

Policy 000 Perf Comp

Profit Maximization

LR Perfect Comp. 0000000000000000

Lecture 10: Supply in a Competitive Market

October 31, 2023

Policy 000 erf Comp

Profit Maximization

SR Perfect Comp.

LR Perfect Comp. 0000000000000000

Course Administration

- 1. Use Numbers 3
 - due next week
 - bring to class for discussion

olicy DO erf Comp

Profit Maximization

SR Perfect Comp. 0000000000000000 LR Perfect Comp. 0000000000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Course Administration

- 1. Use Numbers 3
 - due next week
 - bring to class for discussion
- 2. Four lectures to go after today!
- 3. Final exam, your choice December 13 or 14
- 4. Any questions?

F

Profit Maximiz

SR Perfect Comp. 0000000000000000 LR Perfect Comp. 0000000000000000

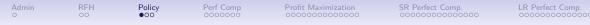
Next Week: Ripped from the Headlines

Send article by Wednesday midnight.

Finder	Presenter
Vanea	Tara

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

RFH


olicy

ert Comp 000000 Profit Maximization 000000000000000 SR Perfect Comp. 0000000000000000 LR Perfect Comp. 0000000000000000

This Week: Ripped from the Headlines

Finder	Presenter
Emily	Vanea

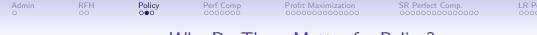
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Big Questions for Today

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- · How does a firm choose how much to produce?
- How does long run behavior differ from short run behavior?
- Where does the market supply curve come from?
- Which firms get producer surplus?
- Why is competition so valuable?

Why Do These Matter for Policy?


- Competitive markets yield most goods at lowest price to consumers
- Part of the government is dedicated to preserving competition: antitrust enforcement

Why Do These Matter for Policy?

- Competitive markets yield most goods at lowest price to consumers
- Part of the government is dedicated to preserving competition: antitrust enforcement

- Government policy can enhance or inhibit competition
 - Enhance: enforce contracts, assign and ensure property rights
 - Inhibit: limit prices or promote or limit firm behavior

Why Do These Matter for Policy?

- Competitive markets yield most goods at lowest price to consumers
- Part of the government is dedicated to preserving competition: antitrust enforcement

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Government policy can enhance or inhibit competition
 - Enhance: enforce contracts, assign and ensure property rights
 - Inhibit: limit prices or promote or limit firm behavior
- Weigh benefits of policy against harms to competition

Perf Comp 0000000 Profit Maximization

SR Perfect Comp.

LR Perfect Comp. 00000000000000000

Where We're Going

- 1. Perfect competition
- 2. Profit maximization
- 3. Short run perfect competition
- 4. Long run perfect competition

Admin

Policy 000 Perf Comp

rofit Maximization

SR Perfect Comp. 00000000000000000 LR Perfect Comp.

Market Structure and Perfect Competition

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

LR Perfect Comp. 0000000000000000

Market Characteristics and Types

Key Characteristics of Markets

- Number of firms
- Substitutability of products
- Barriers to entry

Policy 000
 Perf Comp
 P

 ○●○○○○○○
 ○

rofit Maximization

LR Perfect Comp. 0000000000000000

Market Characteristics and Types

Key Characteristics of Markets

- Number of firms
- Substitutability of products
- Barriers to entry

Types of Markets

- Perfectly competitive
- Monopolistic competition
- Oligopoly
- Monopoly

	Number of firms	Substitutability of Products	Barriers to Entry
Perfectly Comp.	many	entirely	none
Monopolistic Comp.	many	not entirely	yes
Oligopoly	few	either	some
Monopoly	one	n/a	yes

	Number of	Substitutability of	Barriers to
	firms	Products	Entry
Perfectly Comp.	many	entirely	none
Monopolistic Comp.	many	not entirely	yes
Oligopoly	few	either	some
Monopoly	one	n/a	yes

LR Perfect Comp. 0000000000000000

Elements of a Perfectly Competitive Market

- Many firms in the market
- Products sold are perfect substitutes
- No barriers to entry

Profit Maximization

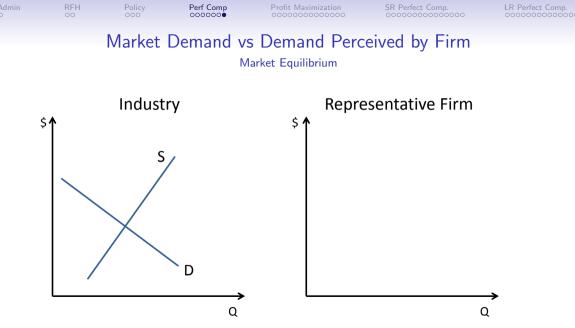
SR Perfect Comp.

LR Perfect Comp. 00000000000000000

Elements of a Perfectly Competitive Market

- Many firms in the market
- Products sold are perfect substitutes
- No barriers to entry

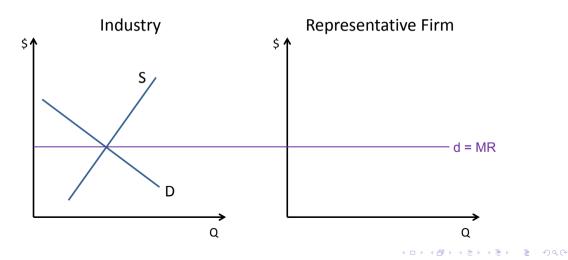
- Very rare
- The closer we get to this, the better off consumers are


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

• Serves as a baseline "best case scenario"

Demand Curve as Seen By a Price-Taker

- Call a perfectly competitive firm a price-taker
- This firm can't impact price
- To this firm, demand is infinite at market price
- In other words, the firm perceives demand as perfectly elastic at the equilibrium market price



R Perfect Comp.

