Admin

0000

sics 0000 Lor

Total Cost

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Tech. Change

Lecture 7: Producer Behavior

October 10, 2023

Course Administration

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- 1. 10/17: Midterm next week. Dumb calculator only.
- 2. Confirmed final exam times
 - December 13, 3:30 to 5:30 pm
 - December 14, 3:30 to 5:30 pm
- 3. Hopefully I have finished your Use Numbers 2
- 4. Anything else?

RFH

ics 0000 Long 00

Total Cost

Tech. Change

Next Week: Ripped from the Headlines

Finder	Presenter	
Hannah	Emily	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RFH 0000

asics

Long

Total Cost

Tech. Change

This Week: Ripped from the Headlines

Finder Presenter Trenton Kari

・ロト・「「「・」」・ 「」・ 「」・ (「」・

Total Cost

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Tech. Change

The Logic of the Next Couple Weeks

Why firms make the decisions they do

• Today

RFH

- We take how much the firm wants to produce as given
- Explore how the firm can make it as cheaply as possible
- First class after midterm
 - Costs what goes into how much things cost to firms
 - Economies of scope and scale
- Second class after midterm
 - How firms choose how much to produce
 - Maximizing profit

Basics 0000

00

Long I

Cost Min.

Total Cost

Tech. Change

Today's Production Lecture

- Basics and assumptions
- Short run

RFH

- Long run
- Cost minimization
- Total cost

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Admin

Basics •00000

Short Ru 000000 Long F

Total Cost

Tech. Change

Basics of Production

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

What is Production?

- Production \equiv process of producing a good or service
- Final good \equiv good bought by consumer
- Intermediate good \equiv good bought by a firm to produce another good
- Production function \equiv mathematical relationship between inputs and outputs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Why do we assume things? To make the problem manageable and look carefully at a limited number of factors.

Simplifying Assumptions, 1 of 2

Why do we assume things? To make the problem manageable and look carefully at a limited number of factors.

- 1. Firm produces a single good
- 2. Firm has already chosen what product it will produce
- 3. Firm's goal is to minimize cost
- 4. Firm uses only two inputs: capital and labor
- 5. In the short run, the firm can change only labor. In the long run the firm can change labor and capital

Simplifying Assumptions, 2 of 2

- 6. More inputs \rightarrow more outputs
- 7. Production has diminishing marginal returns to capital and labor
- 8. An infinite amount of inputs sells at fixed prices
- 9. The firm has no budget constraint \rightarrow very well-functioning capital market

Basics 0000●0

Long

Short Run

Total Cost

Tech. Change

The Production Function

$$Q=f(K,L)$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 · • ○ へ ⊙

Basics 000000

Long 00 ost Min.

Total Cost

Tech. Change

The Production Function

$$Q=f(K,L)$$

- Q is output
- K is capital

- L is labor
- f() is a general function

Basics 000000

Long

lost Min.

Total Cost

Tech. Change

The Production Function

$$Q=f(K,L)$$

- *Q* is output
- K is capital

- *L* is labor
- f() is a general function

For example, $Q = K^{0.5} L^{0.5}$.

Total Cost

Tech. Change

Parallels: Consumer and Producer Problems

Basics

What is the producer parallel of the utility function?

Consumer	Producer
Diminishing marginal utility	
max U s.t. budget constraint	
Utility function	
Indifference curves	
MRS _{X,Y}	
Price of consumption goods	
Budget Constraint	
Slope of budget constraint $=-rac{P_X}{P_Y}$	
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	
Income expansion path	

Total Cost

Tech. Change

Parallels: Consumer and Producer Problems

Basics

What is the producer parallel of the utility function?

Consumer	Producer
Diminishing marginal utility	
max U s.t. budget constraint	
Utility function	production function
Indifference curves	
$MRS_{X,Y}$	
Price of consumption goods	
Budget Constraint	
Slope of budget constraint $= -\frac{P_X}{P_Y}$	
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	
Income expansion path	

Admin O Ba D Of 00 Short Run

Long F

Total Cost

Tech. Change

Production in the Short Run

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Measuring Changes in Production

1. Marginal product of $X \equiv$ additional output from an additional unit of input X (X is K or L), holding all other inputs fixed

$$MP_X = rac{\Delta Q}{\Delta X} = \left(rac{\partial Q}{\partial X}
ight)$$

Measuring Changes in Production

1. Marginal product of $X \equiv$ additional output from an additional unit of input X (X is K or L), holding all other inputs fixed

$$MP_X = \frac{\Delta Q}{\Delta X} = \left(\frac{\partial Q}{\partial X}\right)$$

2. Average product of X

$$AP_X = \frac{Q}{X}$$

Average vs Marginal Products of Labor

Examples

1. You work somewhere: compare your average vs marginal product of labor

Average vs Marginal Products of Labor

Examples

- 1. You work somewhere: compare your average vs marginal product of labor
- 2. Restaurants
 - Imagine a server at closing: which is greater, average or marginal product?
 - Imagine at server at prime time: which might be greater, average or marginal product?

