# Lecture 10: <br> Scatter Plots and Color 

April 10, 2023

## Course Administration

1. Looking forward

- Lecture 11: consultations tomorrow, no live lecture
- Lecture 12: storytelling, and how to make a quarto webpage
- Lecture 13, Monday May 1: presentations
- Lecture 14, Wednesday May 3: presentations

Origins

## Course Administration

1. Looking forward

- Lecture 11: consultations tomorrow, no live lecture
- Lecture 12: storytelling, and how to make a quarto webpage
- Lecture 13, Monday May 1: presentations
- Lecture 14, Wednesday May 3: presentations

2. Edited presentation instructions: presentations due two hours in advance of class

## Course Administration

1. Looking forward

- Lecture 11: consultations tomorrow, no live lecture
- Lecture 12: storytelling, and how to make a quarto webpage
- Lecture 13, Monday May 1: presentations
- Lecture 14, Wednesday May 3: presentations

2. Edited presentation instructions: presentations due two hours in advance of class
3. Paper due Monday May 8 by midnight to google drive. Do not be late.
4. Anything else?

Next Week's Good Bad on Scatters, April 24

| Finder | Commenter |
| :--- | :--- |
| Megan | Claire |
| Hannah | Morgan |

This is the last one.

## My Surplus Chart

My Surplus Chart


## This Lecture

1. Scatter plot definition and origins
2. How and when to use scatters
3. Small multiples
4. Color
5. R stuff

## Scatter Plot: Definition and Origins

What is a Scatter Plot?

## What is a Scatter Plot?

- Plots values of two different variables on the same chart


## What is a Scatter Plot?

- Plots values of two different variables on the same chart
- Shows correlation between two variables


## What is a Scatter Plot?

- Plots values of two different variables on the same chart
- Shows correlation between two variables
- Can also show distribution of each variable


## A Reminder and Example: Anscombe's Quartet

Same mean, same variance

$$
\left\{\begin{array}{rr}
\mathrm{X} \\
\mathrm{X} & \mathrm{Y} \\
\hline 10.0 & 8.04 \\
8.0 & 6.95 \\
13.0 & 7.58 \\
9.0 & 8.81 \\
11.0 & 8.33 \\
14.0 & 9.96 \\
6.0 & 7.24 \\
4.0 & 4.26 \\
12.0 & 10.84 \\
7.0 & 4.82 \\
5.0 & 5.68
\end{array}\right.
$$

| II |  |
| ---: | ---: |
| X | Y |
| 10.0 | 9.14 |
| 8.0 | 8.14 |
| 13.0 | 8.74 |
| 9.0 | 8.77 |
| 11.0 | 9.26 |
| 14.0 | 8.10 |
| 6.0 | 6.13 |
| 4.0 | 3.10 |
| 12.0 | 9.13 |
| 7.0 | 7.26 |
| 5.0 | 4.74 |


| III |  |
| ---: | ---: |
| X | Y |
| 10.0 | 7.46 |
| 8.0 | 6.77 |
| 13.0 | 12.74 |
| 9.0 | 7.11 |
| 11.0 | 7.81 |
| 14.0 | 8.84 |
| 6.0 | 6.08 |
| 4.0 | 5.39 |
| 12.0 | 8.15 |
| 7.0 | 6.42 |
| 5.0 | 5.73 |


\left.| IV |  |
| ---: | ---: |
| X | Y |
| 8.0 | 6.58 |
| 8.0 | 5.76 |
| 8.0 | 7.71 |
| 8.0 | 8.84 |
| 8.0 | 8.47 |
| 8.0 | 7.04 |
| 8.0 | 5.25 |
| 19.0 | 12.50 |
| 8.0 | 5.56 |
| 8.0 | 7.91 |
| 8.0 | 6.89 |$\right\}$