LR Perfect Comp.

Market Demand vs Demand Perceived by Firm

Firm's View of Market Equilibrium

Admin

Policy

Perf Comp

Profit Maximization

SR Perfect Comp. 00000000000000000 LR Perfect Comp.

Profit Maximization in a Perfectly Competitive Environment

Reminder: Accounting vs. Economic Profits

• Economic profit \neq accounting profit

- Economic profit \neq accounting profit
 - accounting profit \equiv total revenue (P * Q) total cost (ATC * Q)
 - economic profit \equiv total revenue total cost, including opportunity costs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Economic profit \neq accounting profit
 - accounting profit \equiv total revenue (P * Q) total cost (ATC * Q)
 - economic profit \equiv total revenue total cost, including opportunity costs
- Lee's Flowers on U St. NW
 - Lee family bought structure in 1970
 - accounting profit

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Economic profit \neq accounting profit
 - accounting profit \equiv total revenue (P * Q) total cost (ATC * Q)
 - economic profit \equiv total revenue total cost, including opportunity costs
- Lee's Flowers on U St. NW
 - Lee family bought structure in 1970
 - accounting profit
 - revenues: flower sales
 - costs: salaries, flowers, building upkeep

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Economic profit \neq accounting profit
 - accounting profit \equiv total revenue (P * Q) total cost (ATC * Q)
 - economic profit \equiv total revenue total cost, including opportunity costs
- Lee's Flowers on U St. NW
 - Lee family bought structure in 1970
 - accounting profit
 - revenues: flower sales
 - costs: salaries, flowers, building upkeep
 - economic profit

- Economic profit \neq accounting profit
 - accounting profit \equiv total revenue (P * Q) total cost (ATC * Q)
 - economic profit \equiv total revenue total cost, including opportunity costs
- Lee's Flowers on U St. NW
 - Lee family bought structure in 1970
 - accounting profit
 - revenues: flower sales
 - costs: salaries, flowers, building upkeep
 - economic profit
 - add opportunity cost of structure to total costs
 - one-story building in a booming area

Marginal Revenue for a Perfectly Competitive Firm

• Marginal revenue \equiv additional revenue from an additional unit of output

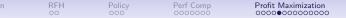
Marginal Revenue for a Perfectly Competitive Firm

- Marginal revenue \equiv additional revenue from an additional unit of output
- If the firm perceives the demand curve as constant, then MR = P
- Firm cannot affect P

- Additional cost from an additional unit is MC
- If *MC* > *MR*...

- Additional cost from an additional unit is MC
- If MC > MR... it's a bad idea for the firm to produce
- If *MC* < *MR*...

- Additional cost from an additional unit is MC
- If MC > MR... it's a bad idea for the firm to produce
- If MC < MR... the firm should produce more and make more money



- Additional cost from an additional unit is MC
- If MC > MR... it's a bad idea for the firm to produce
- If MC < MR... the firm should produce more and make more money
- \rightarrow profit is maximized where MR = MC

- Additional cost from an additional unit is MC
- If MC > MR... it's a bad idea for the firm to produce
- If MC < MR... the firm should produce more and make more money
- \rightarrow profit is maximized where MR = MC

all types of firms maximize profit where MR = MC

LR Perfect Comp.

Profit Maximization for Firms in a Competitive Market

Because competitive firms are price takers

P = MR

Profit Maximization for Firms in a Competitive Market

Because competitive firms are price takers

P = MR

Because competitive firms maximize profits

MR = MC

Profit Maximization

Because competitive firms are price takers

P = MR

Because competitive firms maximize profits

$$MR = MC$$

To maximize profits, firms then set

$$MR = MC$$
$$P = MC$$

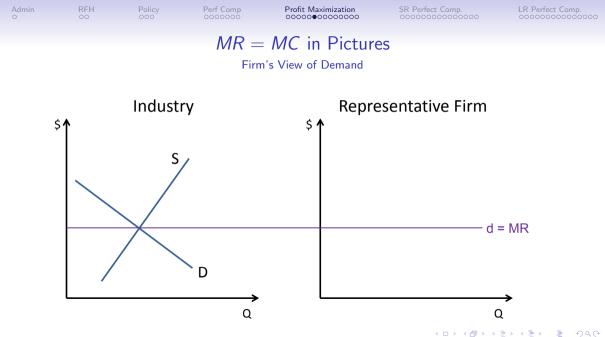
・ロト・雪・・雪・・雪・・白・

LR Perfect Comp.

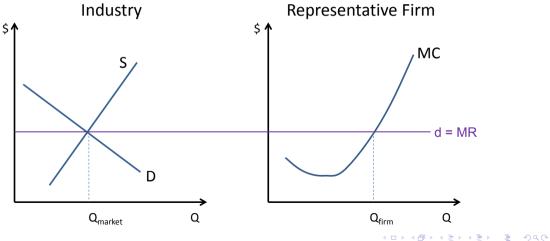
Profit Maximization

Because competitive firms are price takers

P = MR


Because competitive firms maximize profits

$$MR = MC$$


To maximize profits, firms then set

$$MR = MC$$
$$P = MC$$

Perfectly competitive firms maximize profits where P = MC

Comp

Profit Maximization

SR Perfect Comp. 0000000000000000 LR Perfect Comp.

What are Profits When a Firm is Maximizing Profit?

