Lecture 2:
 When You Need Graphs and
 How We See Graphs and Merging

January 30, 2023

Course Administration

1. Any trouble submitting tutorials? questions?
2. Questions/issues with readings?
3. Make sure you're signed up for Piazza - email me if you are not

Course Administration

1. Any trouble submitting tutorials? questions?
2. Questions/issues with readings?
3. Make sure you're signed up for Piazza - email me if you are not
4. Be sure to check online listing for good/bad/ugly: linked at bottom of lectures page

- I moved a few of you around to even up finders and commenters
- If date is not ok, try to switch with a classmate
- If you didn't sign up, sign up and let me know

Course Administration

1. Any trouble submitting tutorials? questions?
2. Questions/issues with readings?
3. Make sure you're signed up for Piazza - email me if you are not
4. Be sure to check online listing for good/bad/ugly: linked at bottom of lectures page

- I moved a few of you around to even up finders and commenters
- If date is not ok, try to switch with a classmate
- If you didn't sign up, sign up and let me know

5. One-page proposal is due next week
6. Anything else?

Next Week's Good Bad and Ugly

Finders, post link Wed. by noon.

	Finder	Commenter
1	Henry	Lancy

Email me ASAP if you're not on the google sheet. Link at the bottom of the lectures tab.

Few:

Visual Perception and Graphical Communication

When Should You Use Tables vs. Graphs?

- Tables are for when
- you care about the actual numbers
- you have very few numbers

When Should You Use Tables vs. Graphs?

- Tables are for when
- you care about the actual numbers
- you have very few numbers
- Graphs are for when
- you care about trends or general tendencies
- you have more numbers than a table can support
- the exact values are not critical
- you wish to highlight a particular relationship

Starting with the Table

Job Satisfaction By Income, Education, and Age

Income	Under 50	50 \& over	Under 50	50 \& over
Up to $\$ 50,000$	643	793	590	724
Over $\$ 50,000$	735	928	863	662

Few, Chapter 3, Figure 3.13

Version One of a Set of Numbers

Version One of a Set of Numbers

What do you think the point of this picture is?
Few, Chapter 3, Figure 3.15

Version Two of the Same Set of Numbers

Version Two of the Same Set of Numbers

And the point of this picture?

Choose the Graph that Leads the Reader to Your Answer

Few Chapter 5: Drawing Attention

1. working memory
2. preattentive processing

- form
- color
- spatial position

3. applying to design
4. gestalt principles of visual perception

Working Memory

We don't have much of it

Working Memory

We don't have much of it

- people can remember 3 to 4 visual encodings for a chart
- therefore, more than about 4 colors as identification are distracting
- good visuals can stick in long-term memory

Preattentive Processing

Why is this so important? Find the 5 s .
48921652097520589

Preattentive Processing

Why is this so important? Find the 5 s.
48921652097520589
And now find the 5 s .

$$
489216 \mathbf{5} 2097 \mathbf{5} 20 \mathbf{5} 89
$$

Preattentive Processing

Why is this so important? Find the 5 s.
48921652097520589
And now find the 5 s .

$$
489216 \mathbf{5} 2097 \mathbf{5} 20589
$$

Use preattentive processing to point out what you think is important.

Preattentive Processing

Form
Color
Spatial Position

Form

But Beware of 2-D Size

Why?

But Beware of 2-D Size

Why?

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this - maybe you're drawing building sizes

But Beware of 2-D Size

Why?

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this - maybe you're drawing building sizes

How much bigger is the small circle than the larger one?

But Beware of 2-D Size

Why?

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this - maybe you're drawing building sizes

How much bigger is the small circle than the larger one? $16 x$

Color

1. Hue

- What you think of as "color"
- Blue, Green, etc

2. Saturation

- full color to white

3. Lightness

- or brightness, full color to dark

Color

1. Hue

- What you think of as "color"
- Blue, Green, etc

2. Saturation

- full color to white

3. Lightness

- or brightness, full color to dark

Contrasting hues stand out. Intense colors stand out.

Using Color and Enclosure to Distinguish

- Quickly pick out two types
- Locate within larger block

Do We Perceive Them Quantitatively?

Type	Attribute
Form	Length
	Width
	Orientation
	Size
	Shape
	Enclosure
Color	Hue
	Intensity
Position	2-D Position

Do We Perceive Them Quantitatively?

Type	Attribute	Quantitatively Perceived?
Form	Length	Yes
	Width	Yes, but limited
	Orientation	No
	Size	Yes, but limited
	Shape	No
	Enclosure	No
Color	Hue	No
	Intensity	Yes, but limited
Position	2-D Position	Yes

Context Matters

Context Matters

\square

Calling Attention

Which principle do I use here?

