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Abstract

This paper quantitatively decomposes forces driving Black-White seg-
regation in major U.S. cities in 1940. It estimates models of neighborhood
demand, identifying race-specific preferences governing price and racial com-
position using exogenous neighborhood variation in both Black and White
rural migrant inflows. The results confirm that White families had a high
willingness-to-pay to avoid Black neighbors. However, a decomposition of
cities’ segregated equilibria attributes about half of racial segregation across
cities to implicit or explicit constraints on Black families’ choices. The early
constraints on Black households’ neighborhood choices explain the persis-
tence in segregation across cities between 1960–2010.
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1 Introduction

Higher rates of residential segregation are associated with a variety of negative
outcomes from worse educational attainment in childhood to lower employment
and earnings in adulthood.1 Segregation’s modern persistence can be traced to
two factors: the endurance of White preferences for White neighborhoods and
the long shadow of non-market institutions that historically restricted housing
supply to minorities (Cutler, Glaeser, and Vigdor 1999). Historically, researchers
have documented the former in “White Flight” following school desegregation
and rapid neighborhood “tipping” of neighborhood racial shares throughout the
twentieth century. The latter took the form of housing covenants that prohibited
sales to minority buyers; racial zoning laws that codified separation between White
and minority neighborhoods; and even threatened and realized violence (see e.g.
Rothstein 2017).

There is little doubt that both sorting and constraints had a historical effect on
Black-White segregation. However, to the best of my knowledge, there has been
no study that has quantified or compared their relative contributions. Quantifying
sorting and constraints’ effects on segregation has two requirements: (1) identi-
fying variation that can credibly distinguish preferences over neighborhood racial
composition from local amenities; and (2) a model that can reliably predict Black
choices in an unconstrained counterfactual. Neither requirement is satisfied by an
individual program evaluation of a specific restriction, whose analysis cannot pre-
dict Black choices absent the plethora of other restrictions. Neither requirement
is satisfied by existing state-of-the-art models of housing demand such as Bayer,
Ferreira, and McMillan (2007), which rationalize segregated equilibrium choices
in cross-sectional data. Bayer, McMillan, and Rueben (2004) carefully note that
their estimates “[combine] the difference that results from decentralized prefer-
ences... as well as any centralized discrimination that causes black households to
appear as if they prefer black versus white neighborhoods.”

Credibly identifying racial preferences is particularly difficult because racial
preferences are endogenous peer effects and generate a “reflection problem” (An-
grist 2014; Manski 1993). The reflection problem arises because choices and racial
composition are mechanically related. Consequently, homophily and race-specific
preferences for local amenities are observationally equivalent. Uncoincidentally,
virtually all papers estimating racial preferences find homophily. The reflection

1See e.g., Cutler and Glaeser 1997; Massey and Denton 1993; the 1966 Coleman Report;
Chetty and Hendren 2018a; Chetty and Hendren 2018b; Chetty et al. 2014. Chyn and Katz
(2021) provide a useful review of evidence on neighborhoods’ effects more broadly.
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problem can lead one to erroneously conclude that households prefer to live with
members of the same race; to systematically overstate the role of racial sorting in
driving segregation; and to systematically understate the role of external factors
such as non-market constraints.

This paper credibly estimates racial preferences in order to quantitatively mea-
sure the contributions of sorting and non-market constraints driving the patterns
of racial segregation in large US cities in 1940. To satisfy the two requirements, the
paper estimates a neighborhood choice model using (1) instruments that capture
external perturbations induced by large influxes of White and Black rural migrants
and (2) panel data. First, rural migrant instruments approximate an experiment
where neighbors of different races are randomly assigned to neighborhoods. Intu-
itively, variation from rural migrants addresses the reflection problem and is not
subject to peer effect reflection because migrants are not initially “peers:” they
do not live in cities at baseline. Second, cross-sectional analyses cannot distin-
guish constraints from unobservable disamenities. I use panel data methods to
infer amenities’ unobserved demand effects by measuring the serial persistence in
choice; to compare Black and White preferences for amenities; and to predict how
amenities affect Black demand in restricted neighborhoods. The bulk of the paper
is devoted to quantifying racial preferences in simple structural models of neigh-
borhood choice. In the last part of the paper, I use the estimates to quantitatively
decompose observed segregation into components reflecting (1) the differential
preferences of Blacks and Whites that are mediated through prices and (2) the
non-price constraints faced by Black residents across cities. I conclude by using
the quantitative variation in these measures across cities to revisit explanations
for racial segregation’s long-run persistence.

The paper is organized around a multinomial logit structural model of neigh-
borhood choice where families have preferences over three factors: the local price,
the Black share of the neighborhood, and local amenities. I partition the demand
analysis into two parts. The first part estimates how households tradeoff between
the local price and racial composition of the neighborhood holding amenities con-
stant. The identifying variation comes from the tendency of migrants to move to
specific enclaves (Altonji and Card 1991; Card 2001). The conceptual framework
formalizes the identifying assumptions, addressing concerns about “endogenous
shares.” One innovation of the paper is to use the clustering of surname dis-
tributions of non-migrant families to measure immigrant enclaves at baseline. In
contrast to other research designs of structural housing demand models, the model
produces intuitive reduced form predictions that corroborate the findings.
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The second part of the demand analysis measures differences in how Black
and White families value local amenities using correlated random effects (CREs).
The principal insight of Bayer, Ferreira, and McMillan (2007) is that local ameni-
ties’ demand effects reflect their hedonic value. My approach extends this logic
to unobservables. CREs measure cross-decadal dependence in residual determi-
nants of demand, essentially “shrunken” neighborhood fixed effects. The CREs
provide an estimate of Black and White residents’ valuation of the same unob-
servable amenities. Importantly, they provide an estimate of the relationship be-
tween the two. I use the relationship to predict how Black residents would value
amenities in restricted, all-White neighborhoods. The approach is infeasible in
cross-sectional demand analyses, which attribute unobservables’ effects to resid-
uals. Cross-sectional residuals cannot distinguish constraints from disamenities;
cannot predict amenities’ effects on Black demand in restricted neighborhoods; and
consequently, cannot predict counterfactual Black demand absent constraints.

The last part of the paper uses the neighborhood demand model to make ag-
gregate predictions. Unlike other measures of segregation, the Kullback-Liebler
(1951) relative entropy can be decomposed with the predicted logit odds of the
structural Black and White demand models. I decompose the KL divergence dis-
tance metric into two separate distances generated from the model’s predictions.
First, I compare Black families’ actual neighborhood choices to the counterfac-
tual choices that would arise if neighborhood constraints had been removed—
quantifying the contribution of non-market constraints to segregation. Second,
I compare counterfactual Black demand to actual White demand—quantifying
the contribution of divergent neighborhood preferences and decentralized choices.
Rather than simply showing that each qualitatively mattered in isolation, the de-
composition is the first analysis that shows that market forces and non-market
constraints had quantitatively similar effects on segregation.

The paper has three main findings. First, the empirical strategy quantifies
White racial preferences as a unit compensated semi-elasticity—a one percentage
point increase in the Black share of the neighborhood must be compensated by
a one percent decrease in the local price of housing to keep White households
indifferent. The result is broadly consistent with previous findings of White ho-
mophily, notwithstanding others’ potential contamination by reflection. However,
I also find that Black residents exhibit at most weak homophily, a conclusion im-
possible in the presence of the reflection problem. The disparity in Black and
White racial preferences is corroborated by migrants’ reduced form effects. Sec-
ond, intense White and weak Black racial preferences together imply that White
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neighborhoods must be very expensive to keep Black residents out via purely mar-
ket forces. This is not what the data show. The decomposition analysis shows
that the distribution of prices within cities is incompatible with sorting alone.
Noting that only a fifth of the neighborhoods in the data have meaningful num-
bers of Black households, the amount of sorting predicted by the estimated model
explains only half of observed segregation across cities in 1940, attributing the
quantitatively important remainder to constraints.

One implication of intense White racial preferences is the existence of multi-
ple equilibria inherent in models of social interactions (Brock and Durlauf 2001).
Multiplicity of equilibria implies that moving from the segregated cities from prior
to the Second World War toward more racially integrated ones is path dependent.
Widespread improvements in both attitudes and institutions may not lead to in-
tegration, and segregation today may be a legacy of historical constraints rather
than purely a product of enduring, modern racism. To assess this possibility, I
use variation in segregation and the measure of constraints from the decomposi-
tion across cities. I show that while the serial correlation in segregation is initially
driven by both sorting and constraints, the former decays with the passage of time
while the latter persists.

This paper contributes to several strands of literature. Primarily, it (1) ad-
dresses methodological shortcomings of equilibrium sorting models following Bayer,
Ferreira, and McMillan (2007) (henceforth, BFM) to (2) resolve the ecological
tension that arises from linking constrained choices at the neighborhood-level to
segregation at the city-level and its long-run consequences. First, the research de-
sign confronts two simultaneity issues—upward sloping supply and the reflection
problem driven by endogenous social interactions (Manski 1993). Even randomly
assigned cost shifters (e.g. Galiani, Murphy, and Pantano 2015) cannot solve both.

Whereas I use migrant perturbations, most structural housing demand papers
use characteristics of own or adjacent neighborhoods as instruments for price and
racial composition (BFM; Caetano and Maheshri 2021; Davis, Gregory, and Hart-
ley 2019; Galiani, Murphy, and Pantano 2015; Wong 2013). Cross-sectional neigh-
borhood demand instruments face steep requirements to overcome the reflection
problem. A suitable instrument must be related to the preferences of one race—
instrument relevance—but unrelated to the preferences of other races—instrument
exclusion. To resolve reflection in the cross-section, each demand equation requires
different excluded instruments.2 For instance, suppose parks were randomly as-

2In many housing demand applications, including this paper, preferences are parameterized
as functions of the local minority share. Both the numerator and the denominator are functions

5



signed to neighborhoods. The effect of randomly-assigned parks on White neigh-
borhood choices identifies White racial preferences only if minority residents do
have preferences for parks (relevance) and White residents do not have preferences
for parks (exclusion). If parks are valid instruments for White racial preferences,
they are not valid instruments for minority racial preferences. The identification
requirements become only steeper when candidate instruments are correlated with
other unobservable local amenities. To the best of my knowledge, no other housing
demand paper directly engages with the reflection problem by using instrument
sets that satisfy cross-equation exclusion restrictions. In contrast, the identify-
ing assumptions in my longitudinal setting are weaker and more intuitive. Some
migrant enclaves attract more Black or White migrants (relevance). Changes in
local amenities in migrant enclaves that did receive migrants do not systemat-
ically differ from migrant enclaves that did not (exclusion). Formalized in the
paper, conditional independence does not require finding neighborhood variables
that matter for some races but not others.

Second, the paper decomposes a measure of observed segregation using a choice
model. From Fisher’s ANOVA to Oaxaca-Blinder, economics has a long tradition
of using decompositions to link conditional patterns in microdata to unconditional
aggregate statistics. Racial segregation is a macro city-level phenomenon. Neigh-
borhood choices and constraints occur at the micro neighborhood level. Linking
the two is not immediate. For example, suppose racial restrictive covenants were
randomly assigned to neighborhoods in a city. How would analysts estimate their
effect on the city’s segregation? Convenants’ effects on demand are related but
distinct from their effects on segregation. However, just as one can decompose
observed racial wage gaps using observed (or structural) estimates of the returns
to education using an Oaxaca decomposition of a linear wage model, one can de-
compose observed segregation using estimates of convenants’ effects on demand
using a KL divergence decomposition of a logit choice model.

Without a decomposition methodology, studies of segregation have varied in
even their units of observation. Cross-city analyses study institutions’ effect on
segregation indirectly using ecological regression models, ignoring whether and
how much institutional constraints may bind because of their location (Ananat
2011; Andrews et al. 2017; Cutler, Glaeser, and Vigdor 1999). Neighborhood-
level studies of segregation consider residents with counterfactual preferences,

of the structural equations of interest. Relevant instruments that shift the minority share in
cross-sectional data must shift the numerator or denominator. They cannot also be excluded
from both the White and minority demand equations.
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but largely ignore how much observed segregation is affected by the prevalence
and location of specific institutions (e.g. Caetano and Maheshri 2021; Kucheva
and Sander 2018; Wong 2013). A notable exception is Christensen and Timmins
(2021). In a novel application of a rental audit experiment, the paper uses race-
specific callback rates to weight a pooled logit demand model, capturing granular
variation in discriminatory search frictions as consideration probabilities. How-
ever, because they treat price and racial composition as exogenous, their welfare
conclusions using counterfactual White callback rates may be subject to reflection.
This paper’s identification strategy and decomposition of the KL divergence con-
sider both institutions and sorting simultaneously. The decomposition of the KL
divergence allows a microeconometric analysis of neighborhood choice to directly
inform drivers of observed segregation. The exercise generates a city-specific mea-
sure of the constraining effect of segregating institutions, which I show predicts
long-term segregation.

This paper also relates to the expansive literature studying localized effects
of migrants on labor markets, particularly those which utilizes the Card (2001)
“past settlement” instrument.3 Most of the research in immigration has focused
on labor market effects, but two studies in particular, Saiz (2003) and Saiz (2010),
utilize the housing demand variation driven by large inflows of immigrants to
trace out housing supply curves. The bulk of these papers exploit the tendency
of migrants to follow the paths of past migrants and utilize variation in migrant
flows from different countries of origin, or in the case of internal U.S. migration,
the subject of this paper, different states of origin (Boustan 2010; Shertzer and
Walsh 2016). Recent work by Stuart and Taylor (2019) has shown that these
tendencies are defined for very granular origins, reflecting the importance of social
networks. This paper contributes to this literature by showing that migrants that
share the same origin county are drawn to very granular destinations—the same
census tracts.

Finally, this paper connects to the tradition across the social and biological
sciences that investigates the signals hidden in one’s name. The focal points of
interests have diverged across disciplines: social scientists have taken particular
interest in how names, often first names, are connected to labor market success (see
e.g. Bertrand and Mullainathan 2004; Clark 2014; Olivetti and Paserman 2015;
Goldstein and Stecklov 2016), while biologists and physical anthropologists trace
divergences in gene distributions from the hereditary nature of surnames (see e.g.
Zei et al. 1983; Piazza et al. 1987; Zei et al. 1993). This paper utilizes the latter to

3For an inventory of such papers, see Jaeger, Ruist, and Stuhler (2018).
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explore how highly localized nature of social networks transmits correspondingly
into highly localized housing demand pressure by neighborhood.4

This paper is organized as follows. Section 2 presents the conceptual frame-
work. The organization of its subsections mirrors the empirical analysis of the
paper. Section 3 defines concepts in the full count census data that are crucial for
the analysis and how I construct geography-consistent 1940 census tracts using
street addresses. Section 4 estimates how households trade off between the local
price of housing and the neighborhood racial composition using surname-predicted
migrant demand shocks. Section 5 models the residual variation to see whether
Black and White households value similar amenities. It then uses the model pre-
dictions to estimate Black demand in all-White neighborhoods. Section 6 uses
counterfactual predicted demand to decompose segregation across cities. Finally,
Section 7 concludes.