Profits = total revenue - total cost

$$\pi = TR - TC$$

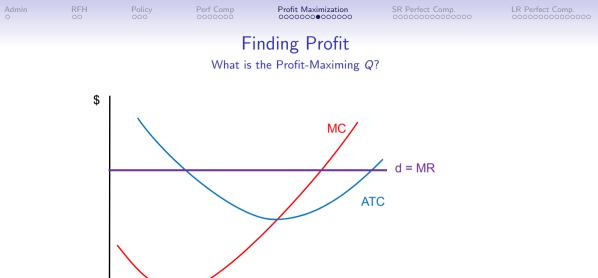
SR Perfect Comp. 00000000000000000 LR Perfect Comp.

What are Profits When a Firm is Maximizing Profit?

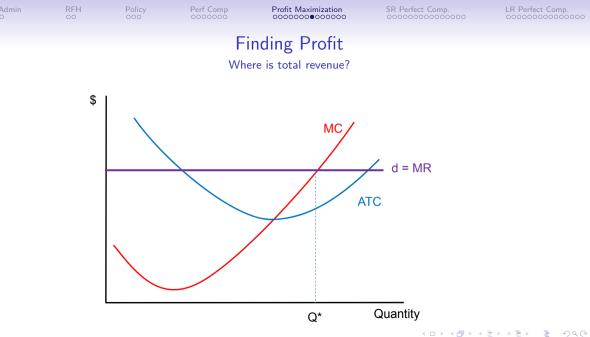
Profits = total revenue - total cost

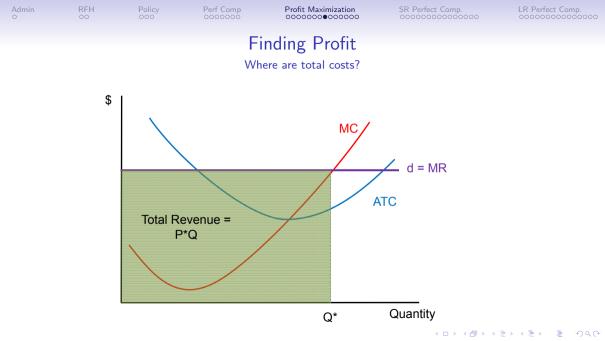
$$\pi = TR - TC$$
$$= (P * Q) - (ATC * Q)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで



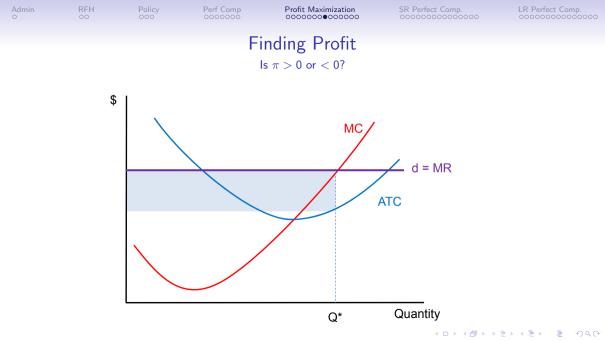
LR Perfect Comp.

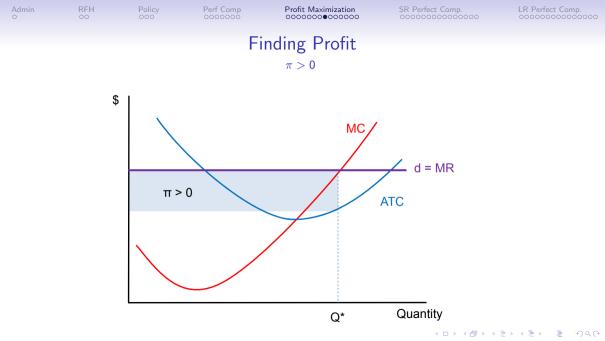

What are Profits When a Firm is Maximizing Profit?


