Lecture 2: When You Need Graphs and How We See Graphs and Merging

January 30, 2023

Course Administration

- 1. Any trouble submitting tutorials? questions?
- 2. Questions/issues with readings?
- 3. Make sure you're signed up for Piazza
 - email me if you are not

Course Administration

- 1. Any trouble submitting tutorials? questions?
- 2. Questions/issues with readings?
- 3. Make sure you're signed up for Piazza– email me if you are not

- Be sure to check online listing for good/bad/ugly: linked at bottom of lectures page
 - I moved a few of you around to even up finders and commenters
 - If date is not ok, try to switch with a classmate
 - If you didn't sign up, sign up and let me know

Course Administration

- 1. Any trouble submitting tutorials? questions?
- 2. Questions/issues with readings?
- 3. Make sure you're signed up for Piazza– email me if you are not

- Be sure to check online listing for good/bad/ugly: linked at bottom of lectures page
 - I moved a few of you around to even up finders and commenters
 - If date is not ok, try to switch with a classmate
 - If you didn't sign up, sign up and let me know
- 5. One-page proposal is due next week
- 6. Anything else?

Next Week's Good Bad and Ugly

Finders, post link Wed. by noon.

	Finder	Commenter
1	Henry	Lancy

Email me ASAP if you're not on the google sheet. Link at the bottom of the lectures tab.

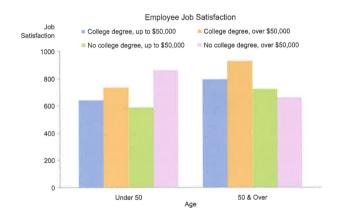
Few: Visual Perception and Graphical Communication

When Should You Use Tables vs. Graphs?

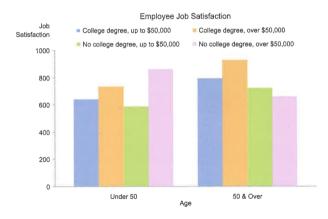
- Tables are for when
 - you care about the actual numbers
 - you have **very** few numbers

When Should You Use Tables vs. Graphs?

- Tables are for when
 - you care about the actual numbers
 - you have **very** few numbers
- Graphs are for when
 - you care about trends or general tendencies
 - you have more numbers than a table can support
 - the exact values are not critical
 - you wish to highlight a particular relationship


Starting with the Table

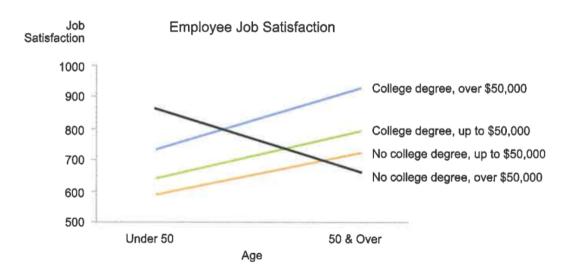
Job Satisfaction By Income, Education, and Age


	College Degrees		No College	No College Degrees	
Income	Under 50	50 & over	Under 50	50 & over	
Up to \$50,000	643	793	590	724	
Over \$50,000	735	928	863	662	

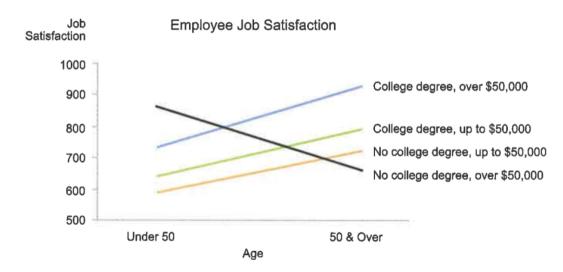
Few, Chapter 3, Figure 3.13

Version One of a Set of Numbers

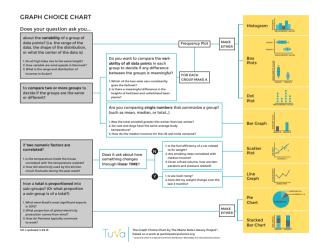
Version One of a Set of Numbers



What do you think the point of this picture is?


Few, Chapter 3, Figure 3.15

Version Two of the Same Set of Numbers


Version Two of the Same Set of Numbers

And the point of this picture?