2 Conceptual Framework for Neighborhood Choice

2.1 Overview

Any measure of a city’s racial segregation can be aggregated from race-specific
neighborhood choice probabilities. Thus, for a city c characterized by a collection
of neighborhoods J ∗

c , an empirical analysis of racial segregation is an analysis of
the probability πrjt that individuals of race r choose to live in neighborhood j

in time t. This paper analyzes πrjt directly before aggregating and comparing
segregation across cities.

In my setup, householders’ decisions over neighborhoods j ∈ J ∗
c are governed

by preferences that are represented by indirect utilitiesvijt ≡ δr(i),jt + εijt,where
δrjt is a race-specific mean and εijt are individual deviations.

During the period of my analysis (1930–1940), there is extensive documentary
evidence that certain neighborhoods in most cities were off-limits to Black res-
idents via formal prohibitions (e.g., restrictive covenants) and also via de facto
constraints such as actual and threatened violence.5 Jrc ⊆ J ∗

c denotes the set
4Massey et al. (1987) and Munshi (2003) explore the strong ties that migrants retain with

origin communities within states in Mexico.
5Cutler, Glaeser, and Vigdor’s (1999) taxonomy separately considers three types of forces

driving segregation:

the “port of entry” theory, where blacks prefer to live among members of their
own race, particularly when they are new migrants to an urban area; the “cen-
tralized” or “collective action racism” theory, where whites use legal, quasi-legal,
or violent, illegal barriers [emphasis added] to keep blacks out of white neighbor-
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of neighborhoods “available” to a particular race. Black families choose from a
restricted choice set. Households choose from available neighborhoods that maxi-
mize their utility Dit ≡ arg maxj∈Jrc vijt, and corresponding neighborhood choice
probabilities are given by πrjt ≡ Pr [Dit = j|r (i) , c (j) , t]. Segregation may arise
from systematic differences in preferences between races δrjt (e.g., different price
elasticities, preferences over the local racial composition, race-specific local ameni-
ties) or from restrictions in Black households’ choice sets JBc.

How segregated would cities be if location choices only reflected market forces?
Separately determining how constraints shaped segregation requires predicting
counterfactual choices of Black residents π̂CF

Bjt in their absence, JBc = J ∗
c . Black

preferences for restricted, all-White neighborhoods depends crucially on their
racial preferences.

To predict counterfactual choices, I make two simplifying assumptions about
preferences:

Assumption 1 (Individual idiosyncratic preferences and mulitnomial logit). εijt

is an i.i.d. draw from a standard extreme-value type I distribution

Assumption 2 (Linearity in parameters). Race-specific mean utilities can be writ-
ten linearly as δrjt = βr lnPjt +γrsjt +ξrjt where Pjt is the local price of housing in
neighborhood j,6 sjt is the Black share of the neighborhood, and ξrjt is a residual
that summarizes preferences over local amenities (e.g. parks or good schools) and
disamenities (e.g. pollution).7

The choice shares follow the convenient and well-known functional form of a
multinomial logit πrjt = exp δrjt∑

j′∈Jr
exp δrj′t

for j ∈ Jrc and 0 otherwise. Substituting
and taking logs yields a linear regression model (Berry 1994):

ln πrjt = −θrct + βr lnPjt + γrsjt + ξrjt, (1)

hoods; and the “decentralized racism” theory, where whites segregate themselves
by paying more to live with members of their own race.

Their distinction between non-market constraints (“collective action racism”) and market forces
(“ports of entry” and “decentralized racism”) is not meant to suggest that non-market con-
straints do not also reflect White preferences. Rather, the classification implies that only some
of segregation is mediated through prices. “Constraints” are how Whites get segregation for
free. Teasing apart those forces is the objective of the paper.

6See section 3 for a discussion of how the price of a neighborhood is defined. See appendix
D for an alternative choice model defined for houses instead of neighborhoods.

7The model presented in this section is related to the one presented by Bayer and Tim-
mins (2005) and Brock and Durlauf (2002) but with a specific functional form for the social
interactions.
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where the city- and race-specific intercept θrct = ln∑j′∈Jrc
exp δrj′t is the inclusive

value, the population mean utility of households of race r living in a city c given
the choices available to them.

The remainder of the section is organized around addressing two key issues:

2.2 identifying how households trade off between the local price of the neighbor-
hood βr and the racial composition γr of the neighborhood by using migrant
shocks; and

2.3 predicting how Black households value unobserved characteristics of neigh-
borhoods ξBjt where essentially no Black residents lived using correlated
random effects.

2.2 Identifying how households trade off between price
and neighborhood racial composition

This section discusses identification of βr and γr in equation 1.
Through the lens of the simple model, the reflection problem in identifying

racial preferences occurs because sjt is a function of πW jt and πBjt and thus also
a function of ξW jt and ξBjt. In cross-sectional data, White instruments must
be correlated with ξBjt (relevance), but uncorrelated with ξW jt (exclusion), and
analogously for Black instruments. Since ξrjt captures race-specific preferences for
amenities, it is difficult to imagine cataloguing amenities that one race cares about
that the other race does not in observational data. An ideal experiment that ran-
domly assigned “dosages” of Black residents to some neighborhoods and randomly
assigned dosages of White residents to others would satisfy the requirement—the
treatment arms are equivalent to race-specific amenities. Such an experiment also
puts pressure on local housing supply, providing identifying variation for price.

Migrants and longitudinal data offer an opportunity to approximate this ex-
periment. To facilitate exposition, I decompose ξrjt into a permanent component
(ξ̄rj) and a transitory component (ξ̃rjt) so ξrjt = ξ̄rj + ξ̃rjt. First differencing
equation 1 yields:

∆ ln πrj = −∆θr + βr∆ lnPj + γr∆sj + ∆ξ̃rj, (2)

absorbing static unobservable amenities that make neighborhoods more attractive
(Nevo 2001).

This section is divided into two parts. First, I formally define Black and White
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migrant shocks and the exclusion restriction. Second, I examine how exogenous
migrant shocks theoretically shift neighborhood equilibria.

2.2.1 Definition of the past settlement instrument and instrument ex-
clusion

If migrants chose neighborhoods randomly, then inmigrant doses Mrjt would be
identical to the ideal experiment. However, migrants may choose neighborhoods
based on their local amenities ξrjt like incumbent residents. Following Card (2001)
and the literature on the wage effects of immigrants on native workers, exogenous
variation can be obtained by isolating immigrant inflows from shocked origins. Im-
migrant enclaves connect origin shocks (e.g. drought, racial violence) to destina-
tion outcomes. This section formalizes this idea through the lens of the structural
demand model.

To formally link migrant choices to the model, I assume the following about
preferences for enclaves of migrants of race r from origin g:

Assumption 3 (Group idiosyncratic preferences and decomposition of multino-
mial logit variance components). The i.i.d. extreme value error εijt can be de-
composed into εijt = ηr(i),g(i),jt + ε̃ijt, where ε̃ijt is i.i.d. extreme value type I and
ηrgjt is i.i.d. according to the appropriately scaled and parameterized distribution
formalized in Cardell (1997).

It follows immediately that ln πrgjt = ln πrjt +ηrgjt: migrants’ decisions are just
as “endogenous” as non-migrants’.8 Assumption 3 extends the standard multino-
mial logit assumption. Under Assumption 1, one individual’s choices are not more
or less endogenous than another’s. Under Assumption 3, one group’s choices are
not more or less endogenous than another’s.

Define each race-specific shift-share instrument Zrj ≡ ∑
g πrgj0×M̂ c

rg, mirroring
an accounting inflow relationship.9 The first “shares” component πrgj0 are past mi-
grant choices πrgj0, which proxy for ethnic enclaves and capture migrants’ tenden-
cies to follow in the footsteps of past migrants. The identifying assumptions come

8Assumption 3 is stronger than Proposition 1 requires for expositional purposes. The proof
simply requires that πrgjt|πrjt are i.i.d. The distributional assumption aids exposition because
additive separability ensures that the group-specific model mirrors the race-specific model: mi-
grants’ choices are just as “endogenous” as non-migrants’.

9Consider individuals that share the same race that also come from the same rural
county of origin, social network groups indexed by g. One can decompose immigrant in-
flows into group-specific flows Mrjt =

∑
g Mrgjt which in turn is a function of the group-

specific probability of choosing a neighborhood
∑

g Mrgjt =
∑

g πrgjt × M c
rgt, where πrgjt ≡

Pr [Dit = j|r (i) , g (i) , c (j) , t] and the immigrant inflow to the city M c(j)
rgt .
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from πrgj0. The second “shift” component M̂ c
rg proxies for push factors that shift

the probability that migrants leave their origins.10 M̂ c
rg is the product of (1) the

probability that past migrants chose city c, qrgjc0 = Pr [c (Dit) = c|r (i) , g (i) , t],
and (2) the total contemporaneous migrant outflows from origin g leaving out
destination c, M−c

rg . Together, M̂ c
rg = qrgc0M

−c
rg and Zrj = ∑

g πrgj0 × qrgc0 ×M−c
rg .

Each instrument measures the degree to which a neighborhood is connected to
origins facing large outflows to all other cities. The exclusion restriction is satisfied
if shocked neighborhoods—those connected to shocked origins—are conditionally
independent of neighborhoods experiencing changes in amenities, Zrj ⊥ ∆ξrj|Xj.
By construction, the instrument is derived from past settlement decisions, which
ameliorates concerns that migrants are intentionally deviating toward neighbor-
hoods with improving amenities.

However, threats to identification may remain because the instrument is con-
structed using baseline group choices πrgj0. Baseline shares partially reflect base-
line amenities, which could be correlated with changes in amenities, raising con-
cerns about “endogenous shares.” For a concrete example, note that neighbor-
hoods without any past migrants cannot be shocked. A violation arises if ameni-
ties systematically improve in migrant enclaves relative to neighborhoods without
migrants.

Through the lens of Assumption 3, remedying this threat requires isolating the
variation in πrgj0 arising from idiosyncratic preferences ηrgj0 rather than ameni-
ties ξrj0. Intuitively, both shocked and unshocked enclaves have information about
baseline amenities ξrj0. Neighborhoods with better baseline amenities are likely
to attract migrants from all locations and thus are likely to be more connected.
In contrast, only shocked enclaves have information about contemporaneous mi-
grants. I introduce a measure of overall connectedness—the sum of shares—as
a control. Conditional on connectedness, the instrument’s identifying variation
reflects comparisons between equally connected migrant enclaves rather than en-
claves to non-enclaves. Exclusion holds so long as shocked enclaves experience no
more or less changes in amenities than unshocked enclaves. With this control,
Assumption 3 is sufficient to establish instrument validity.

Proposition 1 (Conditional independence). Under Assumption 3, if Xj includes
the sum of shares then Zrj ⊥ ∆ξr′j|Xj ∀r, r′.

The proof is in the appendix. I include a Black migrant and White migrant
sum of shares control in all the neighborhood regressions. Notably, identification

10M̂ c
rg = qrgc0M

−c
rg is the shift-share instrument typically used in cross-city analyses.
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does not rely on an “exogenous shares” assumption: past migrant choices can be
correlated with contemporaneous changes in amenities so long as the correlation
does not differ based on the origin.11 Under the model’s assumptions, the de-
sign resolves three threats to identification: (1) static unobserved amenities, (2)
migrants intentionally deviating to neighborhoods with improving unobservables,
and (3) migrant destinations differing from non-migrant destinations in unobserv-
able changes.

The identification strategy is threatened if Assumption 3 fails to hold: that
idiosyncratic preferences of migrants from specific counties are correlated with
changes in amenities that all residents value. The most plausible way this could
happen is if migrants cause changes in local amenities. Recall that IV inter-
prets migrants’ causal effects on neighborhood choices exclusively via price and
the neighborhood racial composition. However, this violation is not exclusive to
my design: even instruments derived from randomly assigned migrants would be
subject to such a violation. Inseparability of racial shares from amenities would
threaten not only all existing neighborhood demand estimates, but the entire re-
search agenda devoted to better understanding neighborhood choice. The bar to
identification would be insurmountable.

However, if migrants cause changes in amenities, then local population and
price effects should be more or less uniform. Everyone likes better amenities,
and no one likes worse amenities. If instead migrants’ effects come from racial
preferences responding to shifts in the neighborhood racial composition, then the
corresponding behavioral responses are complex. Empirically, the results in Sec-
tion 4 are consistent with the sorting predictions of the model, laid out in the next
subsection.

2.2.2 Instrument relevance: reduced form equilibrium effects of mi-
grants in the presence of sorting

The theory generates reduced form predictions of migrants’ equilibrium effects
that guide the estimation of the first stage relationships. For example, Black

11Recent theoretical research has explored the underlying assumptions of “shift-share” instru-
ments in the spirit of Bartik (1991), a weighted average of industry-specific shocks. In particular,
Goldsmith-Pinkham, Sorkin, and Swift (2020) argue that identification is derived from assump-
tions about the shares, which themselves may be a source of omitted variable bias. The weights
should sum to one. When they do not (e.g. when the weights are specific manufacturing employ-
ment shares), Borusyak, Hull, and Jaravel (2018) recommend controlling for the sum of shares
(e.g., the overall manufacturing employment share). In contrast, this paper uses a version of the
Card (2001) past settlement instrument, a weighted sum of origin-specific shocks. The weights
may sum to zero or exceed one by design.
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migrants’ first order effect increases local demand, which increases prices. But,
the first order effect may be partially or more than offset by second order White
flight. A Black migrant shock may in fact decrease local neighborhood prices. This
intuitive ambiguity is borne out in the model, which provides a lens to formalize
such effects. The simple demand relationship in equation 1 predicts that the
reduced form price effects of migrant shocks vary heterogeneously depending on
the pre-existing racial composition of the neighborhood.

I make three mild structural assumptions to generate equilibrium predictions;
I do not impose them through coefficient restrictions when estimating equation 2.
However, the intuitive predictions provide a foundation for the empirical analysis.

Assumption 4 (Equilibrium assumptions).

1. All else constant, an (inverse) neighborhood housing supply relationship slopes
upward with respect to the local population

2. Demand slopes downward: βW , βB ≤ 0.

3. White residents weakly prefer White neighborhoods γW ≤ 0, and Black resi-
dents weakly prefer Black neighborhoods γB ≥ 0.

Note that I do not assume homogeneity in housing supply—each neighborhood
can have its own positive supply elasticity. I also do not place other restrictions
on how housing can vary with other factors.

Proposition 2 in Appendix C formally derives the first-stage reduced form
relationships in terms of structural parameters. I summarize the predictions in
two remarks.

Remark 1. Under assumptions 1–4, migrants’ population effects are always offset-
ting.

1. A Black migrant increases the local Black population and decreases the local
White population.

2. A White migrant increases the local White population and decreases the
local Black population.

Remark 2. Under assumptions 1–4, if White preferences for White neighborhoods
are particularly strong γW ≤ −1, the total population and price declines in re-
sponse to a Black migrant in White neighborhoods and increases in Black neigh-
borhoods. Similarly, if Black preferences for Black neighborhoods are particularly
strong γB ≥ 1, the total population and price declines in response to a White
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migrant in Black neighborhoods and increases in White neighborhoods. However,
population and price effect heterogeneity crosses from positive to negative at most
once.