Profits = total revenue - total cost

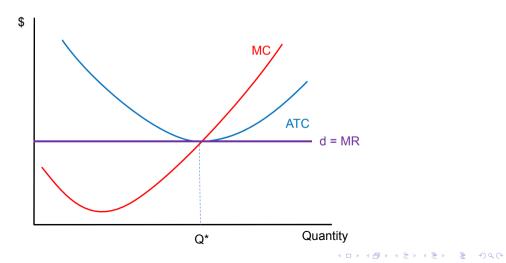
$$\pi = TR - TC$$

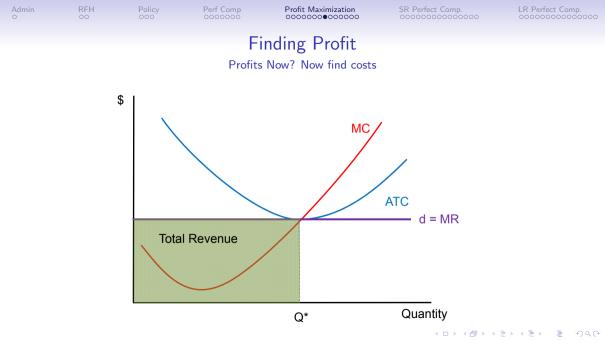
= $(P * Q) - (ATC * Q)$
= $Q(P - ATC)$

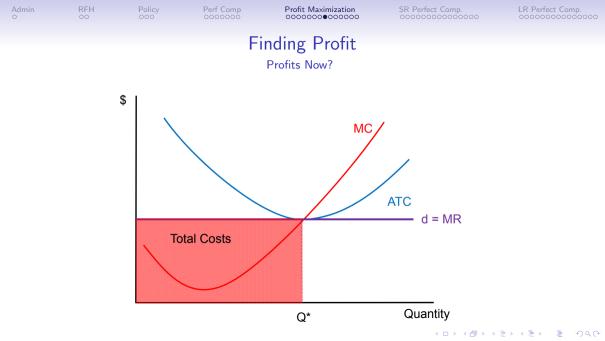


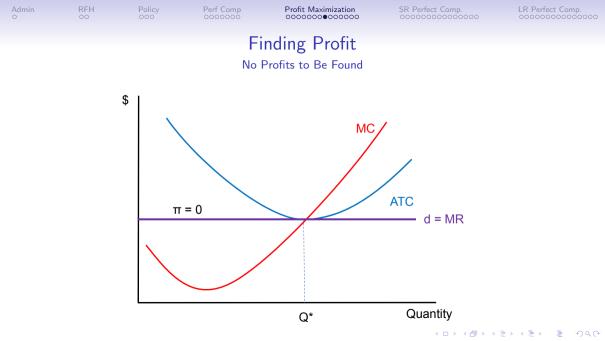

Quantity

cy


Perf Comp 0000000 Profit Maximization

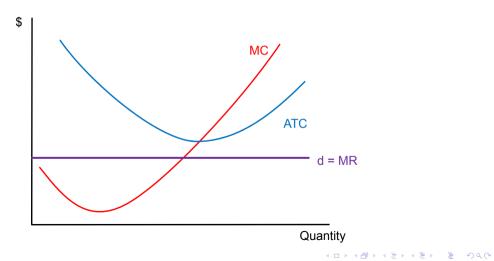

SR Perfect Comp.


LR Perfect Comp. 0000000000000000


Finding Profit

Profits Now? First find revenues

Pe


Comp

Profit Maximization

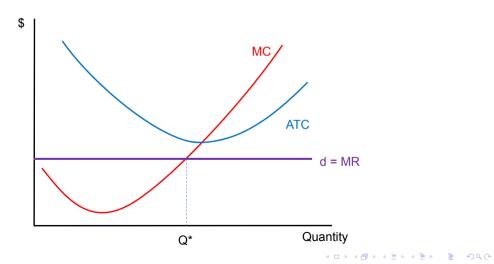
LR Perfect Comp. 0000000000000000

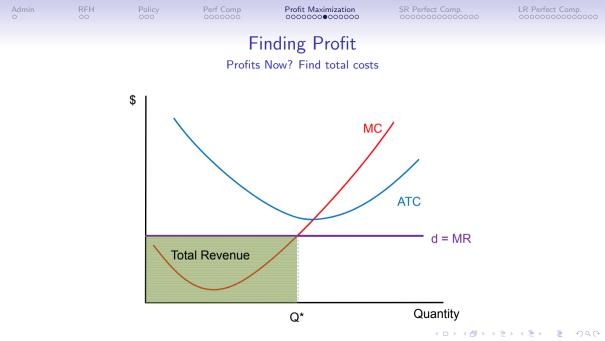
Finding Profit

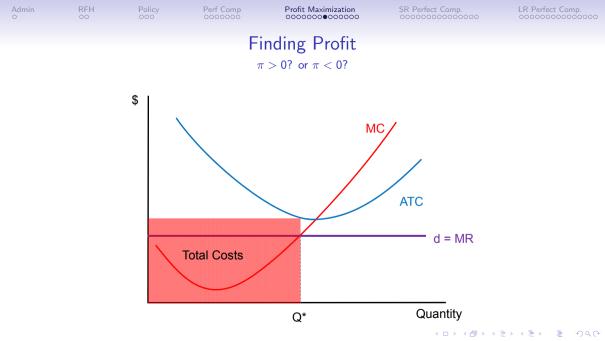
Price Falls. Profits Now? What is profit maximizing Q?

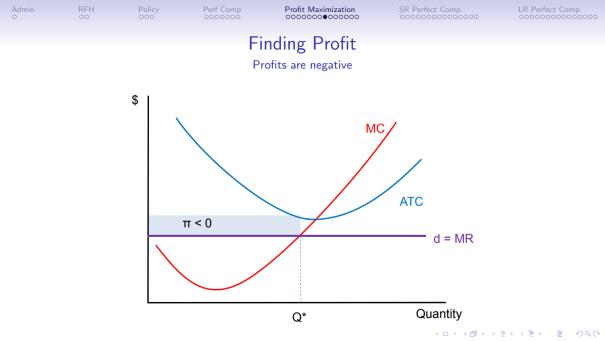
Policy

Perf Comp


Profit Maximization


SR Perfect Comp.


LR Perfect Comp. 0000000000000000


Finding Profit

Profits Now? Find total revenue

Perf C

Profit Maximization

SR Perfect Comp. 0000000000000000 LR Perfect Comp. 0000000000000000

In the Short Run, Should the Firm Shut Down if $\pi < 0$?

◆□ > ◆□ > ◆ 三 > ◆ 三 > ・ 三 · • ○ へ ⊙

• In the short run, what does the firm have to pay if it runs or not?