A Reminder and Example: Anscombe's Quartet
Same mean, same variance





## What Makes a Scatter Plot Different From All Other Plots?

(That We have Studied) - from Friendly and Denis, 2005

## What Makes a Scatter Plot Different From All Other Plots?

(That We have Studied) - from Friendly and Denis, 2005

- It is fundamentally 2-D


## What Makes a Scatter Plot Different From All Other Plots?

(That We have Studied) - from Friendly and Denis, 2005

- It is fundamentally 2-D
- A line graph is sort of 2-D, but only really for time


## What Makes a Scatter Plot Different From All Other Plots?

(That We have Studied) - from Friendly and Denis, 2005

- It is fundamentally 2-D
- A line graph is sort of 2-D, but only really for time
- Everything else we've studied is either a categorical relationship
- bar chart


## What Makes a Scatter Plot Different From All Other Plots?

(That We have Studied) - from Friendly and Denis, 2005

- It is fundamentally 2-D
- A line graph is sort of 2-D, but only really for time
- Everything else we've studied is either a categorical relationship
- bar chart
- or 1-D
- histogram


## What Makes a Scatter Plot Different From All Other Plots?

(That We have Studied) - from Friendly and Denis, 2005

- It is fundamentally 2-D
- A line graph is sort of 2-D, but only really for time
- Everything else we've studied is either a categorical relationship
- bar chart
- or 1-D
- histogram

Map is the closest analogue to a scatter: points in $(x, y)$ space

## Scatters Are the Most Modern of Graphs We Study



- What is this graph?
- two y axes
- wages in line
- price of wheat in bars
- horizontal axis is time
- What is the goal of this graph?


## Scatters Are the Most Modern of Graphs We Study



- What is this graph?
- two y axes
- wages in line
- price of wheat in bars
- horizontal axis is time
- What is the goal of this graph?
- show that purchasing power increases over time
- is it clear?


## Playfair's Graph as a Proper Scatter



- What is this graph?
- price of wheat on $x$
- wage on y
- line connects by time


## Playfair's Graph as a Proper Scatter



- What is this graph?
- price of wheat on $x$
- wage on y
- line connects by time
- Why is this graph not too helpful?
- you don't know when is when
- no temporal point


## Revision of Playfair Makes the Key Point - But is Not a Scatter



- What is this graph?
- time on $x$
- on y , number of weeks required to purchase one quarter of wheat
- line connects by time


## Revision of Playfair Makes the Key Point - But is Not a Scatter



- What is this graph?
- time on x
- on y , number of weeks required to purchase one quarter of wheat
- line connects by time
- Why is this better?
- line connects time and you can see it
- makes the ratio for you
- the ratio is the point!


## One of the First Scatterplots: 1886

The Graph

- aims to predict one variable from the other
- has no time dimension
- notes density of observations


## One of the First Scatterplots: 1886

The Graph

- aims to predict one variable from the other
- has no time dimension
- notes density of observations


## The Author: Francis Galton

- a measurer of all things: weather, height, etc
- invented or first described
- the questionnaire
- standard deviation
- regression to the mean
- and the developer of eugenics


## Galton's Scatter



- What is this graph?
- height of adult children on x
- height of parents on $y$
- numbers are the number of observations at each point


## Galton's Scatter



- What is this graph?
- height of adult children on x
- height of parents on $y$
- numbers are the number of observations at each point
- This is an early scatter
- Scatters are nor prevalent until the 1920s
- Still usually too complicated for most layperson communications

Galton, 1886.

## How and When to Use Scatters

## Pros and Cons of Scatters

Most common type of graph for academic presentation

## Pros and Cons of Scatters

Most common type of graph for academic presentation

Pros

- Can clearly and compellingly show a bivariate relationship
- Shows relationship throughout the distribution


## Pros and Cons of Scatters

Most common type of graph for academic presentation

Pros

- Can clearly and compellingly show a bivariate relationship
- Shows relationship throughout the distribution

Cons

- Requires the audience to think about the relationship
- Sometimes too complicated for policy communication
- Can obscure relationships that do exist


## This Should be a Scatter But Was Not



## My Best Ever Scatter



What is it?

- Each point is
- average population density near about 400 land plots
- at a given distance from an old streetcar
- red line is a flexible regression line


## My Best Ever Scatter



What is it?