Migrants’ offsetting effects have separate implications for using migrant shocks
as instrumental variables. One implication of remark 1 is that White population
declines in the face of Black inmigration are not necessarily indicative of White
preferences for White neighborhoods γW < 0. White population declines may
be a result of upward pricing pressure alone. The model predicts, reassuringly,
that Black migrant shocks increase the neighborhood Black share, and White
migrant shocks decrease the neighborhood Black share. The offsetting forces make
migrants’ population and price effects ambiguous averaged over all neighborhoods.
The theory attributes the ambiguity to different responses in neighborhoods with
more or less Black share.

Proposition 2 in Appendix C shows that a simple monotonic, linear specifica-
tion approximates this heterogeneity. I operationalize the predictions with simple
mean effects specifications,

∆ lnPj = a1c(j) +
∑

r

b1rZrj + c1rZrj × sj0 + d′
1Xj + e1j (3)

∆sj = a2c(j) +
∑

r

b2rZrj + c2rZrj × sj0 + d′
2Xj + e2j. (4)

The first difference specifications utilize within-neighborhood variation, absorb-
ing static unobservable characteristics. City fixed effects a·c capture city-specific
trends. In addition to the sum of shares, the vector of controls Xj includes baseline
1930 Black share, price, and population. Consequently, the remaining variation
in both the main Zrj and interacted Zrj × sj0 terms is driven by the instruments.
This variation is the basis for identification and excluded from the second stage
regressions. The reduced form errors terms e·j reflect unspecified higher order
non-linearities in migrants’ effects, measurement error, and heterogeneity in the
local supply elasticity (see the derivation of Proposition 2 in Appendix C).

If racial preferences are homophilic, then Proposition 2 predicts that Black mi-
grants decrease the price in White neighborhoods, b1B < 0, an effect canceled out
in increasingly Black neighborhoods, c1B > 0. Similarly, White migrants’ positive
price effect in White neighborhoods, b1W > 0, is offset in Black neighborhoods
c1W < 0. The relative size of the effects depends on the intensity of each groups’
respective racial preferences.
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With controls, equation 2 is operationalized empirically as

∆ ln π̂rj = −∆θrc + βr∆ lnPj + γr∆sj + d′
0rXj + e0rj. (5)

∆ξ̃rj + (∆ ln π̂rj − ∆ ln πrj) = d′
0rXj + e0rj captures changes in sampling error

associated with measuring the choice probabilities ∆ ln π̂rj from finite populations
and predictable changes in local amenities. I estimate equation 5 via 2SLS using
equations 3 and 4 as my first stage regressions.

2.3 Household valuations of local amenities and correlated
random effects

The previous section discussed how migrant shocks identify racial preferences. Pre-
dicting Black demand in restricted neighborhoods also requires measuring amenity
preferences. The principal insight of BFM is that mean utilities adjusted for
price effects—residualized choice probabilities—reflect amenties’ demand effects
and correspondingly, their hedonic values.12 I apply this insight to unobservables.
The challenge associated with interpreting residualized choices as amenities is es-
timation error. The structural residual urjt ≡ −θrct + ξ̄rj + ξ̃rjt differs from the
measured residual ûrjt = ln π̂rjt − β̂r lnPjt − γ̂rsjt because of estimation error
ũrjt = ûrjt −urjt. The residuals are incidental parameters and using them for pre-
diction suffers from overfitting (Neyman and Scott 1948). Fitting neighborhood
dummies as fixed effects suffers the same problem.13

CREs are essentially shrunken fixed effects. I project ξ̄rj onto the instrument
and covariate set, yielding

ûrjt = −θrct + F ′
r

[
Z ′

j,X
′
j

]′
+ ψrj︸ ︷︷ ︸

ξ̄rj

+ ξ̃rjt + ũrjt, (6)

a linear regression model where the inclusive value θrct is absorbed by city-time
12Whereas BFM adjust only for price effects and treat local race shares as an exogenous

amenity, I adjust mean indirect utilities by both price and race effects. The approach is related
to methods that link selection-corrected treatment estimates to choices (see e.g. French and
Taber (2011); Abdulkadiroglu, Pathak, Schellenberg, and Walters). In those cases, selection-
corrected estimates are regressors in unconditional choice equations. In my setting, the utility
measure of local amenities is the objective.

13Because there are thousands of neighborhoods and only two time periods, “unshrunk” fixed
effects are overfit, incidental parameters. This approach is similar to empirical Bayes approaches
used to recover estimates of teachers’ test score value-added. Just as teacher value-added es-
timates rely on adequately accounting for non-random student selection, estimating amenity
preferences relies on adequately accounting for racial preferences.
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fixed effects, and instruments and controls are used as linear predictors. To predict
the value of unobservables ψrj, I make the following assumption

Assumption 5 (Correlated random effects).

1. ξ̃rjt+ũrjt is conditionally, serially independent, ξ̃rj1+ũrj1 ⊥ ξ̃rj0+ũrj0|Zj,Xj

2.
 ψBj

ψW j

 ∼ N

 0
0
,
σ2

B σBW

σ2
B


Crucially, if the estimates of racial preferences are biased due to e.g. reflection,

then the correlated random effects cannot be interpreted as index for amenity
values.14 However, because they do not impose assumptions that would affect
identification βr and γr (see e.g. Chamberlain 1980; Chamberlain 1982; Mundlak
1978), I can estimate (rather than assume) whether White amenity preferences
correlate with Black amenity preferences.

Importantly, CREs measure preference heterogeneity across races for the same
amenities: do amenities drive segregation? The between-race correlation structure
of the CREs allows me to use White choice probabilities to predict Black demand
in restricted neighborhoods. Subsequently, the cross-decade, cross-race correlation
in the residuals reflect the correlation in Black and White residents’ preferences
for amenities. Normality is not strictly required, but Assumption 5 is sufficient to
produce a simple linear prediction, E [ψBj|ψW j] = σBW

σ2
W
ψW j. If amenity preferences

are negatively correlated, then local amenities are a segregating force. Otherwise,
the same amenities draw both Black and White households. Higher prices or
preferences for Black neighbors would be the only market forces keeping Black
families out of all-White neighborhoods.

3 Data and Definitions

This section describes the census data made available by Ruggles et al. (2020) used
to estimate the regression models described in Section 2. It has four parts. First,
I describe how I narrow the focus of my analysis to low-skilled Black and White
families. In the second, I define neighborhoods. I then construct neighborhood
prices. I conclude by describing the neighborhoods where Black and White families
live.

14Consider random effects in isolation, imposing βr = γr = 0. The result would essen-
tially be a regression of Black neighborhood choices on White neighborhood choices. Such
a regression would simply capture segregation—White and Black households choose different
neighborhoods—and would not capture amenity effects unless Black and White residents truly
did not have racial preferences.
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Households i The goal of the paper is to measure differences in preferences
across races rather than within class. I focus the analysis on a homogenous popu-
lation of relatively low-income families: households with both (1) employed male
heads between the ages of 18–50; and (2) a cohabiting wife and and at least
one cohabiting child. I exclude families living in group housing, where data on
housing costs are generally not available. In the 46 tracted metropolitan areas in
my sample, the top panel of Appendix Table A.1 reports the number of house-
holds captured by these restrictions. Excluding households headed by the elderly,
women, or the unemployed, the first restriction applies to 62% of Black households
and 64% of White households. Of the remaining, roughly half are cohabiting fam-
ilies. Second, I group families based on occupation groupings. I aim to make
groups broad enough to balance homogeneity with parsimoniously summarizing a
large number of households’ decisions. The bottom panel of Appendix Table A.1
reports the distribution of occupations of household heads. Black household heads
are clustered in three broad occupation groups—laborers (46%), service workers
(22%), and operators (18%). Men in these relatively low-skilled occupations in-
clude longshoremen, cooks, janitors, deliverymen, and valets. In keeping with a
focus on racial preferences rather than class differences, much of my analysis fo-
cuses on the occupation groups typical of Black men during this period. Whereas
these three categories of occupations account for 86% of Black heads of house-
hold, only 39% White households are in these three low skilled occupation groups.
Instead, White heads of households are broadly distributed in blue collar work
(e.g. craftsmen) and white collar work (e.g. managers). Nonetheless, the focus of
my analysis is on separate models estimated for low-skilled Blacks and low-skilled
Whites, reflecting the decisions of families of almost 14 million residents.

Neighborhoods j Having defined householders i, I turn to alternatives j. The
first-differenced, panel data regression models require consistent definitions for
each neighborhood j. I define neighborhoods as census tracts as they were defined
in 1940. Census tracts are designed to have a few thousand residents. The 1940
census was the first to broadly report standardized census tracts.15 To construct
1940 census tracts in 1930, I assign households in 1930 using available street
addresses. I detail the procedure in Appendix E.1. I restrict the sample to tracts
those where a large share of addresses could reliably be attributed to a 1940 census
tract definition. I also limit the analysis to tracts with between 1,000 and 20,000

15Census tracts were available earlier on a limited basis, but tract definitions change each
decade, a practice that continues to this day.
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residents in both 1930 and 1940. 6,132 census tracts in 46 metropolitan areas
make up my analysis sample. I construct the estimated choice probabilities ln π̂rjt

for each race and occupation category that I analyze using neighborhoods where
there at least 10 families in the respective race and occupation cell. In doing so, I
avoid estimating choice probabilities from a single digit number of families, which
may reflect measurement or sampling error.

Neighborhood Price Indices Pjt Neighborhoods do not have prices—houses
do. I create a neighborhood price index that combines information from neigh-
borhood rents (for renter-occupied dwellings) and prices (for owner-occupied)
dwellings. Appendix XX details how I estimate user-cost or rental-equivalent
costs of housing to convert log rents into equivalent log house price units. Ap-
pendix D shows that the simple neighborhood price index defined in this section
can proxy for the price of the “inclusive value” of the distribution of houses in
the neighborhood in a multinomial choice model where houses are nested into
neighborhoods.

Where did Black and White families live? To give a sense of the charac-
teristics of neighborhoods of the typical Black and White resident, Table 1 reports
neighborhood medians in 1940 weighted by the number of people in the pop-
ulations denoted by the column headers. The neighborhood for a typical family
resembles that for a typical White family, the majority in the population. The me-
dian White family lived in a neighborhood where the median home price (among
home owners) was $3,500 and the median monthly rent (among renters) was $27
per month.

Black neighborhoods were generally poorer with lower income, lower employ-
ment rates, and lower education levels. Black families lived in neighborhoods
where the local cost of housing was about 30% lower than White neighborhoods.
Similarly situated low-skilled White families lived in neighborhoods where the lo-
cal cost of housing was only about 13% lower than White families as a whole.
However, where the typical Black family’s neighborhood was 73% Black, the typ-
ical White family lived in a neighborhood with practically no Black people.

Did segregation arise because poorer White families were willing to pay 20%
more to live in White neighborhoods while poorer Black families were not? A cross-
sectional regression analysis of the patterns of segregation that does not take into
account the role of constraints for Black families would suggest a naive reading of
the data. The typical Black family would have to be either very price sensitive
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or have a strong affinity for Black neighbors. Absent those explanations, White
neighborhoods would have needed to be much more expensive for segregation to
be explained by White racial preferences alone. The remainder of the paper tries
to understand the extent to which the distribution of neighborhood prices and
Black shares could support the housing market equilibrium observed in 1940.

4 Identifying how households trade off between
price and neighborhood racial composition

Migrant inflows approximate that thought experiment. To illustrate the random-
ized population shock experiment laid out in Section 2.2, Figure 1 plots Black (in
purple) and White (in green) migrant inflows from rural counties in Texas and
Oklahoma to Los Angeles between 1935–1940. Rural origin counties with larger
outflows to any city are shaded according to their intensity. Destination census
tracts are shaded in red according to the Black share of residents in 1930. Black
migrant flows concentrate toward Watts and Compton, areas with a relatively high
share of Black residents. Nevertheless, the flows are both directed and disperse.
For instance, Black migrants from rural counties near Austin flow toward census
tracts near Glendale and Pasadena. Black migrants from rural counties outside
Oklahoma City are drawn toward Carson and south Compton. Rural White mi-
grants from Oklahoma are similarly directed, but White migrants from Texas are
drawn to cities other than Los Angeles.

The section is organized as follows. First, I detail how I proxy for migrant
enclaves using surname distributions. Second, I estimate simple reduced form
regression models that operationalize the equilibrium predictions in Section 2.2.2,
including the first stage models for the demand estimation. Finally, I estimate
the demand parameters that govern households’ preferences over price and racial
composition.

4.1 The past settlement instrument

The identification arguments of the demand model in Section 2.2.1 require gran-
ular neighborhood variation. A diverse set of rural origin counties provide that
variation. Recall the definition of the instrument, Zrj = ∑

g πrgj0×qrgc0×M−c
rg , and

denote the “shares” as πqrgc0 = πrgj0 × qrgc0 = Pr [j, c|r, g], the joint probability
that past migrants chose neighborhood j in city c. The shares cannot be computed
directly because origin county of birth is not available in the 1930 Census.
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Clustered surname distributions offer an avenue to predict counties of origin.
As an illustration, Figure 2 plots the resident shares of three common last names
for Whites and Blacks in Texas: Adams, Carter, and Jones. Whereas Black
Adamses are more represented in Navarro County, Black Carters and Joneses are
overrepresented in Freestone and Walker Counties. White surnames are similarly
predictive of location. Traditionally passed patrillineally, clustered surnames mea-
sure genetic drift—i.e. migration—and the shared experiences of similar migrants.
Many native born Whites inherited surnames from European migrants from the
late 19th and early 20th centuries that themselves clustered in immigrant enclaves
(Tabellini 2018). Last names of Blacks were often imposed by slave masters in
the antebellum era. Cook, Logan, and Parman (2014) find not only evidence of
distinctive Black first names in the beginning of the 20th century but also find
that African Americans are more likely to have the last names of famous figures
(e.g. George Washington). African Americans also took surnames celebrating
emancipation (e.g. Freeman) or reflecting their occupation (e.g. Smith).

In Appendix ??, I show systematically that surnames are geographically clus-
tered. I detail how I use surname distributions and Bayes’ rule to produce a plug-in
estimate of past migrants’ neighborhood choice probabilities π̂qrgj0. I use a series
of regression analyses to validate that the surname-generated choice probabilities
predict subsequent migrant predictions πqrgj1, directly estimable from the 1940
census. The unit of analysis is an origin (rural county)-destination (urban census
tract) flow. I weigh each observation by the total number of outmigrants from
county g to any city between 1935–1940, and I cluster standard errors by origin
county g.

