Lecture 11: Scatter Plots and Color

April 14, 2025

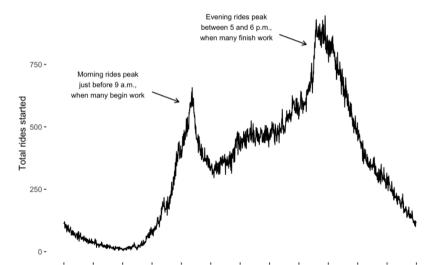
Course Administration

- 1. Looking forward
 - Lecture 12: storytelling, accessibility and interactivity
 - Lecture 13, April 28: presentations
 - Lecture 14, **Wednesday** April 30: presentations

Course Administration

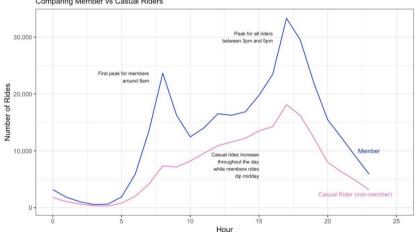
- 1. Looking forward
 - Lecture 12: storytelling, accessibility and interactivity
 - Lecture 13, April 28: presentations
 - Lecture 14, **Wednesday** April 30: presentations
- 2. Presentations due two hours in advance of class
- 3. Final policy brief due Monday May 5 by midnight. Do not be late.
- 4. Anything else?

Next Week's Final Good Bad Ugly on Scatters

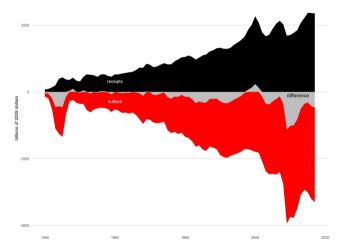

Finder	Commenter
Amanda	Sandra
Sandra	Raquel

This is the last one.

Nice Line Chart No. 1


Total rides started by minute of day

Nice Line Chart No. 2


Total Number of Rides by Hour of the Day Comparing Member vs Casual Riders

My Surplus Chart

My Surplus Chart

This Lecture

- 1. Scatter plot definition and origins
- 2. How and when to use scatters
- 3. Small multiples
- 4. Color
- 5. R stuff

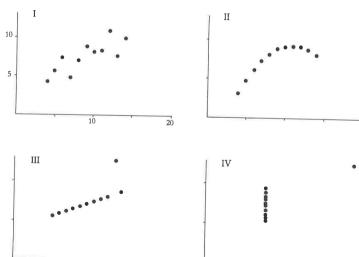
Scatter Plot: Definition and Origins

Plots values of two different variables on the same chart

- Plots values of two different variables on the same chart
- Shows correlation between two variables

- Plots values of two different variables on the same chart
- Shows correlation between two variables
- Can also show distribution of each variable

A Reminder and Example: Anscombe's Quartet


Same mean, same variance

	I	Ì	II		III IV		IV
X	Y	X	Y	X	Y	X	Y
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

A Reminder and Example: Anscombe's Quartet

Same mean, same variance

(That We have Studied) – from Friendly and Denis, 2005

(That We have Studied) – from Friendly and Denis, 2005

• It is fundamentally 2-D

(That We have Studied) - from Friendly and Denis, 2005

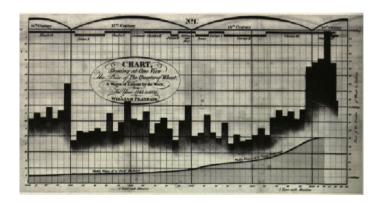
- It is fundamentally 2-D
- A line graph is sort of 2-D, but only really for time

(That We have Studied) – from Friendly and Denis, 2005

- It is fundamentally 2-D
- A line graph is sort of 2-D, but only really for time
- Everything else we've studied is either a categorical relationship
 - bar chart

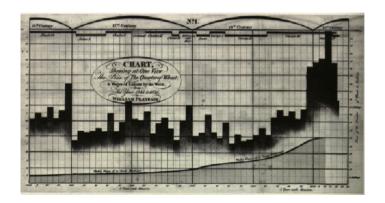
(That We have Studied) – from Friendly and Denis, 2005

- It is fundamentally 2-D
- A line graph is sort of 2-D, but only really for time
- Everything else we've studied is either a categorical relationship
 - bar chart
- or 1-D
 - histogram