• In the short run, what does the firm have to pay if it runs or not? fixed costs

- In the short run, what does the firm have to pay if it runs or not? fixed costs
- So profits in the short run, with no output is

 $\pi_{shutdown} = -FC$

- In the short run, what does the firm have to pay if it runs or not? fixed costs
- So profits in the short run, with no output is

 $\pi_{shutdown} = -FC$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

• Profits in the short run, with output is

$$\pi_{operate} = TR - TC$$

- In the short run, what does the firm have to pay if it runs or not? fixed costs
- So profits in the short run, with no output is

$$\pi_{shutdown} = -FC$$

• Profits in the short run, with output is

$$\pi_{operate} = TR - TC = TR - FC - VC$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Firm should operate if

 $\pi_{operate} > \pi_{shutdown}$

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Firm should operate if

 $\pi_{operate} > \pi_{shutdown}$ TR - FC - VC > -FC

Firm should operate if

 $\pi_{operate} > \pi_{shutdown}$ TR - FC - VC > -FC TR - VC > 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Firm should operate if

 $\pi_{operate} > \pi_{shutdown}$ TR - FC - VC > -FC TR - VC > 0 TR > VC

Firm should operate if

 $\pi_{operate} > \pi_{shutdown}$ TR - FC - VC > -FC TR - VC > 0 TR > VC

Examples of firms that sometimes operate?

Firm should operate if

 $\pi_{operate} > \pi_{shutdown}$ TR - FC - VC > -FC TR - VC > 0 TR > VC

Examples of firms that sometimes operate?

Short Run Operations: Two Equivalent Statements

Operate if

TR > VC

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Short Run Operations: Two Equivalent Statements

Operate if

TR > VC

We can re-write this as

TR > VC

Operate if

TR > VC

We can re-write this as

 $\begin{array}{rcl} TR &> & VC \\ PQ &> & VC \end{array}$

・ロト ・日本・ キョン・ ヨー うくの

Operate if

TR > VC

We can re-write this as

 $\begin{array}{rcl} TR & > & VC \\ PQ & > & VC \\ \frac{PQ}{Q} & > & \frac{VC}{Q} \end{array}$

▲日▼▲□▼▲回▼▲回▼ ▲回▼

Operate if

TR > VC

We can re-write this as

 $\begin{array}{rcl} TR &> VC \\ PQ &> VC \\ \displaystyle \frac{PQ}{Q} &> \displaystyle \frac{VC}{Q} \\ P &> AVC \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

Operate if

TR > VC

We can re-write this as

TR > VC PQ > VC $\frac{PQ}{Q} > \frac{VC}{Q}$ P > AVC

Firm should operate when P > AVC, same as TR > VC.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④�♡

LR Perfect Comp.

Review: Keeping the Short-Run Curves Straight

- Maximize profit where MR = MC
- Profit is Q * (P ATC)
- Operate if P > AVC, same as TR > VC

In Class Problem 1: Choosing Q

Cardboard boxes are produced in a perfectly competitive market. Suppose that for all firms in the market, MC = 5Q.

- 1. If the market price is 10, how many boxes does the firm produce if it is maximizing profit?
- 2. Suppose that there is a quantity Q at which AVC = 6. Should the firm produce at this Q?

In Class Problem 1 Answer: Cardboard Boxes and Shutdown

Profit Maximization

1. If the market price is 10, how many boxes does the firm produce? To maximize profit, MR = MC. If the firm is competitive, then MR = P. Therefore,

$$P = MC$$

$$10 = 5Q$$

$$Q = 2$$

In Class Problem 1 Answer: Cardboard Boxes and Shutdown

Profit Maximization

1. If the market price is 10, how many boxes does the firm produce? To maximize profit, MR = MC. If the firm is competitive, then MR = P. Therefore,

$$P = MC$$

$$10 = 5Q$$

$$Q = 2$$

2. Suppose that there is a quantity Q at which AVC = 6. Should the firm produce? The firm should produce if

$$P > AVC$$
 Yes, the firm should produce.
10 > 6

SR Perfect Comp. •00000000000000000

Short Run Perfect Competition

Profit Max 0000000 SR Perfect Comp.

LR Perfect Comp.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Describing Supply from First Principles

In the short run

- Firm's supply curve
- Industry's supply curve
- Producer surplus for a firm
- Producer surplus for the industry

- We now know that the firm supplies only when TR > VC
- What does this imply about MC?

TR > VC

- We now know that the firm supplies only when TR > VC
- What does this imply about MC?

 $\begin{array}{ll} TR & > VC \\ P * Q & > VC \end{array}$

- We now know that the firm supplies only when TR > VC
- What does this imply about MC?

TR > VC P * Q > VC MC * Q > VC

- We now know that the firm supplies only when TR > VC
- What does this imply about MC?

TR > VC P * Q > VC MC * Q > VC MC > VC/Q

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

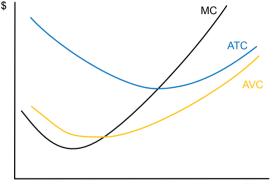
- We now know that the firm supplies only when TR > VC
- What does this imply about MC?

 $\begin{array}{rcl} TR &> VC \\ P*Q &> VC \\ MC*Q &> VC \\ MC &> VC/Q \\ MC &> AVC \end{array}$

- We now know that the firm supplies only when TR > VC
- What does this imply about MC?

 $\begin{array}{rcl} TR &> VC \\ P*Q &> VC \\ MC*Q &> VC \\ MC &> VC/Q \\ MC &> AVC \end{array}$

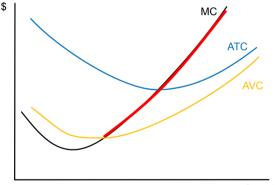
 \rightarrow Firm supplies only when MC > VC/Q


imization 9000000

SR Perfect Comp.

LR Perfect Comp.