Gestalt Principles of Visual Perception

- Proximity
- Similarity
- Enclosure
- Closure
- Continuity

These all generate meaning, whether you intend it or not!

Applying These Principles

- WSJ graph on job openings
- My regression results
- first a set of slides that do a so-so job
- second a set of slides that do a better (but improvable) job

Similarity and Continuity

Change, $1 / 2018$ to $11 / 2019$

Job openings in blue-collar industries saw some of the weakest growth before the pandemic.

Similarity and Continuity

Change, $1 / 2018$ to $11 / 2019$

Job openings in blue-collar industries saw some of the weakest growth before the pandemic.

Change, $1 / 2020$ to $11 / 2021$

Now, blue-collar job openings are logging the biggest
y vad gains.

Baseline Increase of $\$ 7.3$ Million per Mile

additional spending per mile， 1970 onward，$\$ 2016$ millions

Measures of Government Quality Unrelated to Spending Increase

Baseline

Has State Env. Protection Act

Land Use Cases per 10k People
Bond Score
Num of Local Governments

additional spending per mile, 1970 onward, $\$ 2016$ millions

Measures of Labor Strength Unrelated to Spending Increase
Baseline
Has State Env. Protection Act
Land Use Cases per 10k People
Bond Score
Num of Local Governments
Right to Work Law
Share Unionized
Share Voting Dem. Pres. Candidate
0

Using the Principles of Proximity and Similarity

Using the Principles of Proximity and Similarity

Using the Principles of Proximity and Similarity

Using the Principles of Proximity and Similarity

Using the Principles of Proximity and Similarity

	Baseline
Land Use Law	Land Use Cases per 10k People
	Has State Env. Protection Act
Fragmentation Gov't Quality	Num of Local Governments
	Bond Score
Labor Strength	Share Unionized
	Right to Work Law
	Share Voting Dem. Pres. Candidate
$\underset{\text { Additional spending per mile, }}{0} \stackrel{4}{\$ 2016}$ millions ${ }^{6}$	

R: Merging

Why Do You Need to Know How to Merge?

If you want to say anything about something in more than one dataset.

What is a Merge?

You want to put together

Dataset A - One obs/ID

ID	Income
A 50	

B 100

Dataset B - One obs/ID

ID	Pool
A	TRUE

B FALSE

What is a Merge?

You want to put together

Dataset A - One obs/ID

ID	Income
A 50	

B 100

Dataset B - One obs/ID

ID	Pool
A	TRUE

B FALSE
Into

ID	Income	Pool
A	50	TRUE

B 100 FALSE
This is a 1 to 1 merge.

What is a Many to 1 Merge?

You want to put together
Dataset A - One obs/ID

ID	Income
A	50
B	100

Dataset B - many obs/ID

ID	Pool	Year
A	TRUE	2020
B	FALSE	2020
A	TRUE	2021
B	TRUE	2021

What is a Many to 1 Merge?

You want to put together
Dataset A - One obs/ID

ID	Income
A	50
B	100

Dataset B - many obs/ID

ID	Pool	Year
A	TRUE	2020
B	FALSE	2020
A	TRUE	2021
B	TRUE	2021

How many rows should it have?

What is a Many to 1 Merge?

You want to put together
Dataset B - many obs/ID
Dataset A - One obs/ID

ID	Income
A	50
B	100

ID	Pool	Year
A	TRUE	2020

B FALSE 2020
A TRUE 2021
B TRUE 2021

ID	Pool	Year	Income
A	TRUE	2020	50

How many rows should it have?
B FALSE 2020100
A TRUE 202150
B TRUE 2021100

What is a Many to Many Merge?

A mess!

What is a Many to Many Merge?

A mess!
Dataset A

ID	Income
A	50
A	60
B	100

Dataset B

ID	Pool	Year
A	TRUE	2020

B FALSE 2020
A TRUE 2021
B TRUE 2021

What is a Many to Many Merge?

A mess!

Dataset A

ID	Income
A	50
A	60
B	100

Dataset B

ID	Pool	Year
A	TRUE	2020

B FALSE 2020
A TRUE 2021
B TRUE 20212021

There is no logical path to merge A and B.

What is a Many to Many Merge?

A mess!

Dataset A	
ID	Income
A	50
A	60
B	100

Dataset B

ID	Pool	Year
A	TRUE	2020

B FALSE 2020
A TRUE 2021
B TRUE 2021
There is no logical path to merge A and B. Probably something is wrong with A.

Merging in R

Try Today's Tutorial

- Make a .R script for whole tutorial
- Plus questions at end
- Go forth!
- I will be here till 5:20 - please stay and ask questions

Next Lecture

- Turn in PS 2
- Read Few Chapter 9 and Chapter 10, pages 210-217 (on bars)
- Read Chang, Chapter 3
- Read two linked examples from WSJ
- Turn in policy brief proposal

