocery store (mile) -0.173 -0.158 -0.178 -0.594***
(0.115) (0.114) (0.105) (0.149)

Constant 2.702*** 2.692*** 3.221*** 4.171***
(0.392) (0.367) (0.420) (0.476)

CBG dummies Yes Yes Yes Yes
Observations 913 913 913 913
R squared .868 .869 .874 .887

Note: *p < 0.10, **p < 0.05, ***p < 0.01. Buildings are weighted equally, standard error clustered at the building level
are in parentheses.
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Table 3: Falsification Test with further building height

Dependent Variable: Log(rent)
(1) (2) (3) (4)

Adjacent Height -0.014** -0.015** -0.074** -0.282***
(0.006) (0.006) (0.027) (0.027)

Adjacent Height × Dist to Adjacent bldg(feet/100) 0.064** 0.289***
(0.029) (0.027)

Adjacent Height × Dummy(AH > OH) -0.112***
(0.009)

Adjacent Height × Dummy(AH > OH) × Dist to Adjacent bldg(feet/100) 0.162***
(0.013)

Dist to Adjacent bldg(feet/100) -0.083 -0.776** -3.672***
(0.061) (0.325) (0.309)

Further block height -0.003 -0.004 0.001 0.020***
(0.005) (0.005) (0.005) (0.005)

Floor level 0.009*** 0.009*** 0.009*** 0.010***
(0.002) (0.002) (0.002) (0.002)

Number of bathrooms 0.096*** 0.089*** 0.091*** 0.074***
(0.031) (0.030) (0.029) (0.025)

Log of Interior Floor Space (sqft) 0.650*** 0.661*** 0.654*** 0.690***
(0.056) (0.053) (0.051) (0.041)

Building age -0.001 0.001 0.004 -0.060***
(0.013) (0.014) (0.015) (0.006)

Building age squared -0.000 -0.000 -0.000 0.003***
(0.001) (0.001) (0.001) (0.000)

Own Height (Story) -0.005 -0.009 -0.012* 0.052***
(0.008) (0.008) (0.007) (0.009)

Log of building footprint area 0.111*** 0.121*** 0.149*** 0.259***
(0.037) (0.036) (0.034) (0.015)

Distance to public housing (mile) 0.542*** 0.499*** 0.479*** 0.704***
(0.155) (0.159) (0.126) (0.058)

Distance to grocery store (mile) -0.191 -0.182 -0.172* -0.845***
(0.122) (0.116) (0.099) (0.068)

Constant 2.680*** 2.657*** 3.262*** 5.254***
(0.401) (0.377) (0.476) (0.419)

CBG dummies Yes Yes Yes Yes
Observations 913 913 913 913
R squared .868 .869 .874 .892

Note: *p < 0.10, **p < 0.05, ***p < 0.01. Buildings are weighted equally, standard error clustered at the building level
are in parentheses.
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Table 4: Rental Price Estimates

Monthly rent per sqft Price per sqft

Zillow’s rental units in apartment buildings
1-3 story $3.57 $612
4-7 story $3.68 $631
Above 7 story $3.90 $668
All units $3.78 $648

Zillow’s median list price for condominium
Zip code = 20003, Navy Yard $621
Zip code = 20024, Southwest waterfront $533
Washington $552
Washington-Arlington-Alexandria Metro $238

Source: Rents in the top panel are from listings on zillow.com. Bottom panel shows the listed sale price
from the areas from zillow.

Table 5: Cost Estimates

Sqft cost Type Stories

$136.70 Type V Low-rise wood frame, 3 stories
$162.87 Type II Mid-rise, light-gauge steel & block, 6 stories
$246.32 Type I High-rise fireproof, 15 stories

Source: RS Means construction cost dataset.
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Appendix

Table A.1: Summary Statistics

Variable Mean SD Min P25 Median P75 Max Obs

Rental price
Total monthly rent 2903.77 899.07 1750.00 2225.00 2700.00 3333.00 7471.00 913
ln(monthly rent) 7.93 0.27 7.47 7.71 7.90 8.11 8.92 913
Monthly rent per square foot 3.91 0.56 2.68 3.51 3.78 4.28 6.22 913
Adjacent Height 8.85 2.77 3.53 6.01 9.80 11.51 13.00 913
Distance to Adjacent building 25.90 5.58 18.96 18.96 27.78 28.84 39.46 913

Unit characteristic
Floor level 6.78 2.83 1.00 4.00 7.00 9.00 14.00 913
Interior Square feet 755.65 237.74 337.00 577.00 719.00 917.00 1640.00 913
Number of bedrooms 1.16 0.69 0.00 1.00 1.00 2.00 3.00 913
Number of bathrooms 1.27 0.45 1.00 1.00 1.00 2.00 3.00 913