Table 2 reports the results. For both races, column 1 shows that the surname-
generated choice probabilities strongly predict actual migration patterns. The
identification arguments in Section 2.2 require that migrants not all be drawn
to the same well-connected neighborhoods. Surname predicted probabilities are
still highly significant after accounting for neighborhoods that are attractive to
all migrants with the inclusion of tract fixed effects in column 2. The remaining
columns saturate the regression models with increasing number of fixed effects to
unpack the underlying variation. Column 3 adds state of origin by destination city
fixed effects. The predicted probabilities are still highly significant predictors, and
the modest improvement in the models’ overall explanatory power suggests that
the granular variation in neighborhood choices is not largely driven by affinities
of rural migrants from particular states for particular cities. Even in column 4
with the inclusion of county of origin by destination city fixed effects that absorb
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proximity to local transportation networks, the 1930 probabilities continue to
strongly predict 1935–1940 migrant flows. Finally, column 5 adds state of origin by
destination tract fixed effects. The regression analyses are suggest the importance
of familial and kinship relationships that underlie the motivation behind the past-
settlement instrument.

4.2 Equilibrium effects of Black and White migrant shocks

In this section, I estimate two sets of reduced form relationships using the set of
instruments. First, I test the population predictions of the model, summarized
by Remarks 1 and 2. Black migrants increase the local Black population and
decrease the local White population. The effects may offset and decrease total
neighborhood population depending on how intense racial preferences are. The
remarks make similar predictions for White migrants. Second, I estimate the
neighborhood effects on price and neighborhood Black share, which are the first
stage regression specifications in equations 3 and 4 that I use to recover residents’
preferences.

4.2.1 Population effects

Black migrants mechanically change the local Black population and change the
local White population depending on White racial preferences. White migrants
have analogous effects. The theory in Section 2.2.2 argues that population changes
(1) are heterogeneous along baseline Black share and (2) trace out corresponding
changes in local price if housing supply slopes upward. Correspondingly, I estimate
regression models that parallel the first stage equations 3 and 4, except with
neighborhood population changes as dependent variables.16

Table 3 reports each model’s coefficient estimates. Unsurprisingly, Black mi-
grant shocks increase the local Black population and White migrants increase the
local White population. Several additional patterns emerge that support the the-
ory. First, own race effects are consistent with sorting. The coefficient on ZBj ×sj0

in column 1 shows that Black migrant shocks increase the local Black population
16Migrants’ causal effects on neighborhood populations involve complicated social interactions.

Migrants’ effects reflect their first order effects plus amplified, cascading responses as residents
continuously respond to changes in the local population. Instrumenting for changes in Black
population as in Boustan (2010) and Shertzer and Walsh (2016) effectively assumes that changes
in Black population arise only from migrants and not from sorting along racial preferences.
The reduced-form specifications emerge from the simple structural model in Lemmas 2 and 3.
Accordingly, I interpret the results only qualitatively and do not compare the magnitude of
coefficient estimates between ZBj and ZW j .
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more in less Black neighborhoods as White residents leave. Similarly, the coef-
ficient on ZW j × sj0 in column 2 shows that White migrant shocks increase the
local White population more in more Black neighborhoods. Second, in column 2,
Black migrant shocks are associated with a decrease in the local White population
across the spectrum of 1930 Black share, consistent with White flight and Remark
1. In column 1, White migrant shocks’ effects on the local Black population are
less clear. The coefficient estimates suggest that the effect is negative in neigh-
borhoods with a low Black share and positive in neighborhoods with a high Black
share. Only the former is statistically significant.17 The lack of clear association
between White migrants and Black population is consistent with Black households
having weak or positive preferences toward White neighbors but may also simply
reflect statistical imprecision.

The model generates predictions of migrants’ effects on total population, which
are important for estimating price effects. Remark 2 notes that if preferences
on the neighborhood’s racial composition are particularly intense, then migrant
shocks may generate decreases in the total population of the neighborhood. Col-
umn 3 reports results. Black migrant shocks predict decreases in the total neigh-
borhood population in relatively White neighborhoods and increases in the total
neighborhood population in relatively Black neighborhoods. These results are con-
sistent with White resident’s harboring relatively intense preferences over neigh-
borhood racial composition γW ≤ −1. On the other hand, White migrant shocks
are associated with population increases across the spectrum of 1930 Black share
sj0.

4.2.2 First stage regressions: migrant effects on Black share and price

I turn now to migrants’ equilibrium effects on Black share and price, the endoge-
nous variables in the demand relationships of interest in equation 5.

Column 1 of Table 4 reports migrants’ effects on price. Migrants’ predicted
price effects are closely linked to their effects on neighborhood population. Black
migrants are associated with price increases in more-Black neighborhoods and
price declines in less-Black neighborhoods. Interestingly, while White migrants
are associated with price declines in Black neighborhoods, the price increases are
not statistically significant in even the most White neighborhoods. Column 2 in

17Specifically, the coefficient on ZjW × sj0 is relatively imprecise and the covariance of the
estimate with the main effect is only slightly negative. Thus, the implied effects of ZjW on the
local Black population are negative and statistically significant for sj0 < 0.128 at the 5% level
and not statistically significant otherwise.
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Table 4 reports the first stage results for the neighborhood Black share. Both
sets of migration shocks are predictive of changes in the neighborhood’s Black
share. In neighborhoods that are already predominantly Black, Black migrants
will have little effect on the neighborhood racial composition, and similarly for
White migrants. Naturally, Black shocks are relatively more predictive in White
neighborhoods and White shocks are relatively more predictive in Black neigh-
borhoods. The Black instruments generally have more statistical power. This
is consistent with several hypotheses. First, migrant networks may be stronger
for Black migrants—past settlement may be more predictive of future decisions.
Second, surnames may be more predictive of origin for Blacks than Whites. But
even holding those forces constant, Black migrants may elicit stronger behavioral
responses and generate larger shifts in the equilibrium.

Nevertheless, both the main and interacted effects of the Black and White
migrant shock instruments are statistically predictive of the endogenous variables
both individually and jointly. A Wald test for nullity of all eight coefficients across
the two regressions yields an F -test statistic of 21.9 and rejects the null hypothesis
at a level of 0.001.

4.3 Estimates of Racial Preferences

The equilibrium predictions in Section 2.2.2 come from two structural relation-
ships: the target, parameterized race-specific housing demand in equation 1 and
a non-parametric neighborhood-specific housing supply relationship. As noted in
section 3, because of constraints, the choice probabilities are constructed using
neighborhood counts where there at least 10 families in the respective race and
occupation cell.18 I use identifying variation from the full sample of census tracts
so that the first stage relationships are the same as those reported in Table 4
and constant across demand models. I estimate the demand parameters of equa-
tion 5 using two-sample 2SLS where the primary outcome of interest is changes
in occupation- and race-specific neighborhood choice probabilities. I report het-
eroskedastic robust standard errors specific to the two-sample procedure according
to Pacini and Windmeijer (2016).

Table 5 reports the effects of price and neighborhood Black share for Black
families (panel A) and White families (panel B). Column 1 reports my preferred
estimates for families with heads of household in low-skilled occupations because

18The independence of irrelevant alternatives assumption implicit in the multinomial logit
model allows one to ignore censored mean utilities and construct choice probabilities conditional
on the subset of available choices.
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they encompass most Black families. Demand slopes downward for both Black
and White families. The larger magnitude of βW combined with the larger choice
set of neighborhoods from which to substitute together imply that Whites are
more price sensitive than Blacks. On the one hand, low-skilled Black families
do not seem to exhibit particularly strong preferences for neighborhood racial
composition. On the other hand, similarly situated White families have intensely
negative preferences for Black neighbors. To quantify the tradeoff, I report a
utility-constant, compensated semi-elasticity γr

βr
. On the one hand, Black families

do not have to be compensated by changes in the local Black share. On the
other, White families must be compensated by nearly a 1% decrease in the local
price of housing for each 1 p.p. increase in the local Black share. Column 2
reports estimates for families whose head is not occupied in the three low-skilled
occupation groups. In panel B, preference estimates for families headed by higher-
skilled White workers are largely consistent with those estimates for lower-skilled
Whites. Relatively few Black families are not low-skilled, so column 2 in panel
A should be viewed with some caution. But, these estimates also do not suggest
that segregation is driven by Black families’ strong preferences for more Black
neighborhoods.

Using migrant shocks addresses potential reflection problems, but neverthe-
less finds White racial preferences consistent with the findings of other research.
However, previous research finds that homophilic racial preferences are universal
across different racial groups, a potential symptom of reflection. In contrast with
other work, I find that Black residents’ responses to migrants are muted, consis-
tent with weak racial preferences quantified by the IV estimates of the structural
model. Despite the disparity in homophilic preferences across races, Whites’ high
willingness-to-pay for White neighborhoods without Black neighbors may still be
sufficient to drive segregation (Cutler, Glaeser, and Vigdor 1999). All else equal,
White racial preferences will drive up the equilibrium prices of all-White neigh-
borhoods, pricing out Black residents. However, even without neighborhood price
differentials and homophilic preferences, low-skilled Black residents may not de-
mand the same neighborhoods as low-skilled White residents if they have different
amenity preferences, the subject of the next section.
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5 Household valuations of local amenities and
correlated random effects

Neighborhoods are not equal. Ignoring racial preferences, higher quality ameni-
ties draw more Black and White residents. Better amenities are capitalized into
price—ξrjt is correlated with lnPjt—motivating the instrumental variable strategy.
However, Black and White residents may have preferences for different amenities.
Even holding overall demand constant so that comparable neighborhoods have
similar price, heterogeneous preferences may drive segregation.

BFM show that adjusting choices by price effects provides a revealed-preference
measure of amenities’ hedonic value. Using this insight, BFM measure the value of
observable amenities.19 I apply the same logic to unobservables. Casting ameni-
ties’ effects as CREs exploits the available panel data and parallels fixed effects
regressions that use dummy variables to capture the effects of both observables
and unobservables. I use the CREs to measure amenities’ effects on demand and
differential preferences for local amenities.

The broad strategy of using demand to infer the values of amenities is an exer-
cise in prediction. As such, the credibility of the strategy relies on the credibility
that the “outcome variables”—the residuals—contain information about house-
holds’ amenity preferences. This in turn relies on the credibility of the estimates
of racial preferences. If the research design is subject to reflection and overstates
homophily, then equilibrium choices would be rationalized by undervaluing ameni-
ties in more racially homogenous neighborhoods.

Estimating the amenity value of neighborhood characteristics I follow
the procedure from Section 2.3 to estimate parameters governing the CREs, ad-
dressing the overfitting problem that comes with using incidental parameters for
prediction.20 Namely, I first residualize the choice probabilities ûrjt = ln π̂rjt −
β̂r lnPjt − γ̂rsjt using the consistent estimates of βr and γr. I then project the
residuals on the Black and White migrant shocks, the connectedness controls,
1930 neighborhood population, and city by decade fixed effects to absorb the
inclusive value.

19Specifically, they show that mean utilities in a logit model can be used a control function
to selection-correct a scaled hedonic price regression. This is related to approaches that re-
late structural “second stage” estimates to recover structural “first stage” parameters. See e.g.
Abdulkadiroğlu et al. (2020) and French and Taber (2011).

20In my setting, each fixed effect would be the average residual from the same neighborhood
in two decades.
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Denote the residuals of the auxiliary regressions ξ̃urjt. These residuals reflect
race-specific valuations of static unobservables ψrj, time-varying unobservables
ξ̃rjt, and estimation error ũrjt. Following Section 2.3, I stipulate that the se-
rial correlation in residual preferences is driven by permanent characteristics of
the neighborhood. I obtain estimates for the variance components of ψrj by re-
lating the residuals across decades in the neighborhoods where both White and
Black families live. Estimates of the parameters come from sample covariances,
σ̂2

r = 1
J−K

∑
j ξ̃urj0 · ξ̃urj1 and σ̂BW = 1

2J−K

∑
j

(
ξ̃uW j0 · ξ̃uBj1 + ξ̃uW j1 · ξ̃urj0

)
,

respectively, where J are the number of neighborhoods where both White and
Black families live in both decades and the degrees of freedom adjustment K = 6
is the number of covariates in the regression model plus one. The top panel of
Appendix Table A.2 summarizes the estimates of the variance components of the
unobservable effects.

Using the parameter estimates, I generate in-sample predictions of race-specific
preferences for neighborhood characteristics ξ̂rj.21 The result are essentially shrunken
fixed effects, whose distributions I discuss below.

Amenities in White neighborhoods First, I visualize the distribution of low-
skilled White amenity preferences ξ̂W j alone in Figure 3 to assess whether neigh-
borhood unobservables have systematically different effects on demand between
all-White and mixed neighborhoods. Panel A plots amenities’ predicted effects,
and panels B and C separate out contributions due to observable characteristics
and unobservable characteristics, respectively. The analysis shows that after ad-
justing for neighborhood price and racial composition, the distributions of White
amenity valuations are similar between all-White and mixed neighborhoods. Put
differently, the analysis shows that White families lived in all-White neighbor-
hoods that are more expensive because they had no Black neighbors rather than
because of their improved amenities. The analysis also shows that White amenity
valuations share common support between all-White and mixed neighborhoods.
Common support along with the covariance between White CREs and Black CREs
will allow me to use White amenity valuations of all-White neighborhoods to pre-
dict Black amenity valuations where there were no Black residents.

21Namely, ξ̂rj = F̂ ′
r

[
ZBj , ZW j ,X

′
j

]′ + ψ̂rj , where ψ̂rj = E
[
ψrj |ξ̃urj0, ξ̃urj1

]
=

σ̂2
r

τ̂2
r

(
ξ̃urj0+ξ̃urj1

2

)
and τ̂2

r = 1
2J−K

∑
j ξ̃u

2
rjt.
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Do amenities drive segregation? Second, I visualize the joint distribution
of White amenity preferences ξ̂W j with Black amenity preferences ξ̂Bj in mixed
neighborhoods in Figure 4. Paralleling Figure 3, Panel A plots the joint distribu-
tion of neighborhood valuations, and panels B and C separate out contributions
due to observable and unobservable characteristics, respectively. The relationship
in each graph is upward sloping. This suggests that neighborhood amenities that
White families value are the same as those that Black families value. Consequently,
amenities were not systematically a major driver of segregation.

6 Decomposing Segregation

Sections 2 through 5 in the first part of the paper lay out and estimate a model of
neighborhood choices. Notably, the analysis suggests that Black homophily and
differential amenity preferences are not major drivers of segregation. However, de
facto and de jure neighborhood constraints restricted Black residents from moving
in, generating all-White neighborhoods. This section measures the extent to which
neighborhood constraints were binding. I use the model to predict Black demand
for all-White neighborhoods and decompose observed segregation. If Black de-
mand for all-White neighborhoods is low either because of homophily or different
amenity preferences, then the constraints have little effect. If Black demand for
all-White neighborhoods is high, then the constraints bind.

It is worth emphasizing that quantifying the role of constraints is inherently
extrapolative—the objective is to predict Black demand where there were no Black
residents. Paradoxically, the greater the role of constraints in enforcing segrega-
tion, the more extrapolative the predictions will be. The tension is not resolved by
locating and measuring specific constraints. Measuring the effect of neighborhood
constraints requires both the research design and panel data. First, program eval-
uation of the demand effects of specific constraints does not measure homophily,
even if constraints were randomly assigned to neighborhoods. If Black residents
had strong homophilic preferences, there would be little demand for those neigh-
borhoods. Second, consider a neighborhood demand analysis that fails to address
reflection and subsequently overstates Black homophily. Such an analysis will
consequently predict low demand for all-White neighborhoods and conclude that
the constraints do not bind. Third, models fit to cross-sectional data rationalize
equilibrium choices. Because they fit the data, they cannot predict high Black
demand in all-White neighborhoods. Such an analysis will similarly conclude that
constraints do not bind. The research design in this paper permits homophily
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to suppress Black demand for all-White neighborhoods but does not assume or
impose it.

