# Lecture 1: Supply and Demand

August 29, 2023

### Overview

Course Administration

Supply and Demand

Market and Models

Demand

Supply

Market Equilibrium



- Call me Leah
- Class should be hard, but not impossible
- What we learn should be clearly applicable
- Come prepared to give examples, as I will call on you
- Understand that no class can satisfy all students
- Is this the right class for you?
- Math assessment
- If you have a disability requiring accommodation, please let me know this week



#### 1. Expectations

- Call me Leah
- Class should be hard, but not impossible
- What we learn should be clearly applicable
- Come prepared to give examples, as I will call on you
- Understand that no class can satisfy all students
- Is this the right class for you?
- Math assessment
- If you have a disability requiring accommodation, please let me know this week

2. Say hello to TA Huang Chen



- Call me Leah
- Class should be hard, but not impossible
- What we learn should be clearly applicable
- Come prepared to give examples, as I will call on you
- Understand that no class can satisfy all students
- Is this the right class for you?
- Math assessment
- If you have a disability requiring accommodation, please let me know this week

- 2. Say hello to TA Huang Chen
- 3. Review Syllabus



- Call me Leah
- Class should be hard, but not impossible
- What we learn should be clearly applicable
- Come prepared to give examples, as I will call on you
- Understand that no class can satisfy all students
- Is this the right class for you?
- Math assessment
- If you have a disability requiring accommodation, please let me know this week

- 2. Say hello to TA Huang Chen
- 3. Review Syllabus
- 4. Introductions: tell us your name, and what you want to do when you're done



- Call me Leah
- Class should be hard, but not impossible
- What we learn should be clearly applicable
- Come prepared to give examples, as I will call on you
- Understand that no class can satisfy all students
- Is this the right class for you?
- Math assessment
- If you have a disability requiring accommodation, please let me know this week

- 2. Say hello to TA Huang Chen
- 3. Review Syllabus
- Introductions: tell us your name, and what you want to do when you're done
- 5. Ripped from Headlines Assignment



| December |     |     |     |     |     |     |
|----------|-----|-----|-----|-----|-----|-----|
| Sun      | Mon | Tue | Wed | Thu | Fri | Sat |
|          |     |     |     |     | 1   | 2   |
| 3        | 4   | 5   | 6   | 7   | 8   | 9   |
| 10       | 11  | 12  | 13  | 14  | 15  | 16  |
| 17       | 18  | 19  | 20  | 21  | 22  | 23  |
| 24       | 25  | 26  | 27  | 28  | 29  | 30  |

- Last class Dec. 5
- First exam date Dec. 13
- Last exam date Dec. 19
- Can we agree earlier?

### **Expectations for Class**

#### Before Class

- Read assigned textbook pages
- Read ripped from headlines articles
- Work on problem set

### **Expectations for Class**

#### Before Class

- Read assigned textbook pages
- Read ripped from headlines articles
- Work on problem set

During Class

We are recording! For within class use only

### **Expectations for Class**

#### Before Class

- Read assigned textbook pages
- Read ripped from headlines articles
- Work on problem set

#### **During Class**

We are recording! For within class use only

- Administrative notes
- Ripped from the Headlines presentation
- Interactive lecture

# Supply and Demand



# Chapters 1 and 2

- 1. Why Economics?
- 2. Supply and Demand
  - Markets and Models
  - Demand
  - Supply
  - Market Equilibrium

### Why Economics?

- An important language for policy makers
- A shared set of assumptions about how the world works
- Understand the assumptions and logic if you want to challenge it
- Learn the power of models

Markets and Models: Supply and Demand

### What is a Market?

#### A set of many things

- type of product sold
- location
- point in time

### Markets Policy Aside: Antitrust

- Federal anti-trust policy prohibits monopolies and "excessive" market concentration
- Whether or not a market is concentrated depends on how you define the market
- Expedia / Orbitz propsed merger
  - Expedia owns Travelocity, wants to buy Orbitz
  - Hotel owners say market is online bookings, and merger would give new company 75% of all online bookings
  - Expedia says market is hotel reservations, and merged company will account for 17% of hotel bookings<sup>1</sup>