Find average and marginal products of labor

$$\frac{Q \quad L \quad K \quad AP_L \quad MP_L}{1 \quad 1 \quad 3 \quad \frac{Q}{L} = \frac{1}{1}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Find average and marginal products of labor

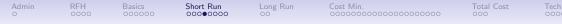
$$\frac{Q \quad L \quad K \quad AP_L \quad MP_L}{1 \quad 1 \quad 3 \quad \frac{Q}{L} = \frac{1}{1}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Find average and marginal products of labor

Find average and marginal products of labor

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼ めんの



Find average and marginal products of labor

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

Q	L	K	AP_L	MP_L
1	1	3	$rac{Q}{L}=rac{1}{1}$	
5	2	3	$\frac{5}{2} = 2.5$	4
8	3	3	$rac{8}{3}pprox 2.7$	3

Q	L	K	AP_L	MP_L
1	1	3	$rac{Q}{L}=rac{1}{1}$	
5	2	3	$\frac{5}{2} = 2.5$	4
8	3	3	$\frac{8}{3} \approx 2.7$	3
10	4	3		

Q	L	Κ	AP_L	MP_L
1	1	3	$rac{Q}{L}=rac{1}{1}$	
5	2	3	$\frac{5}{2} = 2.5$	4
8	3	3	$\frac{8}{3} \approx 2.7$	3
10	4	3	$rac{10}{4}pprox 2.5$	2

Measuring Changes in the Short Run

- Short run production function
 - Recall: We assume that in the short run K is fixed and L can change

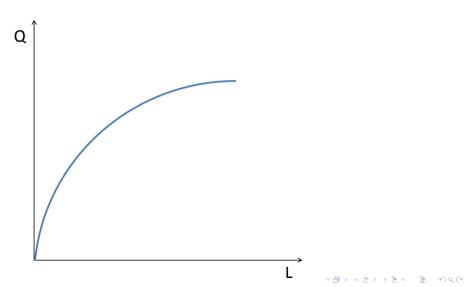
- Suppose K = 5, and Q = f(K, L)
- Then the short run production function is

Measuring Changes in the Short Run

- Short run production function
 - Recall: We assume that in the short run K is fixed and L can change

- Suppose K = 5, and Q = f(K, L)
- Then the short run production function is Q = f(5, L)

Measuring Changes in the Short Run

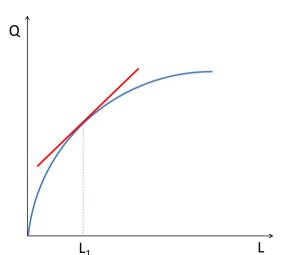

- Short run production function
 - Recall: We assume that in the short run K is fixed and L can change
 - Suppose K = 5, and Q = f(K, L)
 - Then the short run production function is Q = f(5, L)
- · Recall that we assumed diminishing marginal product of labor
- Draw short-run output as a function of labor (Q on the y axis, L on the x axis)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

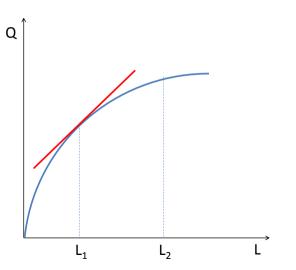
Long Run Short Run

Tech. Change

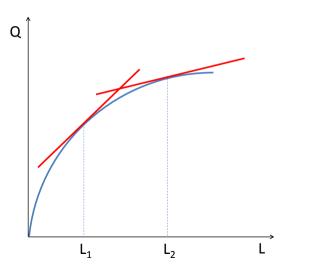
Short Run Production Function

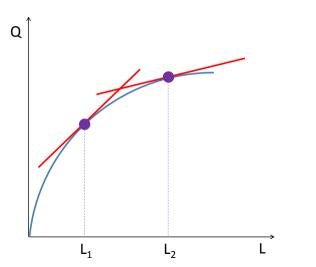

Finding the Marginal Product of Labor from the Production Function

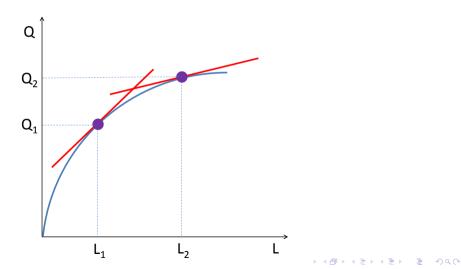
Q

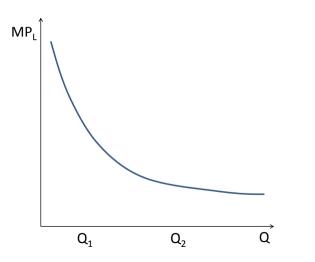


What is the marginal product of labor here?









So what does a graph of MP_L as a function of Q look like?

Long Rui 00

Total Cost

Tech. Change

Parallels: Consumer and Producer Problems

What is the producer parallel of diminishing marginal utility?

Consumer	Producer
Diminishing marginal utility	
max U s.t. budget constraint	
Utility function	production function
Indifference curves	
$MRS_{X,Y}$	
Price of consumption goods	
Budget Constraint	
Slope of budget constraint $= -\frac{P_X}{P_Y}$	
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	
Income expansion path	

Total Cost

Tech. Change

Parallels: Consumer and Producer Problems

What is the producer parallel of diminishing marginal utility?