(That We have Studied) – from Friendly and Denis, 2005

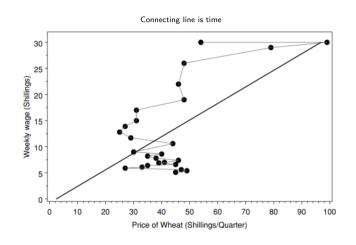
- It is fundamentally 2-D
- A line graph is sort of 2-D, but only really for time
- Everything else we've studied is either a categorical relationship
 - bar chart
- or 1-D
 - histogram


Map is the closest analogue to a scatter: points in (x, y) space

Scatters Are the Most Modern of Graphs We Study

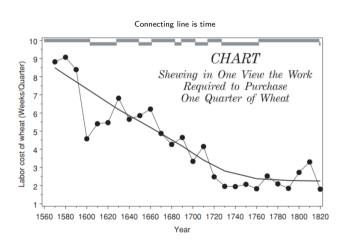
- What is this graph?
 - two y axes
 - wages in line
 - price of wheat in bars
 - horizontal axis is time
- What is the goal of this graph?

Scatters Are the Most Modern of Graphs We Study

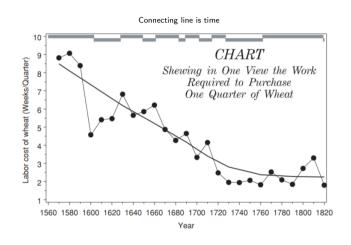

- What is this graph?
 - two y axes
 - wages in line
 - price of wheat in bars
 - horizontal axis is time
- What is the goal of this graph?
 - show that purchasing power increases over time
 - is it clear?

Playfair's Graph as a Proper Scatter

- What is this graph?
 - price of wheat on x
 - wage on y
 - line connects by time


Playfair's Graph as a Proper Scatter

- What is this graph?
 - price of wheat on x
 - wage on y
 - line connects by time
- Why is this graph not too helpful?
 - you don't know when is when
 - no temporal point



Revision of Playfair Makes the Key Point – But is Not a Scatter

- What is this graph?
 - time on x
 - on y, number of weeks required to purchase one quarter of wheat
 - line connects by time

Revision of Playfair Makes the Key Point – But is Not a Scatter

- What is this graph?
 - time on x
 - on y, number of weeks required to purchase one quarter of wheat
 - line connects by time
- Why is this better?
 - line connects time and you can see it
 - makes the ratio for you
 - the ratio is the point!

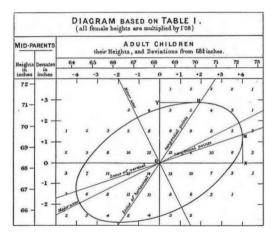
One of the First Scatterplots: 1886

The Graph

- aims to predict one variable from the other
- has no time dimension.
- notes density of observations

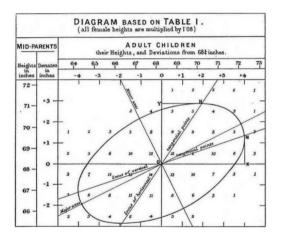
One of the First Scatterplots: 1886

The Graph


- aims to predict one variable from the other
- has no time dimension
- notes density of observations

The Author: Francis Galton

- a measurer of all things: weather, height, etc
- invented or first described
 - the questionnaire
 - standard deviation
 - regression to the mean
- and the developer of eugenics



Galton's Scatter

- What is this graph?
 - height of adult children on x
 - height of parents on y
 - numbers are the number of observations at each point

Galton's Scatter

- What is this graph?
 - height of adult children on x
 - height of parents on y
 - numbers are the number of observations at each point
- This is an early scatter
- Scatters are not prevalent until the 1920s
- Still usually too complicated for most layperson communications

Galton, 1886.

How and When to Use Scatters

Pros and Cons of Scatters

Most common type of graph for academic presentation

Pros and Cons of Scatters

Most common type of graph for academic presentation

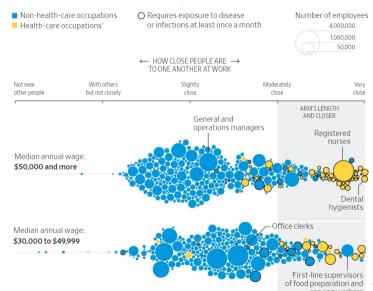
Pros

- Can clearly and compellingly show a bivariate relationship
- Shows relationship throughout the distribution