6.1 Setup

The segregation analysis has two parts. The first generates counterfactual pre-
dictions of Black demand absent constraints, including all-White neighborhoods.
The second uses the counterfactual predictions to decompose segregation.

Predicting Black demand in all-White neighborhoods To compare how
Black and White households value amenities in mixed neighborhoods in the last
section, I made in-sample predictions using the CREs. To produce counterfac-
tual Black demand, I make out-of-sample predictions exploiting (1) the measured
covariance of Black and White random effects and (2) White random effects are
measured in every neighborhood.22 This generates predictions of how Black resi-
dents value amenities ξ̂Bj, including in all-White neighborhoods.

In the spirit of McFadden (1974) and Petrin (2002) that predict the demand
of new products, I use ξ̂Bj to predict unnormalized Black mean utilities, δ̂Bjt =
β̂B lnPjt+γ̂Bsjt+ξ̂Bjt. I obtain predictions of counterfactual choices by subtracting
from the mean utilities the counterfactual inclusive value θ̂CF

Bc = ln∑j∈J ∗
c

(
exp δ̂Bj

)
,

which forces the choice probabilities in each city to sum to 1, l̂n πCF
Bjt = −θ̂CF

Bc +δ̂Bjt.

Decomposing the KL Divergence Denote the Kullback-Leibler (KL) diver-
gence of city c, KLc (πBct||πW ct) ≡ ∑

j∈J ∗
c
πBjt ln πBjt

πW jt
, measuring how different

the multinomial distributions of White choices πW ct are relative to Black choices
πBct in city c. More literally, the KL divergence is an average for Black families.
Treating the neighborhood choice probabilities as a characteristic, it measures
how much more often Black families choose their neighborhoods than White fam-
ilies on average. Black families on average live in neighborhoods that are roughly
100×KLc percent more likely to be chosen by Black families than White families.
Intuitively, the larger this number, the more segregated a city is.

Adding and subtracting l̂n πCF
Bjt from the πBjt-scaled quantity yields the decom-

22Namely, ψ̂Bj = E
[
ψBj |ξ̃uW j0, ξ̃uW j1

]
= σ̂BW

τ̂2
W

(
ξ̃uW j0+ξ̃uW j1

2

)
, the expected Black random

effect, conditional on the White residuals. The observable component of Black CREs remains
the same.
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position,

KLc =
∑

j∈J ∗
c

πBjt

(
ln πBjt − l̂n πCF

Bjt

)
︸ ︷︷ ︸

non-market constraints

+
∑

j∈J ∗
c

πBjt

(
l̂n πCF

Bjt − ln πW jt

)
︸ ︷︷ ︸

sorting

. (7)

The decomposition of the KL divergence yields two comparisons. The first ex-
pression compares actual Black choices to Black choices in an unrestricted coun-
terfactual.23 Note that counterfactual choices l̂n πCF

Bjt are weighted by πBjt. The
first term captures the reduction in demand for existing Black neighborhoods in
an unrestricted counterfactual, quantifying the degree to which non-market forces
constrain Black families to specific neighborhoods. The second expression com-
pares unrestricted Black choices to White choices, measuring the extent to which
divergent choices actually reflect divergent preferences.

6.2 Results

Table 6 reports the decomposition results. The top panel reports results separately
for the 21 cities in my sample with a Black population of at least 50,000, and
the bottom panel reports averages and averages weighting by the local Black
population. Columns 1, 2, and 3 report the overall KL divergence, the contribution
of constraints, and the contribution of preferences based explanations, respectively.
Column 4 reports the fraction of the overall divergence explained by constraints.

Cities were segregated. Across the cities, the first column in the bottom panel
of Table 6 shows that an average Black family lived in a neighborhood that was
roughly 200 log points more likely to be chosen by a Black resident than a White
resident. Even the least segregated cities in the table were still substantially
segregated. For example, in Richmond, VA, average Black families lived in neigh-
borhoods that were chosen by Black families at almost double the rate of White
families. However, quantifying constraints in column 2, Black families’ neighbor-
hoods were also on average roughly 100 log points more likely to be chosen by an
actual (constrained) Black residents than counterfactual (unconstrained) Black
residents. The model predicts that absent constraints, Black families would begin
to move into all-White neighborhoods at the prevailing prices, but not enough
to achieve complete integration. In column 3, the decomposition suggests that

23Substituting, this simplifies to an average difference in the estimated inclusive values∑
j∈J ∗

c
πBjt

(
ln πBjt − ln π̂CF

Bjt

)
=
∑

j∈J ∗
c
πBjt

(
θBc(j) − θ̂CF

Bc(j)

)
, weighted by the Black choice

probabilities. Because the inclusive value is the expected value of the indirect utility, this is a
simple quantitative measure of the welfare effects of constraints.
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preferences mediate the remaining 100 log points—roughly half—of observed seg-
regation through prices.

Both segregation and constraints vary across city and region. Low-skilled Black
and White residents in cities in the Midwest—Chicago, Cincinnati, Cleveland, and
Detroit—were quite segregated, reflected in the high overall divergence in column
1 of the top panel. Nonetheless, there constraints explain only a modest share of
overall segregation. In contrast, constraints explain a large share of segregation
for cities in the Northeast—New York and Philadelphia. Cities in the South were
generally less segregated, consistent with the findings of Cutler, Glaeser, and Vig-
dor (1999). Correspondingly, equilibria in cities like Birmingham, Nashville, and
Savannah were characterized by somewhat fewer constraints, perhaps reflecting
greater segregation driven by income differences or less “necessity” for residen-
tial segregation where explicitly racist policies ensured separation in schools and
public life.

One conspicuous exception in the South is Atlanta. In their case study, Cutler,
Glaeser, and Vigdor (1999) recall Atlanta’s repeated attempts to encode segrega-
tion into legal statute in a series of racial zoning laws. A law passed in 1913 was
struck down by the Georgia Supreme Court in Carey v. City of Atlanta (1915).
A law passed in 1916 was among those struck down by the US Supreme Court
in Buchanan v. Warley (1917). Atlanta passed another law in 1922,24 another in
1929, and another in 1931 (Bayor 1988; Bayor 1996; Rothstein 2017). While the
legislative efforts failed in the courts, the analysis reported in table 6 suggests that
non-market constraints played an important role in explaining the high amount
of segregation seen in Atlanta in 1940. The results raise the question of whether
the courts really deterred the city and the citizenry from enforcing segregation in
less formal ways.25

New Perspectives on Post-War Segregation Part of the civil rights move-
ment of the second half of the twentieth century was meant to chip away at the
explicit constraints that prevailed in the first half. Shelly v. Kraemer (1948)
struck down racially restrictive covenants. The Fair Housing Act portion of the
landmark 1968 Civil Rights Act made it illegal to discriminate on the basis of race
in housing markets. The Equal Credit Opportunity Act (1974) made it illegal
to discriminate on the basis of race in lending. Civil rights advanced, and racist

24The Whitten plan was struck down by the Georgia Supreme Court in Bowen v. City of
Atlanta (1924).

25In 1922, Atlanta elected Walter A. Sims, a well-known member of the Ku Klux Klan, as
mayor (Amsterdam 2016).
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collective action, institutional and otherwise, declined. Researchers have argued
that the slow pace of segregation’s declines since the civil rights movement owes
to the persistence of decentralized White preferences for White neighborhoods.

But, racial preferences in neighborhood demand models are endogenous social
interactions—the models permit multiple equilibria (Brock and Durlauf 2001).
The multiplicity of equilibria raise the question: even absent constraints, does
segregation reflect just preferences? The century’s worth of both legal and ex-
tralegal housing choice restrictions following the Civil War can be interpreted
as a mechanism for a White majority collectively selecting the more segregated
equilibria among many potential outcomes. One possibility is that segregated
equilibria persist even as preferences and attitudes change. To assess this possi-
bility, I compare segregation across cities and relate segregation measured in each
decade between 1960–2010 to segregation measured in 1940.26 I estimate two sets
of regression models:

KLct = at + btKLc,1940 + ect (8)

KLct = ct + d1tConstraintsc,1940 + d2tPreferencesc,1940 + uct, (9)

where constraints and preferences are measured via the decomposition and re-
ported in appendix table A.3.27

Figure 5 plots the coefficients. The solid Black series plots b̂t. Despite cities un-
dergoing dramatic changes from subsequent waves of Black migration and broader
trends in suburbanization, segregation is correlated over time. Each unit increase
in the KL divergence in 1940 predicts a roughly 0.4 unit increase in the KL di-
vergence during the 1960’s. The effect decays to roughly half by the early aughts.
However, the persistence of segregation is not driven in equal parts by constraints
and preferences. The dashed green series plotting the coefficients on preferences
d̂2t has the shape resembling a typical impulse response. It starts with a similar
magnitude to the coefficient on constraints, but it decays. 40 years later in 1980,
d̂2t is no longer significant, and it is very close to zero between 1990–2010. In
contrast, the dashed purple series plotting the coefficients on constraints d̂1t is
larger throughout the period, and it persists. By 2010, the coefficient decays by
only half, explaining the entirety of the serial correlation in segregation 70 years

26See appendix section E.2 for details on measuring segregation.
27Recall that by construction, KLc,1940 = Constraintsc,1940 + Preferencesc,1940. Thus, the

regression model estimated using the 1940 KL divergence as the dependent variable yields unit
coefficients b̂1940 = d̂1,1940=d̂2,1940 = 1. In other decades, the first regression model is equivalent
to the second regression model where the coefficients are constrained to be equal d1t = d2t.
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later.
The result suggests that when historical segregation was reflected in the city’s

distribution of prices, it had less staying power. Attitudes and preferences changed,
and decentralized decisions affected both prices and segregation. At the same
time, constraints were cities’ “big push” to more segregated equilibria. The civil
rights movement and legal protections dismantled preexisting restrictions but did
nothing to directly address the level of residential segregation. So as attitudes
and preferences have changed, decentralized decisions were not able to by them-
selves provide an equal and opposite big push back to a more racially integrated
equilibrium.

7 Conclusion

This paper estimates a neighborhood demand model with a research design that
addresses reflection problems in estimating homophilic preferences. Analyzing
sorting, the estimates suggest an important role of White homophily, but little
evidence of Black homophily or differential amenity preferences. Simply, low-
skilled White households were willing to pay more for neighborhoods that were
more White, and all-White neighborhoods were generally more expensive as a re-
sult. However, an equilibrium decomposition of segregation suggests that the price
premium of all-White neighborhoods was not enough to rationalize observed seg-
regation, suggesting that prevalent formal and informal constraints that restricted
Black residents were strongly binding.

Segregation is path dependent. Using the model decomposition as a cross-city
measure of constraints, I find that cities whose segregation was driven more by
constraints in 1940 are more segregated today. The results push against a simplis-
tic view that observed segregation is an inevitable result of White preferences for
White neighborhoods. But by the other side of the same token, integrated neigh-
borhoods are not an inevitable result of improving White attitudes. Convergence
from a segregated to an integrated equilibrium is not straightforward.
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8 Figures and Tables

Figure 1: Rural-to-Urban Migrant Flows from Texas and Oklahoma to Los Angeles, 1935–1940

This figure plots the flows of Black and White migrants between 1935–1940 from Texas and Oklahoma to Los Angeles in
purple and green, respectively. The flows are bundled via algorithm documented in Graser et al. (2017) using software
from https://github.com/dts-ait/qgis-edge-bundling. Origin counties on the left are shaded in purple with intensity
corresponding to the total outflow of Black migrants to major cities with census tracts. Origin counties on the right are
shaded in green corresponding to the total outflow of White migrants to major cities with census tracts. Cross-hatched
counties on the left and the right are urban counties in Texas and Oklahoma. Census tracts in Los Angeles (center) are
shaded in red according to the tract share of Black residents in 1930.
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Figure 2: Geographic Distribution of Three Common Last Names in Texas

(a) Adams (Black) (b) Carter (Black) (c) Jones (Black)

(d) Adams (White) (e) Carter (White) (f) Jones (White)

This figure plots the geographic distribution of Black (top row in purple) and White (bottom row in green) non-migrants in 1930 according to three example
surnames. Cross-hatched counties are urban counties.
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Figure 3: Marginal Distributions of White Amenity Preferences in Mixed and All-White Neighborhoods, Low-skilled Workers
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This figure plots the marginal distributions of components of White amenity preferences ξ̂W j estimated in section 5. Purple and green denote the marginal
distributions of ξ̂W j in mixed and all-White neighborhoods, respectively. Panels a, b, and c plot the composite ξ̂W j , the portion of the random effects attributed
to observables, and the portion of the random effects attributed to unobservables ψ̂W j , respectively.