Consumer	Producer
Diminishing marginal utility	diminishing marginal product
max U s.t. budget constraint	
Utility function	production function
Indifference curves	
$MRS_{X,Y}$	
Price of consumption goods	
Budget Constraint	
Slope of budget constraint $=-rac{P_X}{P_Y}$	
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	
Income expansion path	

Admin

Basics

Long Run

Total Cost

Tech. Change

Production in the Long Run

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

- In the long run, everything can change
- Diminishing returns are less of a problem, since you can add both capital and labor

Admin

ŀ

asics 00000 in Lo 200 00 Cost Min.

Total Cost

Tech. Change

Minimizing Costs

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

- Firm wants to minimize costs
- Subject to producing a given amount of output

- Firm wants to minimize costs
- Subject to producing a given amount of output
- It could always minimize costs by shutting down, but then no one is making any money

<□> <問> <問> < 目> < 目> < 目> < 目> = - のへで

Cost Min.

Total Cost

Tech. Change

Parallels: Consumer and Producer Problems

What is the producer parallel of maximizing utility subject to a budget constraint?

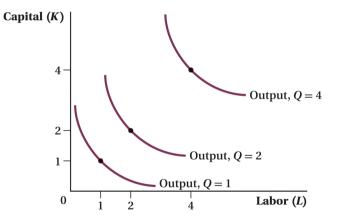
Consumer	Producer
Diminishing marginal utility	diminishing marginal product
max U s.t. budget constraint	
Utility function	production function
Indifference curves	
$MRS_{X,Y}$	
Price of consumption goods	
Budget Constraint	
Slope of budget constraint $= -rac{P_X}{P_Y}$	
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	
Income expansion path	

Cost Min.

Total Cost

Tech. Change

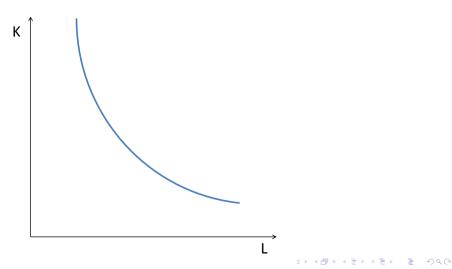
Parallels: Consumer and Producer Problems

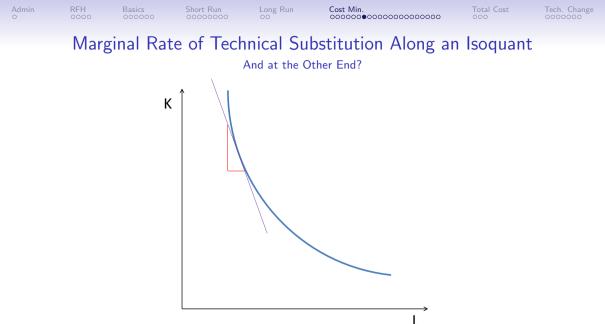

What is the producer parallel of maximizing utility subject to a budget constraint?

Consumer	Producer
Diminishing marginal utility	diminishing marginal product
max U s.t. budget constraint	min C s.t. producing $Q = a$
Utility function	production function
Indifference curves	
$MRS_{X,Y}$	
Price of consumption goods	
Budget Constraint	
Slope of budget constraint $= -\frac{P_X}{P_Y}$	
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	
Income expansion path	

- "iso" ≡ same
- "quant" for quantity
- All combinations of K and L that produce some level of Q
- Properties of isoquants, for a given production function
 - Further from the origin \rightarrow more production
 - Cannot intersect
 - Convex to the origin

Production Function Isoquants for Different Output Levels


Marginal Rate of Technical Substitution


- $MRTS_{XY} \equiv$ slope of the isoquant
- Or, the rate at which firm can trade input L for input K, holding output constant

Marginal Rate of Technical Substitution Along an Isoquant

What Does the Shape of the Isoquant Tell Us About the Trade-off Between Capital and Labor?

▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ○ ○ ○ ○

Total Cost

Tech. Change

Parallels: Consumer and Producer Problems

What is the producer parallel of indifference curve?

Consumer	Producer
Diminishing marginal utility	diminishing marginal product
max U s.t. budget constraint	min C s.t. producing $Q = a$
Utility function	production function
Indifference curves	
$MRS_{X,Y}$	
Price of consumption goods	
Budget Constraint	
Slope of budget constraint $= -\frac{P_X}{P_Y}$	
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	
Income expansion path	

asics S

Short Run

Cost Min.

Total Cost

Tech. Change

Parallels: Consumer and Producer Problems

What is the producer parallel of the marginal rate of substitution?

Consumer	Producer
Diminishing marginal utility	diminishing marginal product
max U s.t. budget constraint	min C s.t. producing $Q = a$
Utility function	production function
Indifference curves	lsoquants
$MRS_{X,Y}$	
Price of consumption goods	
Budget Constraint	
Slope of budget constraint $= -\frac{P_X}{P_Y}$	
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	
Income expansion path	

Total Cost

Tech. Change

Parallels: Consumer and Producer Problems

Isoquants and MRTS

Consumer	Producer
Diminishing marginal utility	diminishing marginal product
max U s.t. budget constraint	min C s.t. producing $Q = a$
Utility function	production function
Indifference curves	lsoquants
$MRS_{X,Y}$	MRTS _{LK}
Price of consumption goods	
Budget Constraint	
Slope of budget constraint $=-rac{P_{X}}{P_{Y}}$	
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	
Income expansion path	

Long Ru 00 Cost Min.