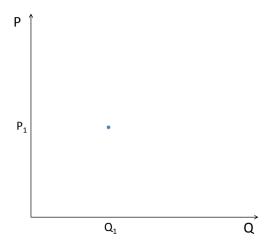




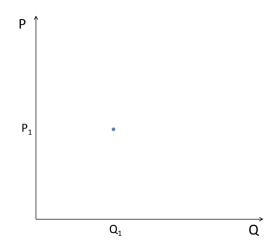
### Key Assumptions of Supply and Demand Model

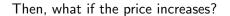
- We restrict our focus to one single market Supply ≡ total amount of a good that all producers are willing to sell Demand ≡ total amount of a good that all consumers are willing to buy
- 2. All goods bought and sold in the market are identical
- 3. All goods sold in the market sell for the same prices and everyone has the same information about prices and quality
- 4. There are many buyers and sellers in the market

# Demand


#### **Demand Curves**

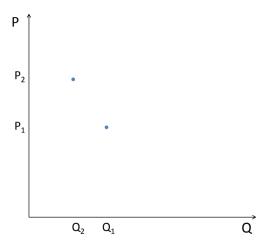
We want a way to summarize everyone's demand in the market


- Demand curve 

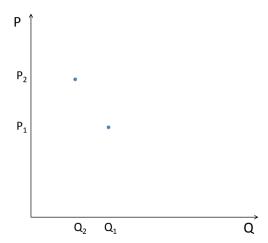

   = relationship between the quantity of a good demanded and the
   price consumers are willing to pay, holding all else constant
- Demand curves almost always slope downward

### Picturing Demand for a Product You Know




### Picturing Demand for a Product You Know

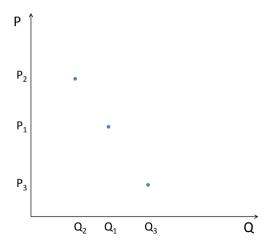




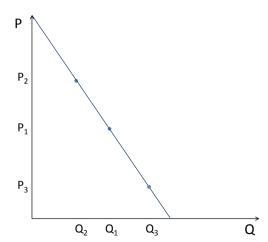




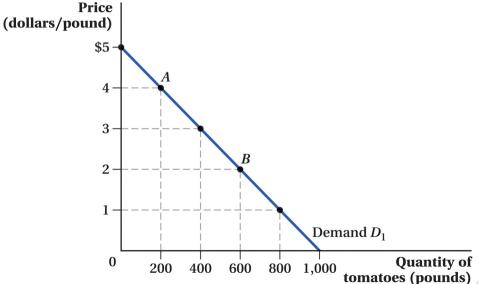
### Quantity Demanded at an Increased Price




# Quantity Demanded at an Increased Price







### Quantity Demanded at a Decreased Price



### Think about a Q for any P









### Demand Curve: Graph to Algebra

- If you can draw it in a graph, you can write an equation for it
- We can write the previous picture's line as  $Q^D = 1000 200P$ 
  - This is a function of Q in terms of P, which we can write in general as Q = f(P)

$$Q^D = 1000 - 200P$$

$$Q^{D} = 1000 - 200P$$
$$Q^{D} + 200P = 1000$$

$$Q^{D} = 1000 - 200P$$

$$Q^{D} + 200P = 1000$$

$$200P = 1000 - Q^{D}$$

$$Q^{D} = 1000 - 200P$$

$$Q^{D} + 200P = 1000$$

$$200P = 1000 - Q^{D}$$

$$P = 5 - \frac{1}{200}Q^{D}$$

$$Q^{D} = 1000 - 200P$$

$$Q^{D} + 200P = 1000$$

$$200P = 1000 - Q^{D}$$

$$P = 5 - \frac{1}{200}Q^{D}$$

- First line is demand curve
- Final line is inverse demand curve: function of P in terms of Q
- Inverse version matches the previous graph
- You can read the negative slope  $\left(-\frac{1}{200}\right)$  from the equation

### Factors that Influence Demand

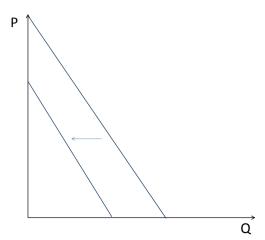
#### Factors that Influence Demand

- 1. Price
- 2. Number of consumers
- 3. Consumer income or wealth
- 4. Consumer tastes
- 5. Prices of other goods

# How Do Other Goods Influence the Price of the Good We're Considering?

ullet Substitute  $\equiv$  a good that could replace the good under consideration

### How Do Other Goods Influence the Price of the Good We're Considering?


- Substitute  $\equiv$  a good that could replace the good under consideration
- ullet Complement  $\equiv$  a good that you consume with the good under consideration

If the price of a perfect substitute decreases, what happens to your demand for the main good?