Finding a Firm's Short Run Supply Curve

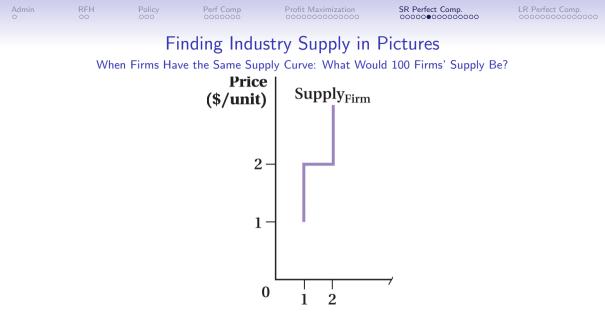


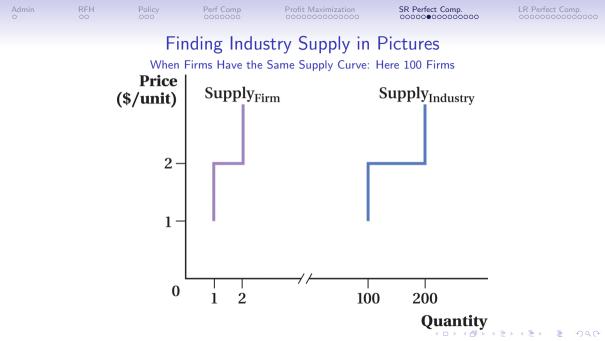
laximization 00000000 SR Perfect Comp.

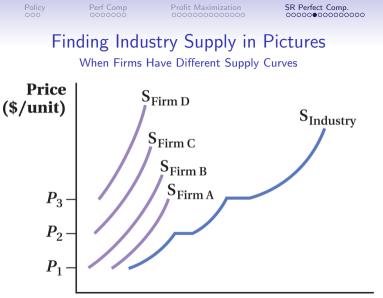
LR Perfect Comp. 0000000000000000

Finding a Firm's Short Run Supply Curve

An Individual Firm's Supply Curve




・ロト ・日本・ キョン・ ヨー うくの



Finding Industry Supply

- · Recall that we found market demand by summing individual demands
- Now we find market supply by adding firm supply, given prices
- Find market supply
 - Firm A: $Q_A = f(P)$
 - Firm B: $Q_B = g(P)$
 - Market supply: $Q_M = f(P) + g(P)$

Quantity

LR Perfect Comp.

SR Perfect Comp.

LR Perfect Comp. 0000000000000000

Adding Up Market Supply

- Supply starts at lowest price is that offered by any firm
- Total quantity at any price is Q offered by all firms

In-Class Problem 2: Tortillas

Assume the industry for flour tortillas in Denver is perfectly competitive. There are 200 firms. Seventy-five of the firms are "high-cost," with short-run supply curves $Q_{hc} = 5P$. The others are "low-cost," with short- run supply curves $Q_{lc} = 8P$.

- 1. What is the short-run industry supply curve for tortillas Q_S ?
- 2. Assume the market demand curve for tortillas is given by $Q_D = 10,000 625P$. Find the market equilibrium price and quantity.
- 3. At this price, how many dozens of tortillas are produced by the high- and low-cost firms, respectively?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

4. Determine total industry surplus at the equilibrium.

In-Class Problem 2: Tortillas

Assume the industry for flour tortillas in Denver is perfectly competitive. There are 200 firms. Seventy-five of the firms are "high-cost," with short-run supply curves $Q_{hc} = 5P$. The others are "low-cost," with short- run supply curves $Q_{lc} = 8P$.

1. What is the short-run industry supply curve for tortillas Q_S ?

$$S_{sr} = 125 * Q_{lc} + 75 * Q_{hc}$$

= 125(8P) + 75(5P)
= 1000P + 375P
= 1375P

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

In-Class Problem 2: Answer, Cont'd

SR Perfect Comp.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

2. Assume the market demand curve for tortillas is given by $Q_D = 10,000 - 625P$. Find the market equilibrium price and quantity.

> $Q_{S} = Q_{D}$ 1375P = 10,000 - 625P 2000P = 10000P = 5

Find quantity using either curve

$$egin{array}{rcl} Q_D &=& 10,000-625P\ &=& 10000-625(5)\ &=& 10000-3125\ &=& 6875 \end{array}$$

aximization SR 000000000 000

 LR Perfect Comp.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

In-Class Problem 2: Answer, Cont'd

3. At this price, how many dozens of tortillas are produced by the high- and low-cost firms, respectively? Use their supply curves

$$Q_{hc} = 5P = 5(5) = 25$$

 $Q_{lc} = 8P = 8(5) = 40$

4. Determine total industry surplus at the equilibrium. Area above the supply curve and below market price. Q intercept is at zero, so

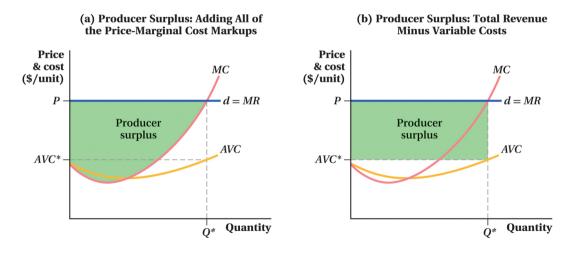
$$PS = \frac{1}{2}bh \\ = \frac{1}{2}6875(5) \\ = 17,187.50$$

LR Perfect Comp. 0000000000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Producer Surplus from a Competitive Firm

- Like before, the sum of the benefit from each unit
- Two equivalent ways to think about this
 - The difference between market price and supply
 - The difference between Q * AVC and PQ



C Y

Profit Maximization

SR Perfect Comp.