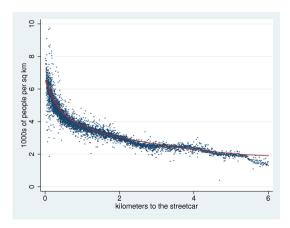
Pros and Cons of Scatters

Most common type of graph for academic presentation

Pros

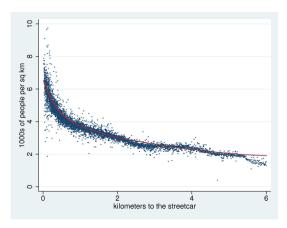

- Can clearly and compellingly show a bivariate relationship
- Shows relationship throughout the distribution

Cons


- Requires the audience to think about the relationship
- Sometimes too complicated for policy communication
- Can obscure relationships that do exist

This Should be a Scatter But Was Not

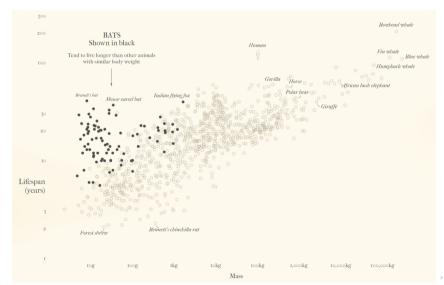
My Best Ever Scatter



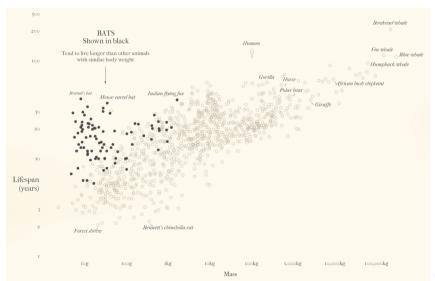
What is it?

- Each point is
- average population density near about 400 land plots
- at a given distance from an old streetcar
- red line is a flexible regression line

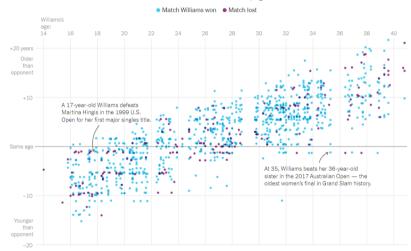
My Best Ever Scatter



What is it?

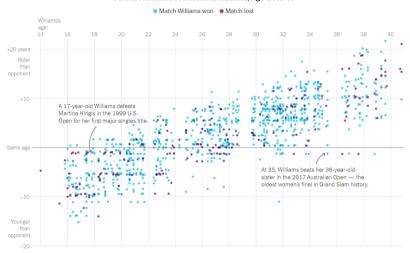

- Each point is
- average population density near about 400 land plots
- at a given distance from an old streetcar
- red line is a flexible regression line

Data show the point



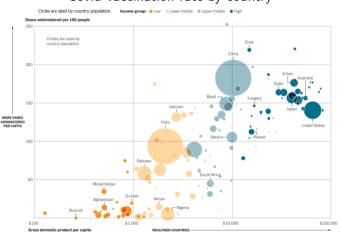
call out individual items

From Reuters



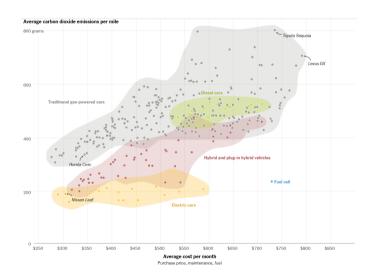
Serena Williams's Professional Matches, Age 14 to 40

Serena Williams's Professional Matches, Age 14 to 40



colors & call out individual items

From the New York Times


Covid vaccination rate by country

mark axes

From the New York Times

circle common points

From the New York Times

Showing Multiple Variables or Variations

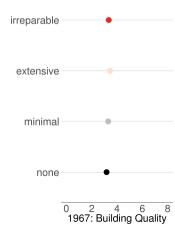
1. If they are in the same units?

1. If they are in the same units? graph on the same scale

- 1. If they are in the same units? graph on the same scale
- 2. If they are in different units?

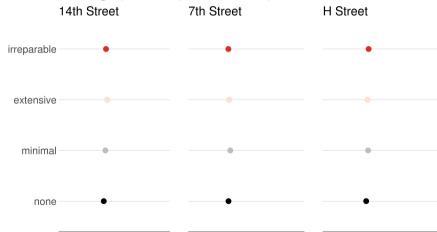
- 1. If they are in the same units? graph on the same scale
- 2. If they are in different units?
 - can use two axes, but rarely a good idea why?