#### **Demand Curve Shifts**

- If we want to understand how the market demand changes when price changes, we move **along** the demand curve
- When there is a change in any other determinant of demand, the demand curve shifts

#### What Could Make a Demand Curve Shift Inward?



• Change in quantity demanded

- Change in quantity demanded
  - Movement along the demand curve
  - Nothing changes but price

- Change in quantity demanded
  - Movement along the demand curve
  - Nothing changes but price
- Change in demand



- Change in quantity demanded
  - Movement along the demand curve
  - Nothing changes but price
- Change in demand
  - Shift of the demand curve
  - The overall relationship between price and quantity changes

- Change in quantity demanded
  - Movement along the demand curve
  - Nothing changes but price
- Change in demand
  - Shift of the demand curve
  - The overall relationship between price and quantity changes

Same wording applies to supply. Use carefully!

# Supply

- Price
- Suppliers' costs of production
- Number of sellers
- Sellers' outside options

- Price
- Suppliers' costs of production
- Number of sellers
- Sellers' outside options

So what does a supply curve look like?

- Price
- Suppliers' costs of production
- Number of sellers
- Sellers' outside options

So what does a supply curve look like? Upward sloping.

# Textbook's Supply Curve



### An Equation for the Supply Curve

- Just like demand, we can write an equation for supply
- $Q^S = 200P 200$

### An Equation for the Supply Curve

- Just like demand, we can write an equation for supply
- $Q^S = 200P 200$ 
  - this is Q = f(P)

# An Equation for the Supply Curve

- Just like demand, we can write an equation for supply
- $Q^S = 200P 200$ 
  - this is Q = f(P)
- We can also write  $P = \frac{Q}{200} + 1$ 
  - this is P = g(Q)
  - entirely equivalent to first equation

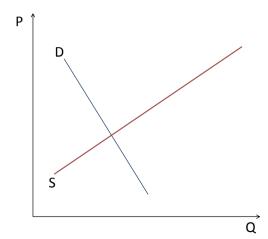
# Shifts in the Supply Curve

• Does a price change shift the supply curve or move along the supply curve?

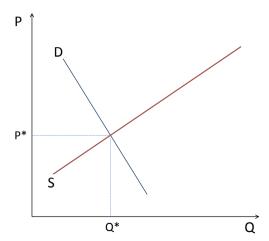
### Shifts in the Supply Curve

- Does a price change shift the supply curve or move along the supply curve?
- Do non-price changes cause shifts or moves along the supply curve?

# Market Equilibrium


### Defining Market Equilibrium

- Point at which consumers' quantity demanded equals producers' quantity supplied
  - $Q^D = Q^S$
- ullet Equilibrium price  $\equiv$  price at which quantity supplied equals quantity demanded
  - P such that  $Q^D = Q^S$


### Defining Market Equilibrium

- Point at which consumers' quantity demanded equals producers' quantity supplied
  - $Q^D = Q^S$
- ullet Equilibrium price  $\equiv$  price at which quantity supplied equals quantity demanded
  - P such that  $Q^D = Q^S$
- Getting to equilibrium is the work of Adam Smith's invisible hand

# Equilibrium in a Graph



# Equilibrium in a Graph



$$Q^D = Q^S$$

$$Q^D = Q^S$$

$$1000 - 200P^* = 200P^* - 200$$

$$Q^{D} = Q^{S}$$

$$1000 - 200P^{*} = 200P^{*} - 200$$

$$1200 = 400P^{*}$$

$$Q^{D} = Q^{S}$$

$$1000 - 200P^{*} = 200P^{*} - 200$$

$$1200 = 400P^{*}$$

$$P^{*} = 3$$

• Before putting pencil to paper, are  $Q^S$  and  $Q^D$  equal or different?