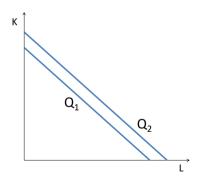
Total Cost

Tech. Change

Input Substitutability and Complementarity

What Does it Mean for the Production Function?

Isoquants if inputs are perfect substitutes?


Total Cost

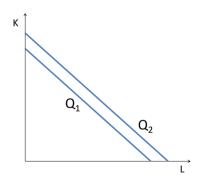
Tech. Change

Input Substitutability and Complementarity

What Does it Mean for the Production Function?

Isoquants if inputs are perfect substitutes?

Cost Min.

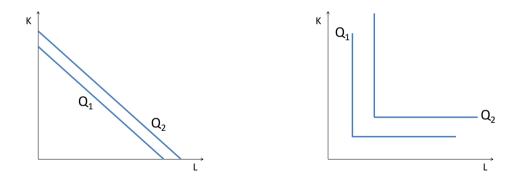

Total Cost

Tech. Change

Input Substitutability and Complementarity What Does it Mean for the Production Function?

Isoquants if inputs are perfect substitutes? if i

if inputs are perfect complements?



Input Substitutability and Complementarity What Does it Mean for the Production Function?

Cost Min.

Isoquants if inputs are perfect substitutes?

if inputs are perfect complements?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

- Cost of capital is R: rental rate per period
- Cost of labor is W: wage rate per period
- Total cost: C
- Isocost curve is therefore

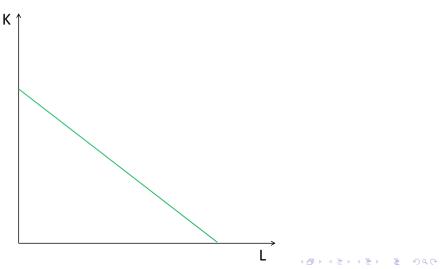
$$C = RK + WL$$

- Cost of capital is R: rental rate per period
- Cost of labor is W: wage rate per period
- Total cost: C
- Isocost curve is therefore

C = RK + WL

• Now think about the shape of the isocost line

Admin 0 Basics 000000 Short Run


Long Ri 00 Cost Min.

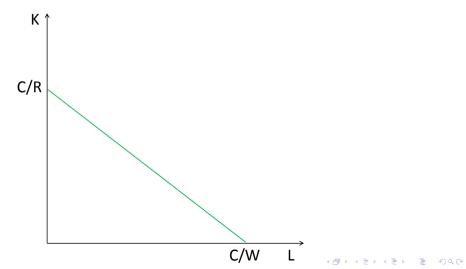
Total Cost

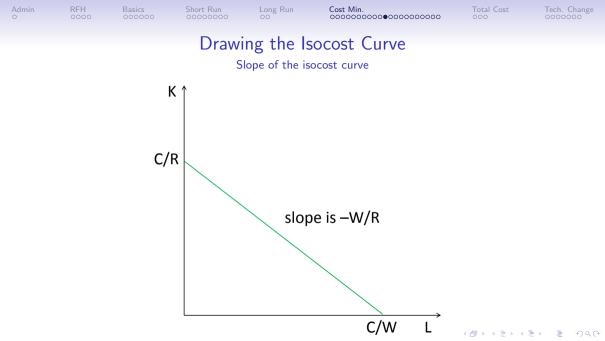
Tech. Change

Drawing the Isocost Curve

What are the endpoints of the isocost curve?

asics 00000 Long R

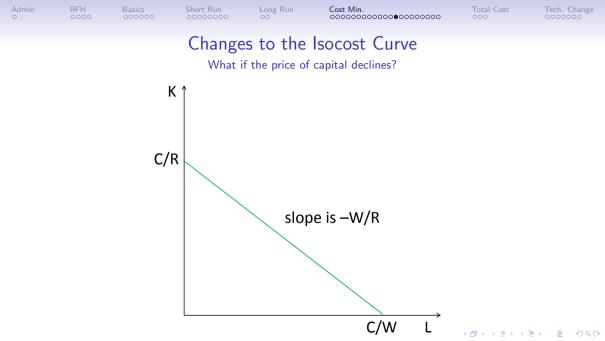

Cost Min.


Total Cost

Tech. Change

Drawing the Isocost Curve

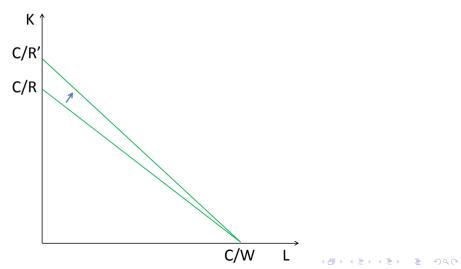
Endpoints of the isocost curve



• Slope of isocost line is the cost consequences of trading off one unit of K for L

<□> <問> <問> < 目> < 目> < 目> < 目> = - のへで

• What if the price of *K* decreases?