Few, Chapter 3, Figure 3.14 999

Choose the Graph that Leads the Reader to Your Answer

Few Chapter 5: Drawing Attention

- 1. working memory
- 2. preattentive processing
 - form
 - color
 - spatial position
- 3. applying to design
- 4. gestalt principles of visual perception

Working Memory

We don't have much of it

Working Memory

We don't have much of it

- people can remember 3 to 4 visual encodings for a chart
- therefore, more than about 4 colors as identification are distracting
- good visuals can stick in long-term memory

Why is this so important? Find the 5s.

48921652097520589

Why is this so important? Find the 5s.

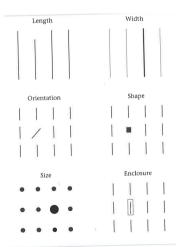
48921652097520589

And now find the 5s.

 $489216 \boldsymbol{5} 2097 \boldsymbol{5} 20 \boldsymbol{5} 89$

Why is this so important? Find the 5s.

48921652097520589


And now find the 5s.

489216**5**2097**5**20**5**89

Use preattentive processing to point out what you think is important.

Form Color Spatial Position

Form

Why?

Why?

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this – maybe you're drawing building sizes

Why?

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this – maybe you're drawing building sizes

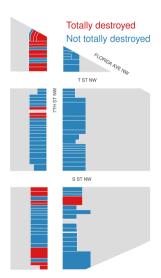
How much bigger is the small circle than the larger one?

Why?

- People have a very hard time judging the relative size of 2-D objects
- Changing both length and width is a 2-D change
- Avoid unless you have a specific reason to do this – maybe you're drawing building sizes

How much bigger is the small circle than the larger one? 16x

Color


- 1. Hue
 - What you think of as "color"
 - Blue, Green, etc
- 2. Saturation
 - full color to white
- 3. Lightness
 - or brightness, full color to dark

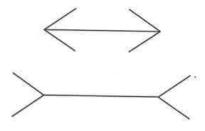
Color

- 1. Hue
 - What you think of as "color"
 - Blue, Green, etc
- 2. Saturation
 - full color to white
- 3. Lightness
 - or brightness, full color to dark

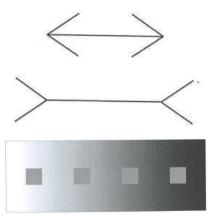
Contrasting hues stand out. Intense colors stand out.

Using Color and Enclosure to Distinguish

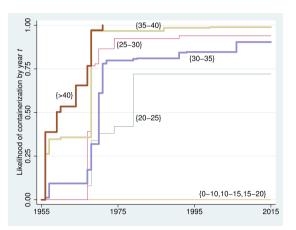
- Quickly pick out two types
- Locate within larger block


Do We Perceive Them Quantitatively?

Туре	Attribute
Form	Length
	Width
	Orientation
	Size
	Shape
	Enclosure
Color	Hue
	Intensity
Position	2-D Position
Position	


Do We Perceive Them Quantitatively?

Туре	Attribute	Quantitatively Perceived?
Form	Length	Yes
	Width	Yes, but limited
	Orientation	No
	Size	Yes, but limited
	Shape	No
	Enclosure	No
Color	Hue	No
	Intensity	Yes, but limited
Position	2-D Position	Yes


Context Matters

Context Matters

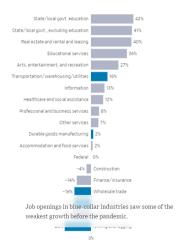
Calling Attention

Which principle do I use here?

Gestalt Principles of Visual Perception

- Proximity
- Similarity
- Enclosure
- Closure
- Continuity

These all generate meaning, whether you intend it or not!