• Before putting pencil to paper, are  $Q^S$  and  $Q^D$  equal or different? They must be the same.

- Before putting pencil to paper, are  $Q^S$  and  $Q^D$  equal or different? They must be the same.
- How do you find them?
- Using our tomato example

$$Q^{D*} = 1000 - 200P^*$$

- Before putting pencil to paper, are  $Q^S$  and  $Q^D$  equal or different? They must be the same.
- How do you find them?
- Using our tomato example

$$Q^{D*} = 1000 - 200P^*$$

$$= 1000 - 200(3)$$

$$= 400$$

- Before putting pencil to paper, are  $Q^S$  and  $Q^D$  equal or different? They must be the same.
- How do you find them?
- Using our tomato example

$$Q^{D*} = 1000 - 200P^*$$
  $Q^{S*} = 200P^* - 200$   
= 1000 - 200(3)  
= 400

- Before putting pencil to paper, are  $Q^S$  and  $Q^D$  equal or different? They must be the same.
- How do you find them?
- Using our tomato example

$$Q^{D*} = 1000 - 200P^*$$
  $Q^{S*} = 200P^* - 200$   
= 1000 - 200(3) = 200(3) - 200

- Before putting pencil to paper, are  $Q^S$  and  $Q^D$  equal or different? They must be the same.
- How do you find them?
- Using our tomato example

$$Q^{D*} = 1000 - 200P^*$$
  $Q^{S*} = 200P^* - 200$   
=  $1000 - 200(3)$  =  $200(3) - 200$   
=  $400$ 

### Getting to Equilibrium

That's just the math. The magic is getting there!

ullet Suppose we are out of equilibrium and  $Q^D>Q^S$ 

# Getting to Equilibrium

That's just the math. The magic is getting there!

- Suppose we are out of equilibrium and  $Q^D > Q^S$ 
  - Seems like a shortage
  - Price increases until we reach equilibrium
- Suppose we are out of equilibrium and  $Q^S > Q^D$

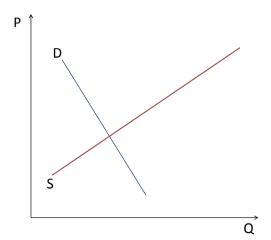
# Getting to Equilibrium

That's just the math. The magic is getting there!

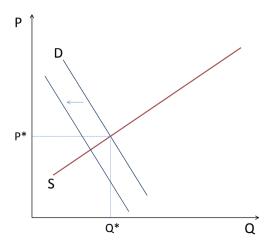
- Suppose we are out of equilibrium and  $Q^D > Q^S$ 
  - Seems like a shortage
  - Price increases until we reach equilibrium
- Suppose we are out of equilibrium and  $Q^S > Q^D$ 
  - Seems like a surplus
  - Price falls until we reach equilibrium

# Getting to Equilibrium

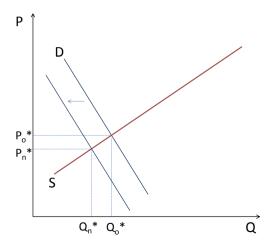
That's just the math. The magic is getting there!


- Suppose we are out of equilibrium and  $Q^D > Q^S$ 
  - Seems like a shortage
  - Price increases until we reach equilibrium
- ullet Suppose we are out of equilibrium and  $Q^S>Q^D$ 
  - Seems like a surplus
  - Price falls until we reach equilibrium

Note that these are all movements along existing curves.


# Impact of Shift in Demand

- Suppose that we learn that tomatoes ruin the fluoride on your teeth
- What happens to the demand curve?


#### Where Does Demand Curve Go?



#### Where Does Demand Curve Go?



#### Where Does Demand Curve Go?



- Assume that for any price, the quantity demanded of tomatoes falls by 500
- $Q^{D,original} = 1000 200P$

$$Q^{D,new} =$$

- Assume that for any price, the quantity demanded of tomatoes falls by 500
- $Q^{D,original} = 1000 200P$

$$Q^{D,new} = Q^{D,original} - 500$$

- Assume that for any price, the quantity demanded of tomatoes falls by 500
- $Q^{D,original} = 1000 200P$