Admin O Basics 000000 ort Run 000000 Cost Min.

Total Cost

Tech. Change

Changes to the Isocost Curve

The isocost curve twists

Tech. Change

Parallels: Consumer and Producer Problems

What are the relevant producer prices?

Consumer	Producer
Diminishing marginal utility	diminishing marginal product
max U s.t. budget constraint	min C s.t. producing $Q = a$
Utility function	production function
Indifference curves	lsoquants
$MRS_{X,Y}$	MRTS _{LK}
Price of consumption goods	
Budget Constraint	
Slope of budget constraint $= -\frac{P_X}{P_Y}$	
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	
Income expansion path	

Tech. Change

Parallels: Consumer and Producer Problems

What is the producer parallel of the budget constraint?

Consumer	Producer
Diminishing marginal utility	diminishing marginal product
max U s.t. budget constraint	min C s.t. producing $Q = a$
Utility function	production function
Indifference curves	lsoquants
$MRS_{X,Y}$	MRTS _{LK}
Price of consumption goods	$P_L = W$, $P_K = R$
Budget Constraint	
Slope of budget constraint = $-\frac{P_X}{P_Y}$	
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	
Income expansion path	

Cost Min.

Total Cost

Tech. Change

Parallels: Consumer and Producer Problems

What is the producer parallel of the slope of the budget constraint?

Consumer	Producer
Diminishing marginal utility	diminishing marginal product
max U s.t. budget constraint	min C s.t. producing $Q = a$
Utility function	production function
Indifference curves	lsoquants
$MRS_{X,Y}$	MRTS _{LK}
Price of consumption goods	$P_L = W$, $P_K = R$
Budget Constraint	lsocost line
Slope of budget constraint $= -\frac{P_X}{P_Y}$	
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	
Income expansion path	

Tech. Change

Parallels: Consumer and Producer Problems

Budget constraint \approx Isocost

Consumer	Producer
Diminishing marginal utility	diminishing marginal product
max U s.t. budget constraint	min C s.t. producing $Q = a$
Utility function	production function
Indifference curves	lsoquants
$MRS_{X,Y}$	MRTS _{LK}
Price of consumption goods	$P_L = W$, $P_K = R$
Budget Constraint	lsocost line
Slope of budget constraint $= -\frac{P_X}{P_Y}$	Slope of isocost $= -\frac{W}{R}$
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	
Income expansion path	

Finding Minimum Cost

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Firm wants to produce a given output at minimum cost
- A constrained minimization problem
- Constraint is that firm produces some level of output Q
 - Think of this as a given: Q = a
 - Consumer problem: income is given, we find maximum happiness
 - Producer problem: Q is given, and we find minimum cost

Finding Minimum Cost

- Firm wants to produce a given output at minimum cost
- A constrained minimization problem
- Constraint is that firm produces some level of output Q
 - Think of this as a given: Q = a
 - Consumer problem: income is given, we find maximum happiness
 - Producer problem: Q is given, and we find minimum cost
- Goal: what is the lowest cost at which it can produce output Q = a?

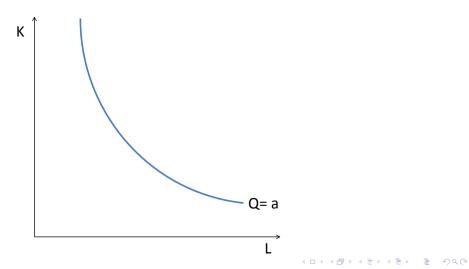
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Finding Minimum Cost

- Firm wants to produce a given output at minimum cost
- A constrained minimization problem
- Constraint is that firm produces some level of output Q
 - Think of this as a given: Q = a
 - Consumer problem: income is given, we find maximum happiness
 - Producer problem: Q is given, and we find minimum cost
- Goal: what is the lowest cost at which it can produce output Q = a?
- Cost minimization is necessary but not sufficient for profit maximization more on this later

Admin O Basi

cs 0000 Long F


Cost Min.

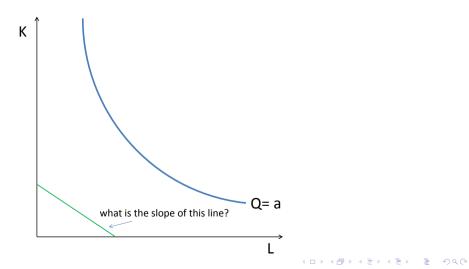
Total Cost

Tech. Change

Cost Minimization in Pictures

How Can You Produce Q = a at Minimum Cost?

Long R


Cost Min.

Total Cost

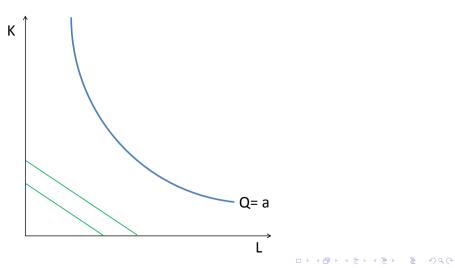
Tech. Change

Cost Minimization in Pictures

Find the Slope of the Isocost Line

Admin R

Basics 000000 Long F


Cost Min.