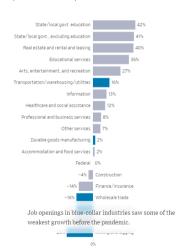


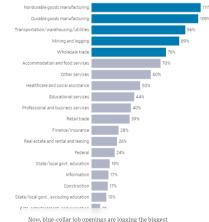
Applying These Principles

- WSJ graph on job openings
- My regression results
 - first a set of slides that do a so-so job
 - second a set of slides that do a better (but improvable) job

Similarity and Continuity

Change, 1/2018 to 11/2019

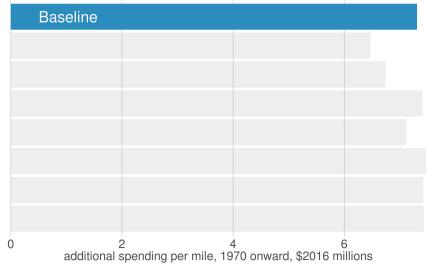




Similarity and Continuity

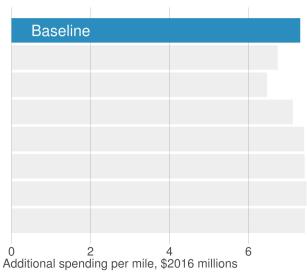
Change, 1/2018 to 11/2019

Change, 1/2020 to 11/2021



Now, blue-collar job openings are logging the bigges gains.

Baseline Increase of \$7.3 Million per Mile



Measures of Government Quality Unrelated to Spending Increase

Measures of Labor Strength Unrelated to Spending Increase

Baseline Has State Env. Protection Act Land Use Cases per 10k People **Bond Score** Num of Local Governments Right to Work Law Share Unionized Share Voting Dem. Pres. Candidate additional spending per mile, \$2016 millions

R 000

R: Merging

Why Do You Need to Know How to Merge?

If you want to say anything about something in more than one dataset.

What is a Merge?

You want to put together

Dataset A - One obs/ID

A 50 B 100 $\mathsf{Dataset}\ \mathsf{B}-\mathsf{One}\ \mathsf{obs/ID}$

ID Pool
A TRUE
B FALSE

What is a Merge?

You want to put together

Dataset B – One obs/ID

A TRUE
B FALSE

Into
ID Income Pool
A 50 TRUE
B 100 FALSE

This is a 1 to 1 merge.

 $\mathsf{Dataset}\ \mathsf{A}-\mathsf{One}\ \mathsf{obs/ID}$

A 50

B 100

What is a Many to 1 Merge?

You want to put together

Dataset A - One obs/ID

ID	Income
Α	50
В	100

Dataset B - many obs/ID

ID	Pool	Year
Α	TRUE	2020
В	FALSE	2020
Α	TRUE	2021
В	TRUE	2021

What is a Many to 1 Merge?

You want to put together

Dataset A - One obs/ID

ID	Income
Α	50
В	100

Dataset B - many obs/ID

ID	Pool	Year
Α	TRUE	2020
В	FALSE	2020
Α	TRUE	2021
В	TRUE	2021

How many rows should it have?

What is a Many to 1 Merge?

You want to put together

Dataset A - One obs/ID

A 50 B 100 Dataset B - many obs/ID

ID	Pool	Year
Α	TRUE	2020
В	FALSE	2020
Α	TRUE	2021
В	TRUE	2021

Pool Year Income Α TRUE 2020 50 В **FALSE** 2020 100 TRUE 2021 50 Α В TRUE 2021 100

How many rows should it have?

A mess!

What is a Many to Many Merge?

A mess!

Dataset A
ID Income
A 50
A 60
B 100

Dataset B			
ID	Pool	Year	
Α	TRUE	2020	
В	FALSE	2020	
Α	TRUE	2021	
В	TRUE	2021	

What is a Many to Many Merge?

A mess!

Dataset A			
ID	Income		
Α	50		
Α	60		
В	100		

Dataset B			
ID	Pool	Year	
Α	TRUE	2020	
В	FALSE	2020	
Α	TRUE	2021	
R	TRUE	2021	

There is no logical path to merge A and B.

What is a Many to Many Merge?

A mess!

Data:	set A
ID	Income
Α	50
Α	60
В	100

Dataset B			
ID	Pool	Year	
Α	TRUE	2020	
В	FALSE	2020	
Α	TRUE	2021	
R	TRUE	2021	

There is no logical path to merge A and B. Probably something is wrong with A.

Merging in R

Try Today's Tutorial

- Make a .R script for whole tutorial
- Plus questions at end
- Go forth!
- I will be here till 5:20 please stay and ask questions

Next Lecture

- Turn in PS 2
- Read Few Chapter 9 and Chapter 10, pages 210-217 (on bars)
- Read Chang, Chapter 3
- Read two linked examples from WSJ
- Turn in policy brief proposal