Building characteristic
Own Height (Story) 11.43 1.05 9.00 11.00 11.00 12.00 14.00 913
Building Area 4422.29 1191.18 1738.02 3596.24 4731.44 5317.77 8042.58 913
Building age 1.52 2.20 0.00 0.00 1.00 2.00 12.00 913
Building age squared 7.17 22.67 0.00 0.00 1.00 4.00 144.00 913
=1 if adjacent to river 0.20 0.40 0.00 0.00 0.00 0.00 1.00 913
Distance to public housing (mile) 0.21 0.09 0.02 0.19 0.19 0.27 0.57 913
Distance to grocery store (mile) 0.28 0.11 0.02 0.19 0.35 0.35 0.53 913

Note: Rental price, unit characteristics and building age are from zilllow.com. Adjacent building heights
and distances are collected by author. Maps for building footprints and public housing are from DC open
city data.
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Figure A.1: Current “Regulatory Tax” to Price Ratio

Source: Price estimate based on sample median rent per square foot from zillow.com.
Construction costs are extracted from the R.S. Means Construction Cost dataset.
Note: The term “regulatory tax” here is defined as the difference between the
estimated asset price and the marginal cost of building upward in the studied area.
This figure shows that at the current maximum height of 14-story, the current
“regulatory tax” is approximately 42% to 45% of the price.
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Figure A.2: Optimal Height: Sensitivity to Price(1)

Note: the two figures here are plotted based on different rental price estimates. The top figure is based on the
533 assset price and a 6.2% CAP rent. The bottom figure is based on a vertical price 3.75 ∗ [1+ (h− 7) ∗ 0.01].
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Figure A.3: Optimal Height: Sensitivity to Price(2)

Note: the two figures here are plotted based on different rental price estimates. The top figure is based on 25th
percentile rent, and bottom figure is based on 75th percentile rent. Each figure plots the cases of quadratic,
exponential respectively.

38



Figure A.4: Distance to Buildings and Optimal Height

Note: The figure plots the cases of quadratic and exponential cost respectively. The downward sloping curves
plots the price-marginal cost curves, p − S′(h). The upward sloping curves plot the size of externality with
three different distances. Increased distance to buildings flatten the externality curves and raises the optimal
height.
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A.1 Näıve regression

We start with a simple näıve regression of ln(unit rent) on nearby height and a con-

stant. The resulting adjacent height coefficient is highly statistically significant at -.0195

(p<0.01). Because taller buildings tend to be built in more attractive locations, adding

location fixed effects reduces the upward bias, as shown in column 2 below. However,

these simple specifications suffer from omitted variables bias. To address this concern,

comprehensive building and unit characteristics are added in the main regression in ta-

ble 1.

Table A.2: Relation Between Rent and Adjacent Height

Dependent Variable: Log(rent)
(1) (2)

Adjacent Height -0.020*** -0.027***
(0.006) (0.008)

Constant 8.083*** 7.987***
(0.059) (0.034)

CBG dummies No Yes
Observations 913 913
R squared .0535 .0778

Note: *p < 0.10, **p < 0.05, ***p < 0.01. Buildings are weighted equally, standard error clustered at the building level
are in parentheses.

A.2 Additional controls

As a robustness check, a set of additional controls are added. This includes the distances

to the nearest metro and the baseball stadium Nationals Park, and a dummy indicates

if the building has mixed land use on the ground floor. As we can see in the following

tables, the estimates are qualitatively similar.
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Table A.3: Additional controls

Dependent Variable: Log(rent)
(1) (2) (3) (4)

Adjacent Height -0.022** -0.027*** -0.077*** -0.165***
(0.008) (0.007) (0.022) (0.011)

Adjacent Height × Dist to Adjacent bldg(feet/100) 0.064* 0.210***
(0.032) (0.013)

Adjacent Height × Dummy(AH > OH) -0.101***
(0.010)

Adjacent Height × Dummy(AH > OH) × Dist to Adjacent bldg(feet/100) 0.112***
(0.012)

Dist to Adjacent bldg(feet/100) 0.234** -0.742 -3.222***
(0.105) (0.460) (0.197)

Floor level 0.010*** 0.010*** 0.009*** 0.010***
(0.002) (0.002) (0.002) (0.002)

Number of bathrooms 0.090*** 0.094*** 0.096*** 0.071**
(0.027) (0.027) (0.027) (0.026)