Total Cost

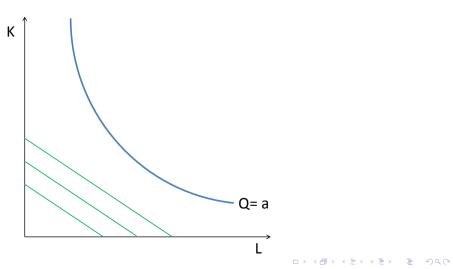
Tech. Change

Cost Minimization in Pictures

Not Enough Inputs to Make a

Admin I

Basics 000000 Long R


Cost Min.

Total Cost

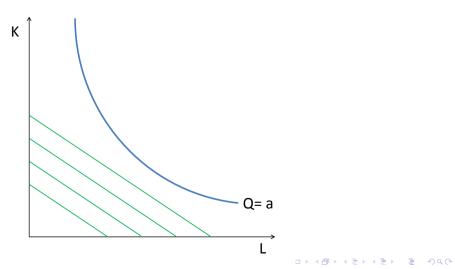
Tech. Change

Cost Minimization in Pictures

Still Not Enough

Admin R

Basics 000000 Long R


Cost Min.

Total Cost

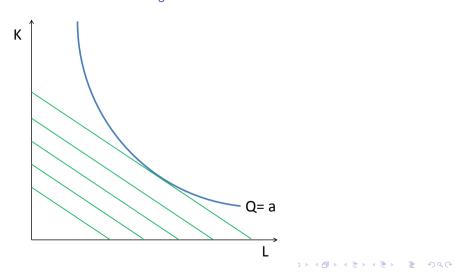
Tech. Change

Cost Minimization in Pictures

Still Not Enough

Admin RF

Basics 000000 Long F


Short Run

Cost Min.

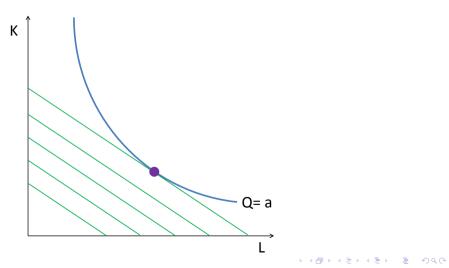
Total Cost

Tech. Change

Cost Minimization in Pictures Enough?

Admin R O O

Basics 000000 Long F

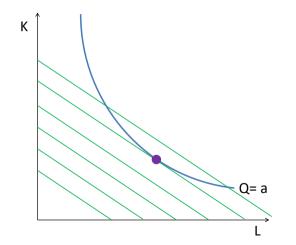

Cost Min.

Total Cost

Tech. Change

Cost Minimization in Pictures

The Optimal Combination of K and L


Admin O Basics 000000 Long F

Cost Min.

Total Cost

Tech. Change

Cost Minimization in Pictures Can You Produce Q = a With This Spending?

▲ 臣 ▶ ▲ 臣 ▶ ○臣 → の ۹ () ↔

Tech. Change

Conditions for Cost Minimization

- Occurs where isocost is tangent to isoquant
- Occurs when

$$-MRTS_{LK} = -\frac{P_L}{P_K}$$
$$-\frac{MP_L}{MP_K} = -\frac{W}{R}$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Tech. Change 0000000

Conditions for Cost Minimization

- Occurs where isocost is tangent to isoquant
- Occurs when

$$-MRTS_{LK} = -\frac{P_L}{P_K}$$
$$-\frac{MP_L}{MP_K} = -\frac{W}{R}$$

• More intuitively,

$$\frac{MP_L}{W} = \frac{MP_K}{R}$$

• Marginal product per dollar is equal

Tech. Change

Parallels: Consumer and Producer Problems

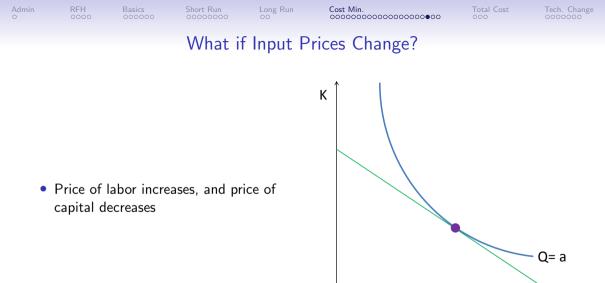
What is the producer optimality condition?

Consumer	Producer
Diminishing marginal utility	diminishing marginal product
max U s.t. budget constraint	min C s.t. producing $Q = a$
Utility function	production function
Indifference curves	lsoquants
$MRS_{X,Y}$	MRTS _{LK}
Price of consumption goods	$P_L = W$, $P_K = R$
Budget Constraint	lsocost line
Slope of budget constraint $= -\frac{P_X}{P_Y}$	Slope of isocost $=-rac{W}{R}$
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	
Income expansion path	

min

Basics 000000 n l

Cost Min.


Total Cost

Tech. Change

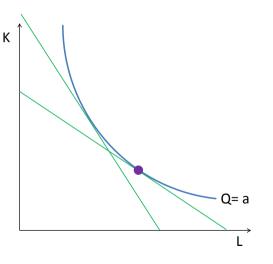
Parallels: Consumer and Producer Problems

Think tangency!