$$Q^{D,new} = Q^{D,original} - 500$$
  
=  $1000 - 200P - 500$ 

- Assume that for any price, the quantity demanded of tomatoes falls by 500
- $Q^{D,original} = 1000 200P$

$$Q^{D,new} = Q^{D,original} - 500$$
  
=  $1000 - 200P - 500$   
=  $500 - 200P$ 

Find new equilibrium

As before, set 
$$Q^S = Q^{D,new}$$

$$Q^S = Q^{D,new}$$

Find new equilibrium

As before, set 
$$Q^S = Q^{D,new}$$

$$Q^S = Q^{D,new}$$

$$Q^S = Q^{D,new}$$
  
 $200P^* - 200 = 500 - 200P^*$ 

Find new equilibrium

As before, set  $Q^S = Q^{D,new}$ 

$$Q^{S} = Q^{D,new}$$
  
 $200P^* - 200 = 500 - 200P^*$   
 $P^* = 1.75$ 

Find equilibrium quantities, first  $Q^{D,new}$ 

$$Q^{D*,new} = 500 - 200P^*$$
$$= 500 - 200(1.75)$$

Find new equilibrium

As before, set  $Q^S = Q^{D,new}$ 

$$Q^{S} = Q^{D,new}$$
  
 $200P^* - 200 = 500 - 200P^*$   
 $P^* = 1.75$ 

Find equilibrium quantities, first  $Q^{D,new}$ 

$$Q^{D*,new} = 500 - 200P^*$$
  
=  $500 - 200(1.75)$   
=  $150$ 

#### Find new equilibrium

As before, set 
$$Q^S = Q^{D,new}$$

$$Q^{S} = Q^{D,new}$$

$$200P^{*} - 200 = 500 - 200P^{*}$$

$$P^{*} = 1.75$$

Find equilibrium quantities, first  $Q^{D,new}$ 

$$Q^{D*,new} = 500 - 200P^*$$
  
=  $500 - 200(1.75)$   
=  $150$ 

Then  $Q^S$ 

$$Q^{S*} = 200P^* - 200$$



#### Find new equilibrium

As before, set 
$$Q^S = Q^{D,new}$$
 
$$Q^S = Q^{D,new}$$
 
$$200P^* - 200 = 500 - 200P^*$$
 
$$P^* = 1.75$$

Then 
$$Q^S$$
  
 $Q^{S*} = 200P^* - 200$   
 $= 200(1.75) - 200$ 

Find equilibrium quantities, first  $Q^{D,new}$ 

$$Q^{D*,new} = 500 - 200P^*$$
  
=  $500 - 200(1.75)$   
=  $150$ 



#### Find new equilibrium

As before, set 
$$Q^S = Q^{D,new}$$
 
$$Q^S = Q^{D,new}$$
 
$$200P^* - 200 = 500 - 200P^*$$
 
$$P^* = 1.75$$

Find equilibrium quantities, first  $Q^{D,new}$ 

$$Q^{D*,new} = 500 - 200P^*$$
  
=  $500 - 200(1.75)$   
=  $150$ 

Then 
$$Q^S$$

$$Q^{S*} = 200P^* - 200$$

$$= 200(1.75) - 200$$

$$= 150$$

#### Find new equilibrium

As before, set 
$$Q^S = Q^{D,new}$$

$$Q^S = Q^{D,new}$$
  
 $200P^* - 200 = 500 - 200P^*$   
 $P^* = 1.75$ 

Find equilibrium quantities, first  $Q^{D,new}$ 

$$Q^{D*,new} = 500 - 200P^*$$
  
=  $500 - 200(1.75)$   
=  $150$ 

#### Then $Q^S$

$$Q^{S*} = 200P^* - 200$$
  
=  $200(1.75) - 200$   
=  $150$ 

#### We find

- Price falls
- Equilibrium quantity falls

#### For Next Class

- Do problem set 1
- Work with classmates, me or TA on problems
- Sign up for Ripped from Headlines
- Article finders email me by Wednesday midnight
- Read Chapter 2.5



#### For Next Class

- Do problem set 1
- Work with classmates, me or TA on problems
- Sign up for Ripped from Headlines
- · Article finders email me by Wednesday midnight
- Read Chapter 2.5

#### I will

- post these lecture notes on my webpage
- post lecture recording on Blackboard
- anything else?