Log of Interior Floor Space (sqft) 0.650*** 0.645*** 0.640*** 0.696***
(0.050) (0.050) (0.048) (0.042)

Building age 0.005 0.011 -0.000 -0.114***
(0.020) (0.017) (0.017) (0.007)

Building age squared -0.001 -0.002 -0.000 0.009***
(0.001) (0.001) (0.001) (0.001)

Own Height (Story) -0.010 -0.019** -0.002 0.024***
(0.009) (0.008) (0.012) (0.004)

Log of building footprint area 0.084** 0.035 0.128*** 0.302***
(0.032) (0.038) (0.044) (0.015)

Distance to public housing (mile) 0.538 0.546 0.567 -0.192**
(0.424) (0.408) (0.348) (0.073)

Distance to grocery store (mile) 0.003 0.212* -0.122 -0.789***
(0.119) (0.112) (0.144) (0.059)

Distance to nearest metro(mile) -0.028 -0.544** 0.211 1.470***
(0.223) (0.219) (0.479) (0.066)

Distance to baseball stadium Nationals Park (mile) 0.157 0.573 -0.047 -0.486***
(0.308) (0.355) (0.260) (0.016)

Own Mixed land use dummy -0.077** -0.122*** -0.065** 0.053***
(0.034) (0.032) (0.027) (0.008)

Constant 2.854*** 3.068*** 3.326*** 4.473***
(0.461) (0.444) (0.498) (0.147)

CBG dummies Yes Yes Yes Yes
Observations 913 913 913 913
R squared .876 .878 .88 .894

Note: *p < 0.10, **p < 0.05, ***p < 0.01. Buildings are weighted equally, standard error clustered at the building level
are in parentheses.
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A.3 Alternative Height Measure

An alternative height measure is considered here. Specifically, if one side of the building

has no adjacent building, then the height of that side is treated as 0. Results in table A.4

find a qualitatively similar result. Column 3 suggests that a rise in height on all sides

of a building reduces rent by 1.79%. At the sample mean, this is approximately a $48
monthly rental payment. The estimated effect here is more pronounced than that in the

main table. Here, height is added on all sides of the building, while the measure in the

main text only raises height for existing adjacent buildings. In addition, column 4 also

finds a positive and statistically significant interaction coefficient for height and distance,

indicating that distance plays a role in mitigating the height externality.

Table A.4: Alternative Nearby Height Measure

Dependent Variable: Log(rent)
(1) (2) (3) (4)

Nearby height -0.0124 -0.0610 -0.0179 -0.1112
(0.0038)*** (0.0127)*** (0.0048)*** (0.0229)***

Nearby height × Distance to Adjacent buildings 0.0018 0.0034
(0.0005)*** (0.0009)***

Distance to Adjacent buildings -0.0072 -0.0189 -0.0080 -0.0370
(0.0017)*** (0.0034)*** (0.0032)** (0.0075)***

Floor level 0.0093 0.0083 0.0098 0.0090
(0.0018)*** (0.0019)*** (0.0021)*** (0.0021)***

Number of bathrooms 0.0978 0.1014 0.0944 0.0930
(0.0236)*** (0.0245)*** (0.0286)*** (0.0272)***

Log of Interior Floor Space 0.6351 0.6407 0.6445 0.6595
(0.0479)*** (0.0470)*** (0.0491)*** (0.0440)***

Building age -0.0024 -0.0032 0.0021 -0.0151
(0.0129) (0.0111) (0.0142) (0.0076)*

Building age squared 0.0004 0.0008 -0.0003 0.0020
(0.0010) (0.0008) (0.0010) (0.0006)***

Own Height (Story) -0.0120 -0.0128 -0.0137 -0.0233
(0.0080) (0.0059)** (0.0075)* (0.0056)***

Log of building footprint area 0.0886 0.1205 0.0622 0.1199
(0.0283)*** (0.0292)*** (0.0314)* (0.0359)***

=1 if adjacent to river 0.0543 0.0367 0.0274 0.0711
(0.0346) (0.0340) (0.0360) (0.0244)***

Distance to public housing (mile) 0.1463 0.0726 0.5577 0.1285
(0.0875) (0.0813) (0.1713)*** (0.2031)

Distance to grocery store (mile) -0.1521 -0.1016 -0.2426 -0.0963
(0.0891) (0.0818) (0.0815)*** (0.0524)*

Constant 3.2359 3.2846 3.4797 3.9700
(0.3740)*** (0.3260)*** (0.4414)*** (0.4202)***

CBG dummies No No Yes Yes
Observations 913 913 913 913
R squared .863 .869 .874 .882

Note: *p < 0.10, **p < 0.05, ***p < 0.01. Buildings are weighted equally, standard error clustered at
the building level are in parentheses.
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A.4 Estimating the cap rate following Phillips’ approach

To estimate the capitalization rate, the following equation is estimated following Phillips

(1988):

ln(price)i = βX + γTENURE + ei (A.1)

where ln(price)i equals the log of listing price for “For Sale” units and the log of annual

rent for “For Rent” units in the Navy Yard and Southwest Waterfront neighborhood. X

are hedonic variables number of bedroom and log of floor space. TENURE equals one

if unit is listed as “For Sale”, and zero if it is listed as “For Rent”.