Figure 4: Joint Distribution of Black and White Amenity Preferences, Low-skilled Workers
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This figure plots the joint distributions of White amenity preferences ξ̂W j and Black amenity preferences ξ̂Bj in mixed neighborhoods, estimated in section 5.
Purple and green denote the marginal distributions of ξ̂W j in mixed and all-White neighborhoods, respectively. Panels a, b, and c plot the composite ξ̂W j , the
portion of the random effects attributed to observables, and the portion of the random effects attributed to unobservables ψ̂W j , respectively.
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Figure 5: The Origins of Modern Segregation
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This figure plots the coefficients of equations 8 and 9 from section 7. Each data point in the Black line is the coefficient
estimate from a bivariate regression of the KL divergence measured in the respective year and the KL divergence measured
in 1940. The data points in the purple and green lines are coefficient estimates from analogous regression models where the
independent variables are the decomposed constraints and preferences explanations for segregation, respectively. These
measures are reported in appendix table A.3. 95% confidence intervals are shaded in purple and green, respectively. See
appendix E.2 for details on measurement of the KL divergence in each decade.
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Table 1: Neighborhood Characteristics of Median Black and White Families, 1940

(1) (2) (3) (4)

All White Low-skilled
White Black

Characteristics of Neighborhood Housing
Median Price 3,402.3 3,500 3,037.8 2,430.2

Median Home Values (Owners) 3,500 3,500 3,000 2,700
Median Rent (Renters) 27 28 25 20

Home Ownership Rate 0.283 0.304 0.286 0.141
Characteristics of Neighbors

Median Household Income 1,500 1,551 1,500 979
Share Employed (Head) 0.704 0.711 0.690 0.636

Share of HH Heads Employed in Low-skilled Occs 0.280 0.269 0.305 0.401
Average Years of Education of HH Head 8.357 8.506 7.949 7.050
Mean Household Size 3.607 3.590 3.677 3.763
Black Share 0.00289 0.00195 0.00180 0.730

Number of Residents 33,283,800 29,920,195 9,771,394 3,237,710
This table reports tract characteristics for the median household in the 46 major cities with census tracts in my sample. Each cell is a
weighted median where the weights are the number of people in families described by the column labels. Column 1 weighs by the median
household, column 2 the median White household, column 3 the median White household with a head in a low-skilled occupation, and
column 4 the median Black household. The low skilled occupations are laborers, service workers, and operators. See text in section 3
for details. Median neighborhood price combines both home values and rents into a single measure. See section 3 for details.
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Table 2: Regressions of 1935–1940 Flow Probabilities on Surname-Constructed Probabilities

(a) Black

(1) (2) (3) (4) (5)

Surname-Constructed Prob. 1.979 2.001 2.035 1.952 1.999
(0.145) (0.144) (0.173) (0.176) (0.422)

Tract(Dest) FE ✓ ✓ ✓
State(Origin) × Metro(Dest) FE ✓
County(Origin) × Metro(Dest) FE ✓ ✓
State(Origin) × Tract(Dest) FE ✓

R2 0.0996 0.121 0.126 0.166 0.271
Obs 19,185,552 19,185,552 19,185,552 19,185,552 19,166,328

(b) White

(1) (2) (3) (4) (5)

Surname-Constructed Prob. 1.601 1.581 1.680 1.625 6.030
(0.133) (0.137) (0.184) (0.185) (0.809)

Tract(Dest) FE ✓ ✓ ✓
State(Origin) × Metro(Dest) FE ✓
County(Origin) × Metro(Dest) FE ✓ ✓
State(Origin) × Tract(Dest) FE ✓

R2 0.187 0.200 0.211 0.270 0.444
Obs 23,126,472 23,126,472 23,126,472 23,126,472 23,116,860

This table reports coefficient estimates from regressions where the dependent variables are city-tract choice probabilities of
migrants from between 1935–1940 and the independent variables are the corresponding measures constructed from city residents
in 1930 and the surname distributions. See the text in section ?? for details. The top panel reports regression results for Black
choice probabilities, and the bottom panel reports regression results for White choice probabilities. The unit of observation is
an origin county-destination census tract pair. In both panels, each successive column reports the inclusion of additional fixed
effects. Column 1 is a bivariate regression. Column 2 includes destination tract fixed effects. Column 3 adds state of origin
by destination city fixed effects. Column 4 replaces those fixed effects with county of origin by destination city fixed effects.
Finally, Column 5 replaces tract fixed effects with state of origin by destination tract fixed effects. The regressions are weighted
by total rural-to-urban origin county migrant outflows between 1935--1940. Robust standard errors clustered by origin county
are reported in parenthesis.
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Table 3: Reduced Form Population Effects of Migrants

(1) (2) (3)
Black White Total

Coefficient Estimates
ZB 21.06 -31.24 -10.46

(5.934) (5.080) (5.395)

ZW -1.866 3.461 1.218
(0.452) (1.785) (1.845)

ZB×s -18.06 36.92 19.03
(6.453) (5.097) (5.796)

ZW ×s 5.897 9.690 15.87
(3.092) (3.264) (4.032)

Implied Effects @ s = 0.2
ZB 17.45 -23.85 -6.655

(4.783) (4.164) (4.343)
ZW -0.687 5.399 4.391

(0.725) (2.035) (2.180)
Implied Effects @ s = 0.8
ZB 6.608 -1.698 4.762

(2.423) (2.096) (2.061)
ZW 2.851 11.21 13.91

(2.466) (3.482) (4.074)

Tracts 6132 6132 6132

Wald F -statistics and p-values
All Instruments 24.73 15.33 7.683

⟨0.000⟩ ⟨0.000⟩ ⟨0.000⟩
Black Effects 6.895 27.05 9.693

⟨0.001⟩ ⟨0.000⟩ ⟨0.000⟩
White Effects 9.602 5.250 7.780

⟨0.000⟩ ⟨0.005⟩ ⟨0.000⟩
This table reports results coefficients of regression models analogous to
equations 3 and 4, except replacing the dependent variable with the neigh-
borhood’s change in Black, White, and total population between 1930–1940.
The primary coefficients of interest are the main effects of Black and White
demand shocks ZB and ZW , and the effects interacted with the 1930 Black
share sj0. See the text in section 4.2 for details. All equations include
metropolitan area fixed effects and controls for the 1930 population, Black
share, the Black and White sum of shares, and median log housing cost.
The Wald test for “All Instruments” tests the joint significance of the coef-
ficients reported in the top panel. “Black Effects” and “White Effects” test
the main and interacted effects of ZB and ZW , respectively. Robust stan-
dard errors reported in parentheses, p-values reported in angular brackets.
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Table 4: First Stage Regressions

(1) (2)
Log Price Black Share

Coefficient Estimates
ZB/1, 000 -1.486 2.899

(0.437) (0.365)

ZW /1, 000 0.0518 -0.0679
(0.170) (0.0370)

ZB/1, 000×s 2.557 -3.598
(0.473) (0.388)

ZW /1, 000×s -1.047 -0.276
(0.344) (0.186)

Implied Effects @ s = 0.2
ZB/1000 -0.974 2.179

(0.368) (0.294)
ZW /1000 -0.158 -0.123

(0.168) (0.0475)
Implied Effects @ s = 0.8
ZB/1000 0.560 0.0201

(0.275) (0.140)
ZW /1000 -0.786 -0.288

(0.288) (0.147)

Tracts 6132 6132

Wald F -statistics and p-values
All Instruments 19.76 35.51

⟨0.000⟩ ⟨0.000⟩
Black Effects 15.51 44.60

⟨0.000⟩ ⟨0.000⟩
White Effects 4.698 3.392

⟨0.009⟩ ⟨0.034⟩
This table reports results coefficients of the first stage regression models
in equations 3 and 4. See the table notes from table 3 for additional
information.
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Table 5: The Tradeoff Between Price and Racial Composition by Broad Occupation Groups

(a) Black

(1) (2)
Low-skilled Higher-skilled

Log Price -1.906 -0.284
(0.553) (0.452)

Black Share -0.0113 0.350
(0.704) (0.639)

Tracts 1087 490
Semi-Elasticity -0.00593 1.230

(0.368) (4.092)

(b) White

(1) (2)
Low-skilled Higher-skilled

Log Price -4.109 -2.743
(1.026) (0.828)

Black Share -3.982 -2.134
(1.109) (0.928)

Tracts 5750 6015
Semi-Elasticity -0.969 -0.778

(0.143) (0.187)
This table reports the two-sample 2SLS structural es-
timates of the demand parameters in equation 5. The
top panel reports estimates for Black families, and the
bottom panel reports estimates for White families. In
each panel, the first column reports estimates separately
for low-skilled families and higher-skilled families. Low-
skilled families are those whose head is a laborer, ser-
vice worker, or operator; higher-skilled families are all
other families. See text in section 3 for details. The first
stage regressions are reported in table 4. Robust standard
errors adjusted for the two-step procedure according to
Pacini and Windmeijer (2016) are reported in parenthe-
ses. The compensated semi-elasticities are computed as
the ratio of the coefficient on neighborhood Black share
and the coefficient on neighborhood log price, interpreted
as the percentage change in housing costs needed to offset
a 1 p.p. increase in the Black share and keep an average
household indifferent. Standard errors are computed us-
ing the delta method.
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Table 6: Decomposition of Segregation of Low-skilled Families, Cities with Large Black Population

(1) (2) (3) (4) (5)
Overall Constraints Preferences Constraints Black Population

(KL Divergence Components) (Percent of Overall KL) (Thousands)
Atlanta, GA 2.69 1.53 1.17 56.7% 136
Baltimore, MD 2.08 0.65 1.43 31.2% 174
Birmingham, AL 0.99 0.13 0.86 13.1% 178
Chicago, IL 5.26 1.46 3.80 27.8% 322
Cincinnati, OH 2.78 0.74 2.04 26.5% 68
Cleveland, OH 3.53 0.96 2.57 27.3% 87
Dallas, TX 1.53 0.42 1.11 27.7% 90
Detroit, MI 2.79 1.15 1.65 41.1% 165
Houston, TX 1.97 0.31 1.66 15.6% 104
Los Angeles, CA 3.12 1.21 1.91 38.9% 75
Louisville, KY 1.96 0.81 1.15 41.4% 53
Memphis, TN 0.89 0.12 0.76 14.0% 155
Nashville, TN 1.19 0.29 0.90 24.5% 57
New Orleans, LA 1.29 0.31 0.98 24.3% 155
New York, NY 2.39 1.88 0.51 78.5% 634
Philadelphia, PA 1.41 0.91 0.50 64.6% 310
Pittsburgh, PA 1.86 1.01 0.85 54.4% 96
Richmond, VA 0.69 0.20 0.49 29.3% 74
Savannah, GA 1.46 0.32 1.15 21.6% 52
St. Louis, MO 2.20 1.01 1.19 45.9% 145
Washington, DC 0.96 0.29 0.68 29.8% 225
Avg., All Cities 2.24 1.10 1.14 49.1%
Wgt. Avg., All Cities 2.19 0.98 1.21 44.5%
Wgt. Avg., Cities w/ Black Pop > 50k 2.05 0.97 1.25 43.6%

This table reports the decomposition of the KL divergence. Column 1 reports the KL divergence between low-skilled Black and White families. Columns 2 and 3
decompose the KL divergence into constraints and preferences explanations from equation 7, respectively. Column 4 reports the percentage of the KL divergence
explained by constraints divided by the overall KL divergence. Column 5 reports the city’s Black population. The top panel reports measures separately for cities
with at least 50,000 Black residents in 1940. The first three columns of the bottom panel report averages. The first row averages over all 46 cities in the analysis
sample. The second row weights those averages by the city’s Black population. The third row limits the weighted average to the 21 cities reported in panel A with
at least 50,000 Black residents. The percentage of segregation explained by segregation in the fourth column in the bottom panel is not an average. It is recomputed
using the averages in the first three columns. See appendix table A.3 for decompositions of all 46 cities.
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Appendix for Online Publication

A Appendix Tables

Table A.1: Occupation Distribution by Race, 1940

(1) (2)
Black White

All Households (thousands) 789 8,358
...with employed male head of household, age 18–55, 488 5,350

... with wife and at least one child 213 3,343
... in tracts with at least 10 with same occ. × race 208 3,341

Broad Occupation Shares
Low-skilled Occupations

Laborers 46.4 9.4
Services 21.6 6.7
Operators 18.4 22.6

Other Occupations
Craftsmen 7.8 23.0
Clerical 2.6 7.9
Professional 1.5 6.1
Sales 1.1 12.2
Managers 0.7 12.2

The top panel reports counts of households (in thousands) living in one of 46 tracted
metropolitan areas in 1940. The bottom panel reports the shares of families (a cohab-
iting husband, wife, and child) living in tracts with at least 10 other families of the
same broad occupation and race in both 1930 and 1940.
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Table A.2: Scaled Covariances of Correlated Random Effects

(1) (2)
Low-skilled Higher-skilled

Estimated Covariances and {Correlations}
σ2

B 0.494 0.235
{0.776} {0.703}

σ2
W 0.855 0.855

{0.775} {0.820}
σBW 0.449 0.153

{0.538} {0.262}

Covariances with ξ̄W j, Raw and [Scaled]
Composite ξ̄Bj 0.650 0.145

[0.531] [0.128]
Observables F ′

B

[
ZBj, ZW j,X

′
j

]′
0.201 -0.00774
[0.164] [-0.00683]

Unobservables ψBj 0.449 0.153
[0.367] [0.135]

Tracts 915 396

This table summarizes parameters of the correlated random effects. In each panel,
the first column reports estimates for low-skilled families, and the second column
reports estimates for higher skilled families. See the notes to table 5 for details. The
top panel reports estimates of the variance terms of ψrj from equation. The first
line in each cell is the point estimate of the variance, and the second line in each
row is the correlation coefficient between the two residuals from which the variance
is estimated. The first row is the covariance for Black families, and the second
row is the covariance for White families. Each term is identified from cross-decadal
correlation in the residuals. The third row reports the covariance estimate between
ψBj and ψW j , the average of the the covariance between the 1930 Black residual
and 1940 White residual and the 1940 Black residual and the 1930 White residual
and the 1940 Black residual. See section 5 for details and the formulas. The bottom
panel reports the covariances of the Black composite correlated random effect ξ̄Bj ,
its observable component F ′

B

[
ZBj , ZW j ,X

′
j

]′, and its unobservable component ψBj

with the composite correlated random effect for White families ξ̄W j . The top number
is the raw covariance, and the bottom number scales the raw covariance by the
estimate of V ar

[
ξ̄W j

]
, reflecting an implied regression coefficient. The parameters

are estimated on the subset of tracts for which there are both Black and White
residuals.
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Table A.3: Decomposition of Segregation of Low-skilled
Families, All Cities

KL Divergence
Overall Constraints Preferences

Akron, OH 1.49 1.03 0.46
Atlanta, GA 2.69 1.53 1.17
Atlantic City, NJ 2.02 1.25 0.77
August, GA/SC 1.52 0.22 1.30
Austin, TX 1.35 0.19 1.16
Baltimore, MD 2.08 0.65 1.43
Beaumont, TX 0.00 0.09 -0.09
Birmingham, AL 0.99 0.13 0.86
Boston, MA 3.25 2.07 1.17
Buffalo, NY 2.74 1.66 1.08
Chicago, IL 5.26 1.46 3.80
Cincinnati, OH 2.78 0.74 2.04
Cleveland, OH 3.53 0.96 2.57
Columbus, OH 1.80 0.67 1.13
Dallas, TX 1.53 0.42 1.11
Dayton, OH 2.19 1.17 1.02
Denver, CO 2.89 0.23 2.65
Des Moines, IA 2.32 1.42 0.91
Detroit, MI 2.79 1.15 1.65
Flint, MI 2.33 1.95 0.38
Hartford, CT 2.71 1.60 1.11
Houston, TX 1.97 0.31 1.66
Los Angeles, CA 3.12 1.21 1.91
Louisville, KY 1.96 0.81 1.15
Macon, GA 0.28 0.11 0.17
Memphis, TN 0.89 0.12 0.76
Milwaukee, WI 3.69 2.00 1.69
Minneapolis-St. Paul, MN 3.61 1.89 1.72
Nashville, TN 1.19 0.29 0.90
New Haven, CT 3.31 1.98 1.33
New Orleans, LA 1.29 0.31 0.98
New York, NY 2.39 1.88 0.51
Oklahoma City, OK 2.08 0.74 1.34
Philadelphia, PA 1.41 0.91 0.50
Pittsburgh, PA 1.86 1.01 0.85
Providence, RI 2.17 1.94 0.23
Richmond, VA 0.69 0.20 0.49
Rochester, NY 3.60 3.08 0.52
San Francisco, CA 3.01 2.18 0.83
Savannah, GA 1.46 0.32 1.15
Seattle, WA 4.44 2.58 1.86
St. Louis, MO 2.20 1.01 1.19
Syracuse, NY 2.92 2.71 0.21
Toledo, OH 2.94 1.28 1.66
Trenton, NJ 1.33 0.83 0.50
Washington, DC 0.96 0.29 0.68

This table reports decomposition results for all 46 cities. Column 1 reports

the overall KL divergence between low-skilled Black and White families.