Consumer	Producer
Diminishing marginal utility	diminishing marginal product
max U s.t. budget constraint	min C s.t. producing $Q = a$
Utility function	production function
Indifference curves	lsoquants
$MRS_{X,Y}$	MRTS _{LK}
Price of consumption goods	$P_L = W$, $P_K = R$
Budget Constraint	Isocost line
Slope of budget constraint $= -\frac{P_X}{P_Y}$	Slope of isocost $= -\frac{W}{R}$
Optimality at $MRS_{XY} = \frac{P_X}{P_Y}$	$MRTS_{LK} = \frac{W}{R}$
Income expansion path	

・ロト・西ト・山田・山田・山下

Long F


Cost Min.

Total Cost

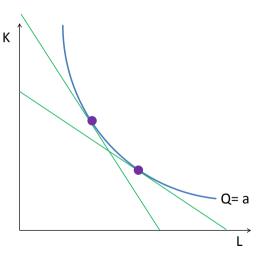
Tech. Change

What if Input Prices Change?

Price of labor increases, and price of capital decreases

・ロト・日本・山田・山田・山下・

Long F


Cost Min.

Total Cost

Tech. Change

What if Input Prices Change?

- Price of labor increases, and price of capital decreases
- Firms adjust to use more of the less costly input

Long F

Cost Min.

Total Cost

Tech. Change

Minimize Costs on Your Own

Set-Up

- A firm employs 25 workers
- Wage, W = 10/hour
- Firm uses 5 units of capital
- Rental rate, R =\$20/hour
- At these levels of K and L
 - marginal product of labor is 25
 - marginal product of capital is 30

Questions

- 1. Is this firm minimizing costs?
- 2. If not, what changes should it make?
- 3. How does the answer to question 2 depend on the time frame of analysis?

・ロト・日本・山田・山田・山下・

Cost Min.

Total Cost

Tech. Change

In-Class Problem Answer

- 1. Is the firm minimizing costs?
 - Firm minimizes costs when $MRTS_{LK} = \frac{P_L}{P_{LK}}$
 - Plugging in, this implies $\frac{25}{30} = \frac{10}{20}$
 - But $\frac{25}{30} \neq \frac{10}{20}$
 - Therefore, the firm cannot be minimizing costs
- 2. What changes should it make?
 - To minimize costs, firm should set $\frac{MP_L}{W} = \frac{MP_K}{R}$
 - At the moment, the first term is 25/10 = 2.5, and the second term is 30/20 = 1.5
 - If the firm added more labor, *MP_L* would decline and the terms would become more equal. To do this, the firm needs to decrease its consumption of capital.
- 3. How does the answer to question 2 depend on the time frame of analysis?
 - In the short run, the firm can change labor, but not capital.

Admin

RF 00 sics 0000 n La

Cost Min.

Total Cost

Tech. Change

Expansion Path

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

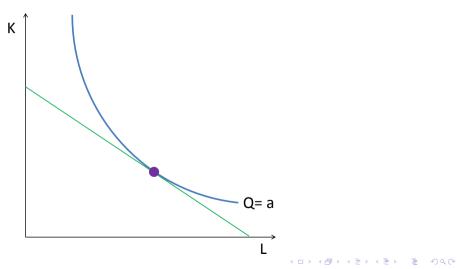
How Does Production Change at Different Levels of Q?

- We know how to find the firm's ideal inputs given Q
- Now we repeat this exercise for a variety of different Qs
 - Each optimal K and L will be where an isoquant is tangent to an isocost line

- *MRTS_{LK}* will be the same at each point
- Call this optimal (L, K) for each Q the expansion path
- And we can draw a total cost curve with different axes

 Short Kun
 Long Kun
 Cost Min.

 00000000
 00
 00000000


st Min.

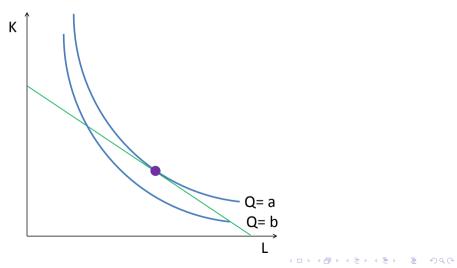
Total Cost

Tech. Change

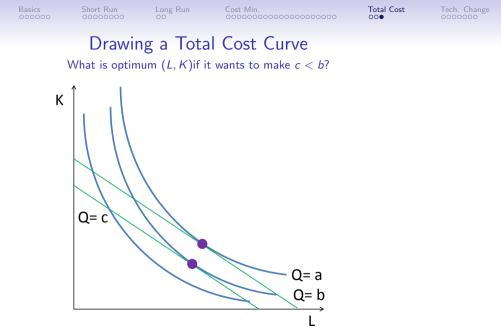
Drawing a Total Cost Curve

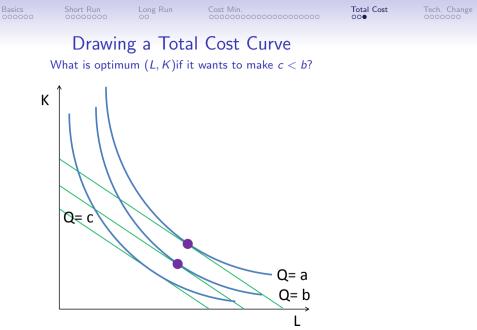
Recall Our Previous Optimum. What if the firm wants to produce b < a?