- 1. If they are in the same units? graph on the same scale
- 2. If they are in different units?
 - can use two axes, but rarely a good idea why?
 - plot on two charts side-by-side
 - do you want side-by-side vertical or horizontal?


- 1. If they are in the same units? graph on the same scale
- 2. If they are in different units?
 - can use two axes, but rarely a good idea why?
 - plot on two charts side-by-side
 - do you want side-by-side vertical or horizontal?
- 3. If you have many different variables to show?
 - see the next slide..

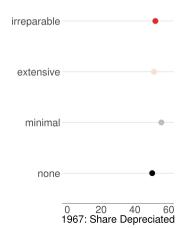
When do you use them?

- Multiple variables to show
- Too much for one graph
- In presentations, usually helpful to explain one part first

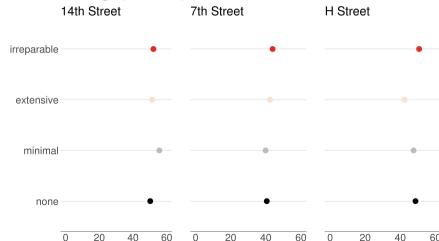

There is an implicit assumption that all graphs use the same scale.

Destruction Roughly Even by 1967 Quality 14th Street

Destruction Roughly Even by 1967 Quality


1967: Building Quality

1967: Building Quality


1967: Building Quality

Destruction Roughly Even by 1967 Depreciation 14th Street

Destruction Roughly Even by 1967 Depreciation

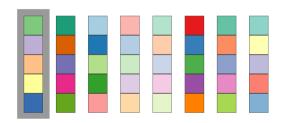
1967: Share Depreciated

1967: Share Depreciated

How Beyonce Exploits the Power of Small Multiples

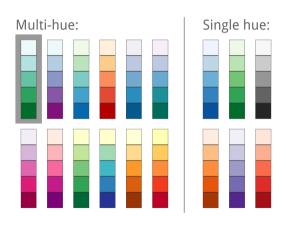
Using Color Well

Color Rules, 1 of 2


- 1. Use color because it may be the fastest discriminator
- 2. Use color because color builds in size and emotion
- 3. Color should have a function, not be a decoration
- 4. (repeat) We can't remember too many categories \rightarrow too many colors
- 5. Things that are the same color are linked, whether you intend to or not
- 6. Be consistent with color across graphics

Color Rules, 2 of 2

- 7. Categorical things must get qualitative scales
- 8. Consecutive continuous things get sequential color scales
- 9. We think darker = denser \rightarrow darker = larger \rightarrow make bigger values darker colors
- Consecutive continuous things with two binary options can get diverging sequential color scales
- 11. Use a tool to choose color-blind accessible options
- 12. All kinds of ways to choose: colorbrewer2.org, metbrewer


With thanks to Cynthia Brewer, Towards Data Science, datawrapper.de, and this Adobe blog.

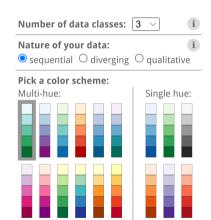
7. Categorial Things Get Qualitative Scales

What kind of categorical things would work well here?

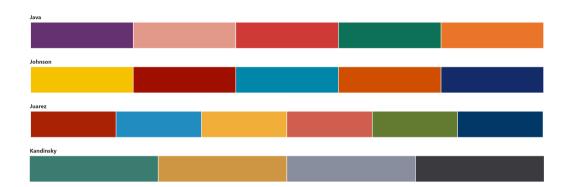
8. Sequential Color for Consecutive Continuous Things

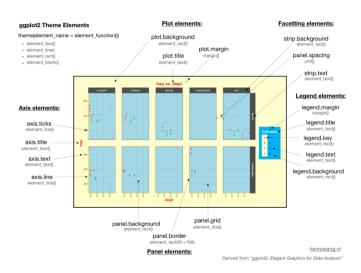
What kind of sequential things would work

well here?


10. Diverging Sequential Color

What kind of type of series would work well here?


12. Use Colorbrewer2.org



12, cont'd. MetBrewer Uses This Framework

Axes, Gridlines, Tickmarks, Axis Lines, Borders

All Other Little Graph Bits

Rules of thumb

- Omit what you can
- Use grey when possible

Thank you, Henry Wang

R Notes on Scatters

Next Lectures

- Interactivity, and then presentations
- Presentations due by noon day of presentation
- Final paper due May 5 by midnight