Columns 2 and 3 decompose the KL divergence into constraints and pref-

erences explanations, respectively. See text in section 6 for details.
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B Controlling for the sum of shares

Proposition 1 (Conditional independence). Under assumption 3, if Xj includes the
sum of shares then Zrj ⊥ ∆ξr′j|Xj ∀r, r′.

Proof. Consider π̂rgj0 = Qrgj0
Mrg

, where Qrgj0 is the number of migrants of race r from
origin g that choose neighborhood j in the base period, and the denominator is the total
number of outmigrants of race r from origin g. The numerator is a binomially distributed
random variable Qrgj0 ∼ Binom (Mrg, πrgj0). By iterated expectations, E [Qrgj0|πrj0] =
Mrgπrj0E [exp ηrgj0].

For large numbers of migrants Mrg, π̂rgj0
d→ N [πrgj0, πrgj0 (1 − πrgj0)] by the central

limit theorem. Thus, one can view, {π̂rgj0} |πrj0
iid∼ N [πrj0E [exp ηrgj0] , πrj0E [exp ηrgj0] (1 − πrj0E [exp ηrgj0])].

Correspondingly, it follows immediately that SOSrj ≡ ∑
g π̂rgj0 is a sufficient statistic for

πrj0 from the well-known result that the sample average (over origins g) is sufficient for
the population mean of a normally distributed random variable, πrj0 ⊥ πrgj0|SOSrj.

Fix r′. Since Zrj = ∑
g M

−c
rg π̂rgj0, it is sufficient to show that ∆ξr′j ⊥ π̂rgj0|SOSrj for

some arbitrary g. Thus, abusively denoting densities as Pr [·],

Pr [∆ξr′j, πrgj0|SOSrj] = Pr [∆ξr′j|π̂rgj0, SOSrj] Pr [πrgj0|SOSrj]

=
(∫

Pr [∆ξr′j|πrgj,���π̂rgj0, SOSrj] Pr [πrgj|���π̂rgj0, SOSrj] dπrgj

)
Pr [πrgj0|SOSrj]

= Pr [∆ξr′j|SOSrj] Pr [πrgj0|SOSrj]

where the last line follows from π̂rgj0|πrj0 independent ∀g and ςrj being sufficient for
πrj0.

See Li (2021) for additional examples and discussion.

C Theoretical effects of migrants on neighborhood
equilibria

The comparative statics in this section analyze migrants’ equilibrium effects on population
and price. The analysis does not preclude the existence of multiple equilibria (Brock and
Durlauf 2002). It studies how existing equilibria may change under small perturbations.

C.1 Setup

Recall from the text that i indexes households, r (i) indexes the household’s race, g (i)
indexes their county of origin, j indexes neighborhoods in city c, and t indexes time. For
notational simplicity, I omit city and time indices, but all expressions can be viewed as
comparisons of the same neighborhood over time.
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Let total population be the sum of the Black and White population Qj = QBj +QW j.
Whereas neighborhood populations are denoted using Q, the city populations are given
by N . Neighborhood populations are given by the product of the city population and
neighborhood choice probabilities: Qrj = Nrπrj. Continuing to abuse notation, the
Black and White populations themselves are the sum of group-specific populations QBj =∑

g QBgj and QW j = ∑
g QW gj. Further, define the neighborhood-specific elasticity as

λj (Qj) ≡ ∂ ln Pj

∂ ln Qj
.

For convenience, I repeat the assumptions made in the text:

Assumption 1 (Multinomial logit). εijt is an i.i.d. draw from a standard extreme-value
type I distribution

Assumption 2 (Linearity in parameters). Race-specific mean utilities can be written
linearly as

δrjt = βr lnPjt + γrsjt + ξrjt

where Pjt is the local price of housing in neighborhood j, sjt is the Black share of the
neighborhood, and ξrjt is a residual that summarizes preferences over local amenities (e.g.
parks or good schools) and disamenities (e.g. pollution).

Assumption 3 (Decomposition of multinomial logit variance components). The i.i.d.
extreme value error εijt can be decomposed into εijt = ηr(i),g(i),jt + ε̃ijt, where ε̃ijt is
distributed extreme value type I and ηrgjt is distributed according to the appropriately
scaled and parameterized distribution formalized in Cardell (1997).

Assumption 3 implies that migrants from origins g have affinities for particular neigh-
borhoods, ln πrgj = ln πrj+ηrgj. These affinities form an important part of the identifying
variation. Correspondingly, neighborhood populations are given by Qrj = ∑

g Qrgj =∑
g Nrgπrgj. Applying the notation, the choice probabilities are given by πrgj = Qrgj

Nrg
, and

the neighborhood Black share is given by sj = QBj

Qj
.

For the theoretical analysis, I define “exogenous” migrant flows as a unit increase
in the stock of group-specific population dNrg of the city. The effect of an exogenous
migrant on a neighborhood’s log prices is given by

∂ lnPj

∂Nrg

= λj (Qj)
∂ lnQj

∂Nrg

= λj (Qj)
Qj

∂Qj

∂Nrg

The simple supply specification suggests that price effects roughly trace out population
effects, which I develop in the remainder of this appendix. The effect of an exogenous
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migrant on the neighborhood Black share is given by

∂sj

∂Nrg

= 1
Qj

(
∂QBj

∂Nrg

− sj
∂Qj

∂Nrg

)

Hereafter, I focus on a single neighborhood and hold constant local amenities ξ and
the inclusive value θ. Throughout the theoretical analysis, I use the following shorthand
for notational convenience. First, I suppress the neighborhood index j. Second, I suppress
the supply elasticity’s dependence on population λ ≡ λ (Q).

One useful result is simply examining the effect of an exogenous migrant on the race-
specific choice probabilities.

Lemma 1. The effect of an exogenous migrant of race r′ from origin g on the neighbor-
hood choice probabilities of race r is given by

∂ ln πr

∂Nr′g
= 1
Q

[
(βrλ− γrs)

∂QW

∂Nr′g
+ (βrλ+ γr (1 − s)) ∂QB

∂Nr′g

]

Proof.

∂ ln πr

∂Nr′g
= ∂ (βr lnP + γrs)

∂Nr′g

= βr
Q

Q

∂ lnP
∂Q

∂Q

∂Nr′g
+ γr

∂
(

QB

Q

)
∂Nr′g

= βr
1
Q

∂ lnP
∂ lnQ

∂Q

∂Nr′g
+ γr

Q ∂QB

∂NBg

Q2 − γr

QB
∂Q

∂Nr′g

Q2

= βr
1
Q
λ
∂Q

∂Nr′g
+ γr

∂QB

∂Nr′g

Q
− γrs

∂Q
∂Nr′g

Q

=
(
βr

1
Q
λ− γrs

Q

)
∂Q

∂Nr′g
+ γr

Q

∂QB

∂Nr′g

=
(
βr

1
Q
λ− γrs

Q

)(
∂QW

∂Nr′g
+ ∂QB

∂Nr′g

)
+ γr

Q

∂QB

∂Nr′g

= 1
Q

{
(βrλ− γrs)

∂QW

∂Nr′g
+ [βrλ+ γr (1 − s)] ∂QB

∂Nr′g

}

C.2 Population effects of migrants

Because price effects of migrants trace out population effects of migrants, this section
derives expressions for the population effects of migrants.
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C.2.1 The effect of a Black migrant

Here, I derive the effect of a Black migrant on the White and Black populations, respec-
tively. Prior to applying lemma 1, one can write

∂QW

∂NBg

= ∂ (NWπW )
∂NBg

= NW
∂πW

∂NBg

= NWπW
∂ ln πW

∂NBg

= QW
∂ ln πW

∂NBg

and

∂QB

∂NBg

=
∂
(∑

g′ NBg′πBg

)
∂NBg

= πBg +NB
∂πBg

∂NBg

+
∑
g′ ̸=g

NBg′
∂πBg′

∂NBg

= πBg +NBgπBg
∂ ln πBg

∂NBg

+
∑
g′ ̸=g

NBg′πBg′
∂ ln πBg′

∂NBg

= πBg +QBg
∂ (ln πB + ηBg)

∂NBg

+
∑
g′ ̸=g

QBg′
∂ ln πBg′

∂NBg

= πBg +QB
∂ ln πB

∂NBg

.

The migrant enclave instrument emerges naturally from the model. Group-specific affini-
ties for particular neighborhoods ηBg are embedded in πBg in the fourth and fifth lines,
forming an important source of identifying information (see appendix B).

Inserting lemma 1 yields:

∂QW

∂NBg

= QW
∂ ln πW

∂NBg

= (1 − s)
{

(βWλ− γW s)
∂QW

∂NBg

+ [βWλ+ γW (1 − s)] ∂QB

∂NBg

}

[1 − βWλ (1 − s) + γW s (1 − s)] ∂QW

∂NBg

= [βWλ+ γW (1 − s)] (1 − s) ∂QB

∂NBg

(10)
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and

∂QB

∂NBg

= πBg +QB
∂ ln πB

∂NBg

= πBg + s

{
(βBλ− γBs)

∂QW

∂NBg

+ [βBλ+ (1 − s) γB] ∂QB

∂NBg

}

[1 − βBλs− γBs (1 − s)] ∂QB

∂NBg

= πBg + (βBλ− γBs) s
∂QW

∂NBg

. (11)

Black migrants’ first order effect πBg has a first order effect on the White population. The
first order effect on the White population is amplified by a multiplier. The adjustment
of the White population has a corresponding effect on the Black population, which is
also amplified by a multiplier. Equilibrium is determined as the solution of the system
of differential equations in equations 10 and 11.

However, if 1 − βWλ (1 − s) + γW s (1 − s) < 0 (or 1 − βBλs − γBs (1 − s) < 0 for
White migrant shocks), the initial conditions are necessarily not stable. In the second
line of each expression, one can see growing cascading effects. For instance, suppose
γB = βB = 0. The initial change in the neighborhood’s Black population from the
migrant increases the neighborhood’s Black share. If γW ≤ 0 and βW ≤ 0, White
residents leave, further increasing the neighborhood’s Black share. More White residents
leave with each subsequent round larger than the previous.

The “initial” equilibria I observe in 1930 are unlikely to be unstable since any pertur-
bation would result cascading effects toward a stable equilibrium. I generate predictions
for stable equilibria, defined as follows:

Definition 1. Let

µ (s) = 1
1 − λ [βBs+ βW (1 − s)] − (γB − γW + λβBγW − λβWγB) s (1 − s) .

A neighborhood equilibrium is stable if

1. µ (s) ≥ 0

2. 1 − βWλ (1 − s) + γW s (1 − s) ≥ 0

3. 1 − βBλs− γBs (1 − s) ≥ 0.

The analysis considers small migrant shocks dNrg, and I define stability so that neigh-
borhoods are robust to such small shocks. However, large migrant shocks may perturb
“near”-unstable neighborhoods beyond the domain of stability (Card, Mas, and Rothstein
2008; Schelling 1971).

Some algebra yields the solution to the simple linear differential equation system.
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Lemma 2. The effect of an exogenous Black migrant from origin g on the populations
of stable neighborhood equilibria is given by

1. ∂QW

∂NBg
= µ (s) (1 − s) [λβW + γW (1 − s)] πBg

2. ∂QB

∂NBg
= µ (s) [1 − λβW (1 − s) + γW s (1 − s)] πBg

3. ∂Q
∂NBg

= µ (s) [1 + γW (1 − s)]πBg

Proof. For simplicity, define:

aW = 1 − βWλ (1 − s) + γW s (1 − s)

bW = [βWλ+ γW (1 − s)] (1 − s)

aB = 1 − βBλs− γBs (1 − s)

bB = (βBλ− γBs) s

such that the linear system of differential equations can be expressed as

aW
∂QW

∂NBg

= bW
∂QB

∂NBg

aB
∂QB

∂NBg

= πBg + bB
∂QW

∂NBg

.

Substituting and solving yields

∂QW

∂NBg

= bW

aBaW − bBbW

πBg

∂QB

∂NBg

= aW

aBaW − bBbW

πBg,

and the desired expressions can be obtained by substituting and simplifying.
For interested readers, I reproduce the algebra below. Further define:

cW = βWλ (1 − s)

dW = γW (1 − s)

cB = βBλs

dB = γBs
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to obtain simplified expressions

aW = 1 − cW + dW s

bW = cW + dW (1 − s)

aB = 1 − cB − dB (1 − s)

bB = cB − dBs.

Thus,

aBaW − bBbW = (1 − cW + sdW ) [1 − cB − dB (1 − s)]

− [cW + (1 − s) dW ] (cB − dBs)

=1 − cB − dB (1 − s) − cW +���cW cB + cWdB (1 − �s) + sdW −����scBdW

−((((((((
dWdBs (1 − s) −���cW cB +����cWdBs− cBdW (1 − �s) +((((((((

dBdW s (1 − s)

=1 − cB − cW − dB (1 − s) + sdW − cBdW + cWdB

=1 − λβBs− λβW (1 − s) − γBs (1 − s) + γW s (1 − s)

− λβBγW s (1 − s) + λβWγBs (1 − s)

=1 − λβBs− λβW (1 − s) − s (1 − s) (γB − γW + λβBγW − λβWγB) .

Each effect has a different social multiplier (Glaeser, Sacerdote, and Scheinkman
2003). The effect on the White population is the product of the first order response
((1 − s) [βWλ+ γW (1 − s)]) to a Black migrant (πBgdNBg) amplified as the neighbor-
hood’s local prices and racial composition shift toward equilibrium (µ (s)). The first
order effect on the local Black population is the migrant themself (πBgdNBg). Note
that the corresponding social multiplier (µ (s) {1 − βWλ (1 − s) + γW s (1 − s)}) naturally
equals 1 if Black residents’ preferences are not governed by prices or racial composition,
βB = γB = 0. The effect on the neighborhood’s total population is the sum of the effects.

C.2.2 The effect of a White migrant

The derived effects of White migrants mirror the effects of Black migrants.

Lemma 3. The effect of an exogenous White migrant from origin g on the populations
of stable neighborhood equilibria is given by

1. ∂QW

∂NW g
= µ (s) [1 − βBλs− γBs (1 − s)] πW g

2. ∂QB

∂NW g
= µ (s) [s (βBλ− γBs)]πW g

3. ∂Q
∂NW g

= µ (s) (1 − γBs) πW g
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C.3 Heterogeneity of migrant effects on neighborhood prices

To apply the lemmas, I make several mild equilibrium assumptions.

Assumption 4 (Equilibrium assumptions).

1. All else constant, an (inverse) neighborhood housing supply relationship slopes up-
ward with respect to the local population, λj > 0.

2. Demand slopes downward: βW , βB ≤ 0.

3. White residents weakly prefer White neighborhoods γW ≤ 0, and Black residents
weakly prefer Black neighborhoods γB ≥ 0.

Here, I lay out the arguments for the remarks in the main text, straightforward
implications from inspection of lemmas 2 and 3 under assumption 4.

Remark 1. Under assumptions 1–4, migrants’ population effects are always offsetting.