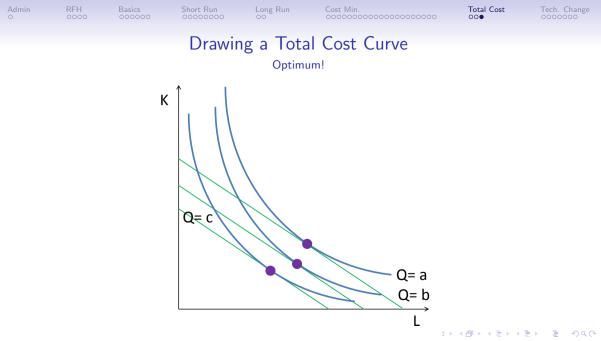
sics Short Run

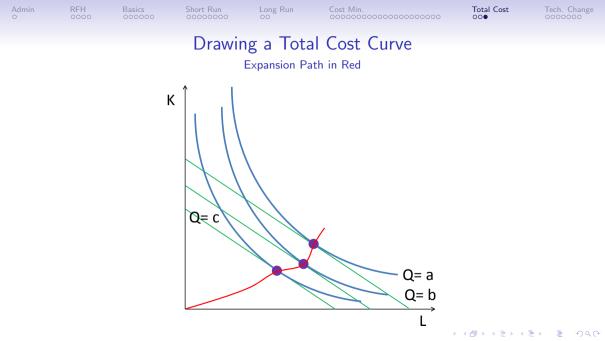

Long R 00 Cost Min.


Total Cost


Tech. Change


Drawing a Total Cost Curve


Recall Our Previous Optimum. What if the firm wants to produce b < a?

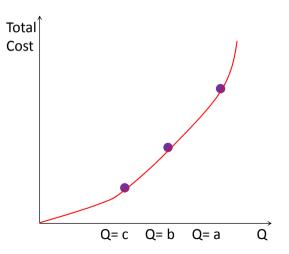


Admin

Basics 000000

s :

Long


Cost Min.

Total Cost

Tech. Change

Drawing a Total Cost Curve

Total Cost, Now with Q on X axis and dollars on Y axis

Admin

RFH 0000 ics 0000 Lor

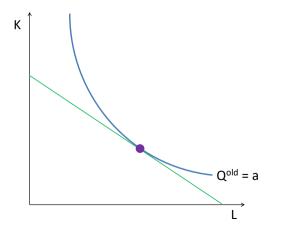
Total Cost

Tech. Change

Technological Change

• Total factor productivity \equiv change in output not accounted for by measured inputs, here K and L

- Total factor productivity growth can be technical change, management improvements
- We usually write TFP as A, where Q = Af(K, L)
- If A increases
 - there is growth in TFP
 - in which direction does the isoquant move?

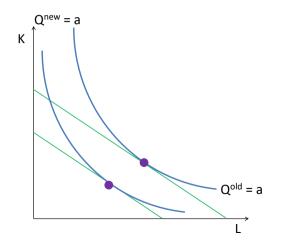

Short Run

Total Cost

Tech. Change

Shifting the Isoquant

Suppose the Firm Can Now Produce the Same Quantity with Fewer Inputs. What Changes?


Long F

Total Cost

Tech. Change

Shifting the Isoquant

Isoquant Shifts Inward and Can Change Shape

ショット・通 マイボ マイビット・

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Tech. Change

Drivers of Technological Change: Injera

Making injera

- What are the inputs?
- Which is the expensive input in the US? In Ethiopia?
- Which input will technology target in the US?
- In Ethiopia?

00 0

Long

ost Min.

Total Cost

Tech. Change

Drivers of Technological Change: Injera

Making injera

- What are the inputs?
- Which is the expensive input in the US? In Ethiopia?
- Which input will technology target in the US?
- In Ethiopia?

Wudneh Admassu Prof. of Chemical Engineering University of Idaho Born in Ethiopia Educated in US

Admin O H E

ics 0000 Long

ost Min.

Total Cost

Tech. Change

Drivers of Technological Change: Injera

Making injera

- What are the inputs?
- Which is the expensive input in the US? In Ethiopia?
- Which input will technology target in the US?
- In Ethiopia?

Wudneh Admassu Prof. of Chemical Engineering University of Idaho Born in Ethiopia Educated in US

- Patented the first injera-making machine
- Such machines now imported into Ethiopia

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Admin O RFH 0000 cs 000 Long I 00

Total Cost

Tech. Change

Technological change changes everything!

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Production Assumptions and Basics
- Production in the Short Run
- Production in the Long Run
- Cost Minimization Problem
- Expansion Path and Total Cost
- Technological Change
- (For Lecture 9: Returns to Scale)

- Next class: midterm
- Next class
 - Use Numbers assignment 3 coming
 - Costs!
 - GLS Chapter 7, but not 7.5. Return to 6.5.