- Each point is
- average population density near about 400 land plots
- at a given distance from an old streetcar
- red line is a flexible regression line

Data show the point

How Can You Annotate a Scatter?


- best fit lines
- ovals
- colors
- call out individual items


# Showing Multiple Variables or Variations 

## How to Deal with Issues of Multiple Variables

1. If they are in the same units?

## How to Deal with Issues of Multiple Variables

1. If they are in the same units? graph on the same scale

## How to Deal with Issues of Multiple Variables

1. If they are in the same units? graph on the same scale
2. If they are in different units?

## How to Deal with Issues of Multiple Variables

1. If they are in the same units? graph on the same scale
2. If they are in different units?

- can use two axes, but rarely a good idea - why?


## How to Deal with Issues of Multiple Variables

1. If they are in the same units? graph on the same scale
2. If they are in different units?

- can use two axes, but rarely a good idea - why?
- plot on two charts side-by-side
- do you want side-by-side vertical or horizontal?


## How to Deal with Issues of Multiple Variables

1. If they are in the same units? graph on the same scale
2. If they are in different units?

- can use two axes, but rarely a good idea - why?
- plot on two charts side-by-side
- do you want side-by-side vertical or horizontal?

3. If you have many different variables to show?

- see the next slide..


## Small Multiples

When do you use them?

- Multiple variables to show
- Too much for one graph
- In presentations, usually helpful to explain one part first

There is an implicit assumption that all graphs use the same scale.

## My Small Multiples

## Destruction Roughly Even by 1967 Quality

14th Street


## My Small Multiples

## Destruction Roughly Even by 1967 Quality <br> 14th Street <br> 7th Street <br> H Street



## My Small Multiples

## Destruction Roughly Even by 1967 Depreciation

14th Street
irreparable
extensive
minimal
none

| 0 | 20 | 40 | 60 |
| :--- | :--- | :--- | :--- |

1967: Share Depreciated

## My Small Multiples

```
Destruction Roughly Even by }1967\mathrm{ Depreciation
    14th Street
    7th Street
```



```
        0 20 40 60
        1967: Share Depreciated
            0 20 40 60
                        1967: Share Depreciated
0 \(20 \quad 40 \quad 60\)
1967: Share Depreciated
```

How Beyonce Exploits the Power of Small Multiples


Using Color Well

Origins

## Color Rules, 1 of 2

1. Use color because it may be the fastest discriminator
2. Use color because color builds in size and emotion
3. Color should have a function, not be a decoration
4. (repeat) We can't remember too many categories $\rightarrow$ too many colors
5. Things that are the same color are linked, whether you intend to or not
6. Be consistent with color across graphics

## Color Rules, 2 of 2

7. Categorical things must get qualitative scales
8. Consecutive continuous things get sequential color scales
9. We think darker $=$ denser $\rightarrow$ darker $=$ larger $\rightarrow$ make bigger values darker colors
10. Consecutive continuous things with two binary options can get diverging sequential color scales
11. Use a tool to choose color-blind accessible options
12. All kinds of ways to choose: colorbrewer2.org, metbrewer

With thanks to Cynthia Brewer, Towards Data Science, datawrapper.de, and this Adobe blog.

## 7. Categorial Things Get Qualitative Scales

Hillil
What kind of categorical things would work well here?

## 8. Sequential Color for Consecutive Continuous Things



## What kind of sequential things would work well here?

## 10．Diverging Sequential Color

䏠．
What kind of type of series would work well here？

## 12. Use Colorbrewer2.org



Number of data classes: $3 \vee$ i
Nature of your data:

# $\bigcirc$ sequential $\bigcirc$ diverging $\bigcirc$ qualitative 

Pick a color scheme: Multi-hue:

Single hue: Hinil 1 Hili ili

## 12，cont＇d．MetBrewer Uses This Framework




Kandinsky
$\square$

## R Notes on Scatters

## Next Lectures

- Consultations this week
- No lecture next week
- Presentations due online 48 hours before you present in class - May 1 or 3
- Final paper due May 8 by midnight