Producer Surplus for a Firm: Pictures

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

licy

erf Comp

Profit Maximization

SR Perfect Comp.

LR Perfect Comp.

Producer Surplus vs. Profit

 $\pi =$

Profit Maximization

SR Perfect Comp.

LR Perfect Comp.

Producer Surplus vs. Profit

• Profit

 $\pi = TR - TC = TR - (FC + VC)$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Producer Surplus vs. Profit

• Profit

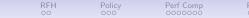
$$\pi = TR - TC = TR - (FC + VC)$$

• Surplus

$$PS = TR - VC$$

LR Perfect Comp.

Producer Surplus vs. Profit

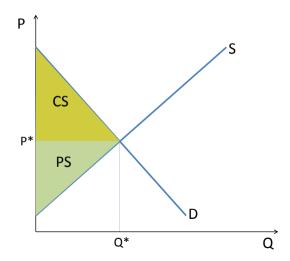

• Profit

$$\pi = TR - TC = TR - (FC + VC)$$

Surplus

PS = TR - VCRemember, $\pi \neq PS$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シスペ



Profit Maximization

SR Perfect Comp.

LR Perfect Comp.

Producer Surplus for a Competitive Industry

Admin

RFH

P

erf Comp 000000 rofit Maximization

LR Perfect Comp. •0000000000000000

Perfect Competition in the Long Run

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Profit Maximization

SR Perfect Comp. 0000000000000000 LR Perfect Comp.

What Makes the Long Run Different?

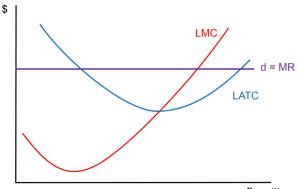
- All costs are variable
- Firms enter
- Firms exit

- Free entry \equiv when firms can easily enter the market
 - No legal barriers
 - No technical barriers

- Free entry \equiv when firms can easily enter the market
 - No legal barriers
 - No technical barriers
- Long run profits
 - Difference between price and long-run total cost
 - $\pi = P * Q LATC * Q = Q * (P LATC)$

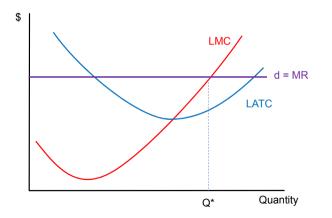
- Free entry \equiv when firms can easily enter the market
 - No legal barriers
 - No technical barriers
- Long run profits
 - Difference between price and long-run total cost
 - $\pi = P * Q LATC * Q = Q * (P LATC)$
- When $\pi > 0$, we anticipate entry by new firms, until $\pi = 0$

- Free entry \equiv when firms can easily enter the market
 - No legal barriers
 - No technical barriers
- Long run profits
 - Difference between price and long-run total cost
 - $\pi = P * Q LATC * Q = Q * (P LATC)$
- When $\pi > 0$, we anticipate entry by new firms, until $\pi = 0$
- Long-run competitive equilibrium \equiv point at which P = LATC, and there are no gains to entry for additional firms

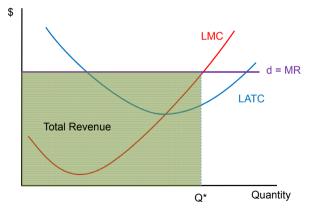

Policy 000 erf Comp

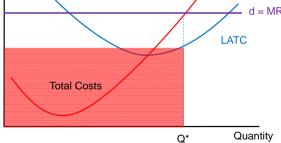
Profit Maximization

SR Perfect Comp. 000000000000000 LR Perfect Comp.


Profits and Entry

What is the long-run profit-maximizing Q?



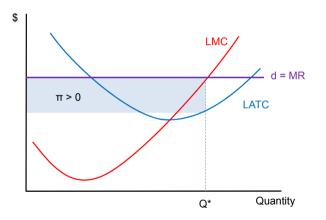

うせん 前 ふばやふばやふむやる

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

Policy

Perf Comp


Profit Maximization

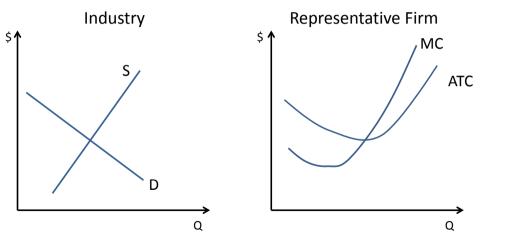
SR Perfect Comp.

LR Perfect Comp.

Profits and Entry

Positive profits: Stay in business

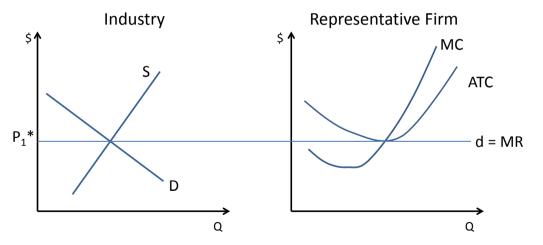
If economic profit exists, what should other firms do?



- Free exit \equiv ability of firm to exit an industry without legal or technical barriers
- When should a firm exit the market? When P < LATC

 RFH
 Policy
 Perf Comp
 Profit Maximization
 SR Perfect Comp.
 LR Perfect Comp.

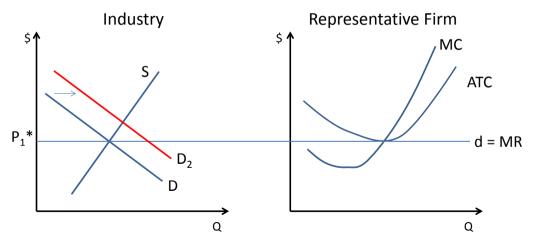
 What Happens When Demand Increases?