Note for if a unit is for sale, then

ln(V ALUE)i = βX + γ + ei (A.2)

And if a unit for rent:

ln(RENT )i = βX + ei (A.3)

Take the difference of the two equations and then take the antilog yields the housing

capitalization rate.
RENT

V ALUE
= exp(−γ) (A.4)

The parameter γ estimates the average percentage difference in price between owner

and rental properties. The housing capitalization rate is then calculated as the anti-

log of the estimated tenure coefficient. Table A.6 shows an estimated coefficient of 2.8

for TENURE which suggests a housing capitalization rate of 6.2%. Columns 5 and 6

estimate the capitalization rate for Navy Yard and Southwest waterfront separately, and

the results indicate cap rates of 5.39% and 6.7% respectivelyfor the two neighborhoods.
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Table A.5: Housing Capitalization Rate Estimate

Dependent Variable: Log(price) or Log(rent)

Full sample Restricted

(1) (2) (3) (4) (5) (6)
Tenure 2.786*** 2.740*** 2.780*** 2.794***

(0.043) (0.059) (0.079) (0.049)
Tenure (zip = 20003) 2.903*** 2.929***

(0.081) (0.078)
Tenure (zip = 20024) 2.656*** 2.710***

(0.081) (0.059)
Bathroom 0.128*** 0.152*** 0.165 -0.049 0.158* -0.006

(0.034) (0.053) (0.099) (0.078) (0.086) (0.071)
log(floor space) 0.692*** 0.803*** 0.777*** 0.819*** 0.855*** 0.867***

(0.062) (0.103) (0.171) (0.106) (0.151) (0.096)
Constant 5.525*** 4.795*** 4.923*** 4.714*** 4.422*** 4.223***

(0.383) (0.635) (1.046) (0.646) (0.924) (0.615)
Building Dummies No Yes No Yes No Yes
Observations 250 250 27 27 27 27
R squared .967 .999 .987 .998 .99 .999

Note: *p < 0.10, **p < 0.05, ***p < 0.01. Listing rent and sale data were scrapped from zillow.com in
2021. Columns 1 and 2 include the full sample of buildings. Columns 3 and 4 restricted to only buildings
which have units for rent and for sale.
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Table A.6: Housing Capitalization Rate Estimate

Dependent Variable: Log(price) or Log(rent)
(1) (2) (3) (4)

Tenure 2.776*** 2.793***
(0.019) (0.013)

Tenure * Month = April 2.784***
(0.049)

Tenure * Month = May 2.762***
(0.035)

Tenure * Month = June 2.772***
(0.028)

Tenure * Month = July 2.794***
(0.028)

Tenure * Month = Aug 2.825***
(0.024)

Tenure (Navy Yard) 2.780***
(0.019)

Tenure (Southwest waterfront) 2.808***
(0.019)

Bathroom 0.191*** 0.107*** 0.111*** 0.104***
(0.037) (0.029) (0.029) (0.029)

Bedroom 0.151*** 0.133*** 0.119*** 0.135***
(0.036) (0.032) (0.033) (0.032)

=1 if Studio 0.027 0.073** 0.059 0.073**
(0.044) (0.035) (0.036) (0.035)

FL 0.004 0.010*** 0.010*** 0.010***
(0.003) (0.003) (0.003) (0.003)

log(sqft floor space) 0.279*** 0.428*** 0.442*** 0.426***
(0.068) (0.062) (0.063) (0.063)

Constant 8.007*** 6.971*** 6.901*** 6.997***
(0.402) (0.382) (0.388) (0.382)

Building Dummies No Yes Yes Yes
Date Dummies Yes Yes Yes Yes
Observations 198 198 198 198
R squared .992 .996 .997 .997

Note: *p < 0.10, **p < 0.05, ***p < 0.01. Listing rent and sale data were scrapped from zillow.com
between April to August of 2020. Dependent variable is log(price) for sale units, and log(annual rent)
for rental units. Buildings in the sample contains both sale and rental unit.
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