1. A Black migrant increases the local Black population ∂QB

∂NBg
> 0 and decreases the

local White population ∂QW

∂NBg
< 0.

2. A White migrant increases the local White population ∂QW

∂NW g
> 0 and decreases the

local Black population ∂QB

∂NW g
> 0.

Remark 2. Under assumptions 1–4, if White preferences for White neighborhoods are
particularly strong γW ≤ −1, the total population and price declines in response to a
Black migrant in stable, White neighborhoods. Similarly, if Black preferences for Black
neighborhoods is particularly strong γB ≥ 1, the total population and price declines in re-
sponse to a White migrant in stable, Black neighborhoods. However, effect heterogeneity
with respect to the neighborhood Black share crosses from positive to negative at most
once. That crossing point is given by s∗

B = 1+γW

γW
for Black migrants’ effects and s∗

W = 1
γB

for White migrants’ effects.

Proof. Remark 2 is an immediate implication of the focus on stable neighborhoods where
µ (s) > 0 by definition. Applying lemmas 2 and 3, note that

1.

(a) If γW ∈ [−1, 0] then ∂Q
∂NBg

> 0 ∀s.

(b) If γW < −1 then ∂Q
∂NBg

≤ 0 for s ≤ 1+γW

γW
and ∂Q

∂NBg
> 0 for s > 1+γW

γW

2.

(a) If γB ∈ [0, 1] then ∂Q
∂NW g

> 0 ∀s.

(b) If γB > 1 then ∂Q
∂NW g

≥ 0 for s ≤ 1
γB

and ∂Q
∂NW g

< 0 for s > 1
γB
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As γW decreases to γW < −1, neighborhoods with increasing Black shares would suffer
population and price declines as result of migration. However, under such preferences,
there would be fewer of these neighborhoods since the equilibria would likely not be
stable. Similar implications follow for neighborhoods with decreasing Black shares as γB

grows to γB > 1.
Ambiguity in the direction migrants’ average effects comes from migrants in some

neighborhoods pushing up prices and migrants in others pushing down prices. The single-
crossing property in migrants’ heterogeneous effects suggests a natural partition at the
threshold. Differentiating the population effects with respect to s yields:

∂2Q

∂NBg∂s
= µ′ (s) [1 + γW (1 − s)] πBg − γWµ (s) πBg

∂2Q

∂NW g∂s
= µ′ (s) (1 − γBs) πW g − γBµ (s) πW g,

where if γW ≤ −1 and γB ≥ 1, the first term in each expression containing µ′ (s) vanishes
at the thresholds s∗

B = 1+γW

γW
and s∗

W = 1
γB

. A simple approximation, a Taylor expansion
about the threshold yields

∂Q

∂NBg

1
πBg

= −γWµ

(
1 + γW

γW

)(
s− 1 + γW

γW

)
+ O

(s− 1 + γW

γW

)2


∂Q

∂NW g

1
πW g

= −γBµ

(
1
γB

)(
s− 1

γB

)
+ O

(s− 1
γB

)2
 .

C.4 Aggregating over origins

Proposition 2 (Reduced form first stage relationships). Assumptions 1–4 imply the
following linear approximations for migrants’ effects in stable neighborhoods:

1. ∂ ln P
∂ZB

= b1B + c1B × s + ẽ1B, with b1B < 0, c1B > 0, ẽ1B = O
((
s− 1−γW

γW

)2
)

, and

ẽ1B

(
s− 1−γW

γW

)
≥ 0

2. ∂ ln P
∂ZW

= b1W + c1W × s + ẽ1W , with b1W > 0, c1W < 0, ẽ1W = O
((
s− 1

γB

)2
)

, and

ẽ1W

(
s− 1

γB

)
≤ 0

3. ∂s
∂ZB

= b2B + c2B × s+ ẽ2B, with b2B = c2B > 0, and ẽ2B = O
(
(1 − s)2

)
4. ∂s

∂ZW
= c2W × s+ ẽ2W , with c2W > 0, and ẽ2W = O (s2)
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Proof. Appendix section C.3 approximates the effects of migrants from a single origin.
The effect of migrants from all origins comes from summing the individual price effects.
Correspondingly, the total differential is represented by

d lnP =
∑
r,g

∂ lnP
∂Nrg

dNrg

= λ

Q

∑
r,g

∂Q

∂Nrg

dNrg

= λ

Q

−γWµ

(
1 + γW

γW

)(
s− 1 + γW

γW

)
+ O

(s− 1 + γW

γW

)2


︸ ︷︷ ︸
ẽ1B


∑

g

πBgdNBg︸ ︷︷ ︸
dZB

+ λ

Q

−γBµ

(
1
γB

)(
s− 1

γB

)
+ O

(s− 1
γB

)2


︸ ︷︷ ︸
ẽ1W


∑

g

πW gdNW g︸ ︷︷ ︸
dZW

.

Thus, the partial derivatives are given by

∂ lnP
∂ZB

= λ

Q
(1 + γW )µ

(
1 + γW

γW

)
︸ ︷︷ ︸

b1B

− λ

Q
γWµ

(
1 + γW

γW

)
︸ ︷︷ ︸

−c1B

s+ ẽ1B

∂ lnP
∂ZW

= λ

Q
µ

(
1
γB

)
︸ ︷︷ ︸

b1W

− λ

Q
γBµ

(
1
γB

)
︸ ︷︷ ︸

−c1W

s+ ẽ1W

yielding a reduced form price relationship. The equilibrium assumptions immediately
yield the coefficient inequalities.
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Similarly,

ds =
∑
r,g

∂s

∂Nrg

dNrg

= 1
Q


µ (s) [1 − λβW (1 − s) + γW s (1 − s)]

∑
g

πBgdNBg︸ ︷︷ ︸
dZB

+µ (s) [s (βBλ− γBs)]
∑

g

πW gdNW g︸ ︷︷ ︸
dZW



− s

Q


µ (s) [1 + γW (1 − s)]

∑
g

πBgdNBg︸ ︷︷ ︸
dZB

+µ (s) (1 − γBs)
∑

g

πW gdNW g︸ ︷︷ ︸
dZW


= 1
Q
µ (s) (1 − s) [1 − λβW ] dZB + 1

Q
µ (s) s [βBλ− 1] dZW

In line with Remark 2, the ZB corresponds to an increase in the Black share of the
neighborhood, and ZW corresponds to a decrease. Applying a Taylor expansion about
s = 1 and s = 0 for the terms multiplying ZB and ZW yields

ds =

 1
Q
µ (1) (1 − λβW ) (1 − s) +O

(
(1 − s)2

)
︸ ︷︷ ︸

ẽ2B

ZB

+

 1
Q
µ (0) (βBλ− 1) s+O

(
s2
)

︸ ︷︷ ︸
ẽ2W

ZW .

Corrrespondingly,

∂s

∂ZB

= 1
Q
µ (1) (1 − λβW )︸ ︷︷ ︸

b2B

− 1
Q
µ (1) (1 − λβW )︸ ︷︷ ︸

−c2B

s+ ẽ2B

∂s

∂ZW

= 1
Q
µ (0) (βBλ− 1)︸ ︷︷ ︸

c2W

s+ ẽ1W
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yielding a reduced form Black share relationship. The equilibrium assumptions immedi-
ately yield the coefficient inequalities.

D Choices of houses, the neighborhood inclusive value,
and price indices

The goal of the conceptual framework in section 2 is to understand how households choose
neighborhoods. The “price” of the neighborhood is defined in section 3. However, the
same regression specification can be viewed through the lens of a nested multinomial logit
choice framework where individuals choose houses with prices within neighborhoods as
in BFM. In this case, the price index defined in section 3 proxies for the neighborhood’s
inclusive value.

To see this, let h index houses in neighborhood j (h). Within a neighborhood, there
is a distribution of house prices lnPht ∼ Gjt. Correspondingly, I define a nested logit
choice framework as

viht = γr(i)sj(h)t + ξr(i)j(h)t + εij(h)t + βr(i) lnPht + ςr(i)ht + ρε̃iht

where Pht is the price of a house, ςrht are house unobservables, and ρε̃iht is parameterized
and distributed according to Cardell (1997).28

Continuing to focus on segregation and the demand for neighborhoods rather than
houses, equation 1 becomes

ln πrjt = −θrct + γrsjt + ξrjt + ρϑrjt,

where the neighborhood inclusive value

ϑrjt = ln

 ∑
j(h)=j

exp [(βr lnPht + ςrht) /ρ]

 .
ϑrjt is the logarithm of a power sum of i.i.d. random draws of (βr lnPht + ςrht) /ρ.

Marlow (1967) shows that logarithms of power sums follow a central limit theorem.
With a large neighborhood supply of houses Qjt → ∞, one can approximate

ϑrjt
d→ N

(
lnQjt + ln arjt,

brjt

Qjta2
rjt

)

where arjt = Erjt {exp [(βr lnPht + ςrht) /ρ]} and brjt = V arrjt {exp [(βr lnPht + ςrht) /ρ]}.
28In BFM, each house h is inelastically supplied to one household i—hence the separate indices.

However, all N households have well-defined preferences over all N houses, yielding a conditional logit
regression model with N2 house-household pairs.
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The subscripts are a reminder that each neighborhood can have its own joint distribution
of (lnPht, ςrht). Thus, the inclusive value can be substituted as a mean Erjt [ϑrjt] plus
classical, normally distributed sampling error ϑ̃rjt. Substituting, the choice probabilities
are given by:

ln πrjt = −θrct + γrsjt + ξrjt + ρErjt [ϑrjt] + ϑ̃rjt

The distribution of lnPht is empirically measurable. But, neither the joint distribution
of (lnPht, ςrht) nor the parameters βr or ρ are directly observable. I assume that the
identifying variation shifts the location of the house price distribution Gjt. I proxy for the
mean Erjt {exp [(βr lnPht + ςrht) /ρ]} with Medjt {exp [(βr lnPht) /ρ]}. Since monotonic
transformations commute with the median operator, substituting yields

ln πrjt = − θrct + βrMedjt [lnPht] + γrsjt + ξrjt︸︷︷︸
(1)

+ ρ lnQjt︸ ︷︷ ︸
(2)

+ ϑ̃rjt︸︷︷︸
(3)

+ ρ (ln arjt − ln Medjt {exp [(βr lnPht) /ρ]})︸ ︷︷ ︸
(4)

.

The first line resembles the cross-sectional regression equation 1, but the residual contin-
uing onto the second line now reflects four forces instead of one:

1. race-specific valuations of neighborhood amenities;

2. the size of households’ choice sets (the supply of housing);

3. independent sampling error associated with the neighborhood inclusive values;

4. and approximation error.

Section 2.2 discusses the first force. Unobserved neighborhood amenities and simultane-
ously determined supply drives a correlation between price and ξrjt, discussed in section
2.2.29 The second force is also driven by supply. Because more choice gives households
more utility, supply is also an omitted variable in the demand relationship. The third
force is assumed to be independent sampling error.

Since I estimate the IV regressions laid out in section 2.2 in first differences, the
new threat to identification would arise if the changes in the approximation error were
systematically correlated with connections to shocked rural counties. This would arise,
for example, if migrants had a direct effect on the distribution of housing stock quality
ςrht, the skewness of the local house price distribution Fjt, or the relationship between
the two.

29In this formulation, the inverse supply relationship in appendix C is defined as a location shift of
the distribution. Denoting the supply curve as G (Qjt), lnPht ∼ Fjt (x−G (Qjt)). The theoretical
arguments in appendix C apply if migrants only change the location and not the shape of the local house
price distributions.
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E Data Appendix

E.1 Constructing Tracts in 1930

To construct the 1940 census tracts using 1930 addresses, I construct three datasets of
source street addresses with corresponding census tracts in the 1940 census: one with
the reported house number (e.g. 6789), one with the house number truncated at the 10’s
digit (e.g. 6780), and one with the house numer truncated at the 100’s digit (e.g. 6700).
For each dataset, I restrict attention to streets that appear on at least two pages of census
forms, and when a single address corresponds to multiple census tracts, I take the tract
that corresponds to the largest number of households.

With each of these datasets, I construct a pairwise Levinshtein ratio, a measure that
captures the fraction of the source word that has to be edited to match the target word,
between each source street in each city in 1940 and each target street in the same corre-
sponding city in 1930. After excluding matches with a ratio of less than 0.8, I take the
source street name with the highest ratio as the match. Having matched the street, I
turn to matching the target house number. For a given street, I attempt to match the
house number in each source dataset and keep the match that maintains the most digits
of accuracy.

Due to the nature of the problem, it is not possible to assess how much measurement
error is introduced by matching street names. However, one can see how often using
the most common census tract for a given house number will lead to one to infer an
incorrect census tract in the 1940 census. In 6 million unique addresses, the unconditional
misclassification rate is roughly 1% for exact house numbers (driven by breaking ties and
taking the most common), 5% for house numbers recorded up to the 10s digit, and 10%
for house numbers recorded up to the 100s digit.

E.2 Measuring the KL Divergence, 1960–2010

The primary measure of segregation that I analyze in this paper is the KL divergence
between low-skilled Black and White families in 1940. I use microdata to define low-
skilled families and construct counts and probabilities at the census tract level. To the
best of my knowledge, microdata with census tract information is not publically available
in subsequent decades.

I use data made available by Manson et al. (2020) to construct tract counts and
measures of the KL divergence in subsequent decades. Unfortunately, these measures are
not the same definitions of Black and White low-skilled families that I define in section
3. Below, I detail the population counts that I use to approximate the definitions that I
use to estimate my model:

1960: The number of non-White and White married couples
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1970: The number of husband-wife Black and White families

1980: The number of families with Black and White heads of household

1990: The number of married-couple families with Black and White heads of household

2000: The number of married-couple families with heads of household that are Black alone
or White alone

2010: The number of married-couple families with heads of household that are Black alone
or White alone

Like the 1940 measures, I estimate the tract choice probabilities excluding tracts with
fewer than 10 families.

66


	Introduction
	Conceptual Framework for Neighborhood Choice
	Overview
	Identifying how households trade off between price and neighborhood racial composition
	Definition of the past settlement instrument and instrument exclusion
	Instrument relevance: reduced form equilibrium effects of migrants in the presence of sorting

	Household valuations of local amenities and correlated random effects

	Data and Definitions
	Identifying how households trade off between price and neighborhood racial composition
	The past settlement instrument
	Equilibrium effects of Black and White migrant shocks
	Population effects
	First stage regressions: migrant effects on Black share and price

	Estimates of Racial Preferences

	Household valuations of local amenities and correlated random effects
	Decomposing Segregation
	Setup
	Results

	Conclusion
	Figures and Tables
	Appendix Tables
	Controlling for the sum of shares
	Theoretical effects of migrants on neighborhood equilibria
	Setup
	Population effects of migrants
	The effect of a Black migrant
	The effect of a White migrant

	Heterogeneity of migrant effects on neighborhood prices
	Aggregating over origins

	Choices of houses, the neighborhood inclusive value, and price indices
	Data Appendix
	Constructing Tracts in 1930
	Measuring the KL Divergence, 1960–2010