Original Equilibrium

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 二重 - 釣ぬ⊙

What Happens When Demand Increases?

Note Zero Profits



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

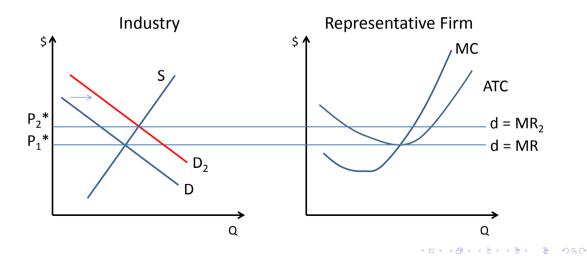
LR Perfect Comp.

What Happens When Demand Increases?

Demand Increases. Profits?

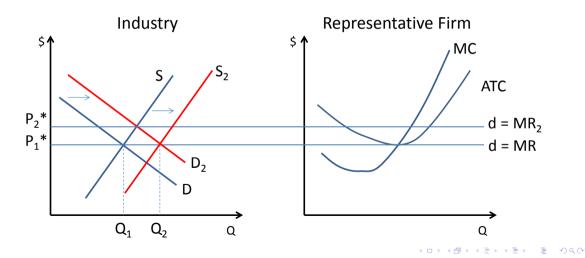
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

LR Perfect Comp.


Profit Maximization

SR Perfect Comp.

LR Perfect Comp.


What Happens When Demand Increases?

Firms Enter, Prices and Profits Fall

What Happens When Demand Increases?

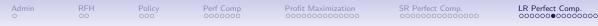
Supply Increases to Offset Change in Demand

Finding the Long-Run Supply Curve

Recap: Suppose demand increases. What happens

• in the short run to prices?

LR Perfect Comp.


- in the short run to prices? increase
- in the long run to firm entry?

LR Perfect Comp.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- in the short run to prices? increase
- in the long run to firm entry? increases
- and in the long run to prices?

- in the short run to prices? increase
- in the long run to firm entry? increases
- and in the long run to prices? return to market equilibrium

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Finding the Long-Run Supply Curve

- in the short run to prices? increase
- in the long run to firm entry? increases
- and in the long run to prices? return to market equilibrium
- \rightarrow the long-run supply curve is perfectly elastic

Finding the Long-Run Supply Curve

Suppose costs fall. What happens

• in the short run to prices?

Finding the Long-Run Supply Curve

Suppose costs fall. What happens

- in the short run to prices? decrease
- in the short run to firm profits?

Suppose costs fall. What happens

- in the short run to prices? decrease
- in the short run to firm profits? possibly increase, if lower costs not passed to consumers

• in the long run to firm entry?

Suppose costs fall. What happens

- in the short run to prices? decrease
- in the short run to firm profits? possibly increase, if lower costs not passed to consumers
- in the long run to firm entry? increases, if lower costs not passed to consumers

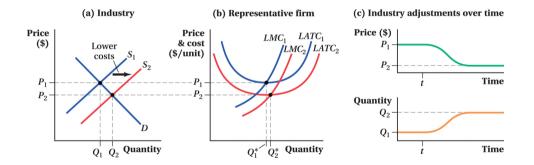
• and in the long run to prices?

Suppose costs fall. What happens

- in the short run to prices? decrease
- in the short run to firm profits? possibly increase, if lower costs not passed to consumers
- in the long run to firm entry? increases, if lower costs not passed to consumers

• and in the long run to prices? be a function of the new, lower costs

Suppose costs fall. What happens


- in the short run to prices? decrease
- in the short run to firm profits? possibly increase, if lower costs not passed to consumers
- in the long run to firm entry? increases, if lower costs not passed to consumers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- and in the long run to prices? be a function of the new, lower costs
- \rightarrow the long-run supply curve is perfectly elastic

Polic

Perf Comp

Profit Maximization

SR Perfect Comp.

LR Perfect Comp.

In Sum, In the Long Run

- Firms can enter
- Firms can exit
- Profits are zero
- P = LATC
- Supply is perfectly elastic

・ロト ・日本・日本・日本・日本・日本

Big Idea: What Does Perfect Competition Get You?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- products sold at marginal cost
- everyone who wants the product at market price can buy it
- consumer surplus high
- consumer demand drives firm decisions
- social welfare producer plus consumer surplus maximized

Profit Maximization

SR Perfect Comp. 0000000000000000 LR Perfect Comp.

Why Is Competition Important?

Martin Shkreli, CEO, Turing Pharmaceuticals

- business plan is to buy out-of-patent medications
- increase prices
- Dataprim is an AIDS drug
- "But what Shkreli recognized was that, even with a generic drug, regulatory barriers and a lack of competition can make big price hikes possible." *New Yorker*, October 5, 2015
- lots of media chat about antitrust response

Drug Goes From \$13.50 a Tablet to \$750, Overnight

By Andrew Pollack

Sept. 20, 2015

y 🛯 🔶 🔍

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

From New York Times

OCT 23, 2015 MORE ON PHARMACY

Daraprim competitor to market \$1 pill after Turing chief Martin Shkreli hikes price

Shkreli has said the price hike was not the result of corporate greed.

- Market structure and perfect competition in the short run
- Profit maximization in a competitive market
- Perfect competition in the short run
- Perfect competition in the long run

- Turn in Problem Set 9
- Market Power and Monopoly: Chapter 9